On the construction of theories of composite Dark Matter KIAS HEP Seminar

Seán Mee

Based on arXiv: 2202.05191 with S. Kulkarni, A. Maas, M. Nikolic, J. Pradler, F. Zierler

University of Graz

 $24 \mathrm{th}~\mathrm{May}~2022$

< 1 →

Seán Mee

On the construction of theories of composite Dark Matter

Outline

- **1** A brief introduction to dark matter (DM).
- **2** Candidate models for particle DM.
- **3** Strong interactions and composite DM.
- 4 Symmetries and low-energy spectrum of Sp(4) gauge theory.
 - Pseudo Nambu-Golstone bosons
 - Spin-1 multiplet
- **5** Minimal portal between dark sector and SM
 - Explicit symmetry breaking patterns
 - Decay modes
- 6 Outlook and Conclusions.

Univ. Graz

< 1 →

STRONG-DM group

- A focus on strongly interacting theories of dark matter.
- Several approached taken in characterizing SIMP (strongly interacting massive particle) dark matter.
- Close collaboration between lattice theorists, cosmologists, experimentalists and phenomenologists.

Dark Matter

- One of the biggest unanswered questions in physics today
- Evidence on a variety of scales
- Makes up ~ 84% of the non-relativistic matter and ~ 25% of the energy budget of the universe

On the construction of theories of composite Dark Matter

- Stable, or long-lived
- Weakly charged under the standard model group
- Mostly non-relativistic or "cold" at the time of matter-radiation equality
- Probably not an SM particle. Neutrinos were initially seen as a natural candidate but have since been ruled out.

The standard WIMP

$$\Omega_{\chi} h^2 \approx 0.1 \left(\frac{0.01}{\alpha}\right)^2 \left(\frac{m_{\chi}}{100 \text{ GeV}}\right)^2$$

- DM is a thermal relic
- Freezes out through an incomplete annihilation process
- Weakly interacting particles at the weak scale reproduce observed relic density (Gondolo, Gelmini, Nucl. Phys. B, 360 145 (1991))

Alternative routes to the relic density

- If this is the primary number changing process, then $m_{DM} \sim \alpha x_F^{-1} \left(x_F^{-1} T_{eq}^2 M_{Pl} \right)^{\frac{1}{3}}$.
- For $x_F \approx 20$ and $\alpha \approx 1$, we have $m_{DM} \approx 100 MeV$ (Hochberg et al. arXiv:1402.5143)

< 口 > < 同 >

On the construction of theories of composite Dark Matter

Strong interactions and composite states

- In the SM, exactly these sorts of interactions sourced by the Wess-Zumino-Witten action in QCD.
- New interest in DM as a composite particle in a QCD-like hidden sector.

Image: Image:

• In isolation, lightest hidden sector states are completely stable.

Why strongly interacting DM?

- **1** Stability of DM in isolation guaranteed.
- **2** Self-interactions come mostly for free.

3 Dark Matter can freeze out in isolation from the SM.

Seán Mee

On the construction of theories of composite Dark Matter

Strong Dynamics in the SM

- At the UV level, at a scale Λ_{QCD} , the strong coupling diverges and quarks confine into colour neutral combinations. Pions are sourced by bilinears $q\bar{q}$
- Pions can be characterized as the pseudo Nambu-Goldstone bosons of *chiral symmetry* breaking.
- The condensate

$$\langle \bar{\psi}\psi\rangle=\mu^3\neq 0$$

(日) (四) (三)

breaks the global flavour symmetry $SU(N_f) \times SU(N_f) \rightarrow SU(N_f).$ • $N_f^2 - 1$ pNGBs

Seán Mee

On the construction of theories of composite Dark Matter

How do we study the pNGBs

- **1** Lattice Field Theory (DeGrand Detar, 2006)
 - Simulates the full theory, nonperturbative.
 - Allows us to access low-energy constants: pion masses and decay constants.
 - Costly, especially if we want to work close to the chiral limit.
- **2** Chiral Perturbation Theory (χPT) (Georgi, 1984)
 - General and systematic expansion in the small momenta and masses of our pNGBs.
 - Respects all the symmetries of the UV action
 - Heavier flavours integrated out, their influence can be seen in the low-energy constants (LECs) associated with each term.
 - LECs require some extra input (eg. from experimental data or from lattice).

< ロ > < 同 > < 回 > < 回 >

From SU(3) to Sp(4)

Gauge	Flavour	Remaining	Number of
Symmetry	Symmetry	Symmetry	Goldstones
$SU(N_c), N_c > 2$	$SU(N_f)_L \times SU(N_f)_R$	$SU(N_f)_V$	$N_{f}^{2} - 1$
$Sp(N_c)$	$SU(2N_f)$	$Sp(2N_f)$	$(2N_f + 1)(N_f - 1)$

- For a nonvanishing five-Goldstone vertex, we need at least five pNGB states
- \blacksquare For SU(3) gauge theory, the minimal realization is for $N_f=3$
- A more minimal realization is possible if we consider fermions in *pseudoreal* representations \implies we consider the fundamental representation of Sp(4)

4日 × 西 × 4

Seán Mee

Pseudoreality

Seán Mee

- Pseudoreal representations have the property that they are isomorphic to their conjugate representation.
- The defining property of the symplectic group is that for $U \in Sp(2N)$,

$$U^* = SUS^{\dagger}, \quad S = i\sigma_2 \otimes \mathbb{1}_{N \times N}$$

• At the generator level this implies

$$T^{a*} = -ST^a S^{\dagger}.$$

(日)

 \implies symmetry between particle and antiparticle and expanded flavour symmetry

From SU(3) to Sp(4)

Univ. Graz

・ロト ・得ト ・ヨト ・ヨト

On the construction of theories of composite Dark Matter

Seán Mee

- Because of the larger flavour symmetry, we have a four-dimensional flavour space.
- Bound states are built of bilinears of

$$\Psi \equiv \begin{pmatrix} \psi_L \\ \tilde{\psi}_R \end{pmatrix} = \begin{pmatrix} u_L \\ d_L \\ \sigma_2 S u_R^* \\ \sigma_2 S d_R^* \end{pmatrix}$$

Univ. Graz

< 1 →

Seán Mee

On the construction of theories of composite Dark Matter

Symmetries of Sp(4)

- Sp(4) with two fundamental fermions possesses an expanded flavour-symmetry
- $SU(2) \times SU(2)$ expanded to SU(4)
- Condensate

$$\langle \psi_i^T \psi_j \rangle = \mu^3 E_{ij}, \quad E = \begin{pmatrix} 0 & \mathbb{I}_2 \\ -\mathbb{I}_2 & 0 \end{pmatrix}$$

breaks $SU(4) \rightarrow Sp(4)$ **1**5 - 10 = 5 pNGBs

On the construction of theories of composite Dark Matter

Univ. Graz

イロト イヨト イヨト イ

Spectrum of the low-energy theory

- Theory contains all the standard meson states of QCD.
- Contains also extra states, due to the expanded symmetry.
- Theory contains no baryons ⇒ single component dark. matter.

< 日 > < 同 >

 In what follows, we will consider first the case of degenerate fermions.

Di-quarks

- Sp(4) theories allow the construction of colour neutral states of quark pairs.
- Due to pseudoreality, these form part of our Goldstone multiplet.
- Along with standard $\bar{u}d$ states, we have also $u^T d$ states, totally degenerate with the others.

< 日 > < 同 >

The complete spectrum

< □ ▶ < 同 ▶</p>

On the construction of theories of composite Dark Matter

Seán Mee

- The dynamics of the pNGBs can be described through fluctuations in the orientation of the vacuum condensate
- The chiral EFT is built out of the field

$$\Sigma = e^{i\pi/f_{\pi}} E e^{i\pi^T/f_{\pi}}.$$

• At leading order it takes the familiar form

$$\mathcal{L}_2 = \frac{f_\pi^2}{4} \operatorname{Tr} \left[\partial_\mu \Sigma \partial^\mu \Sigma^\dagger \right] - \frac{\mu^3}{2} \left(\operatorname{Tr} \left[M \Sigma \right] + \operatorname{Tr} \left[\Sigma^\dagger M^\dagger \right] \right),$$

< 4 1 →

Seán Mee

On the construction of theories of composite Dark Matter

Minimal extensions of the EFT

- While χPT should describe our Goldstones well, other states in the hidden sector may also be interesting.
- The spin-1 multiplet, analogous to the ρ multiplet in QCD can play an important role at colliders.
- We make use of the idea of *hidden local symmetry* in order to couple them to the EFT.

- The hidden local symmetry framework allows us to describe the effective interactions between pNGBs and the lightest spin-1 states.
- We gauge a copy of our global Sp(4) which is completely broken by the condensate.
- 15 real Nambu-Goldstones $\sigma^a T^a$ appear in our theory and provide mass to all spin-1 states.

< 口 > < 同 >

Hidden Local Symmetry

From (Bennett et al. arXiv:1912.06505)

- One symmetry is global, the other is gauged.
- Nonvanishing vev of Σ and S_6 break the symmetry down to global Sp(4).
- Masses of vector states fixed completely in terms of low-energy constants of the full theory with real Goldstones.

What characterizes the low-energy states?

- Scales of the full UV theory $\rightarrow \mu, m_Q, \Lambda$
- Encoded in the low-energy constants of the EFT $\rightarrow m_{\pi}$, $m_{\rho}, f_{\pi}, f_{\rho}$

Image: Image:

• Lattice computations of these already available for degenerate fermions.

Results for degenerate case (Bennett et al. arXiv:1912.06505)

Seán Mee

Univ. Graz

< □ > < □ >

On the construction of theories of composite Dark Matter

Minimal coupling to the SM

- Hidden sector in isolation interacts only gravitationally.
- Simple portals allow the model to talk to the SM.
- U(1) extension often discussed because of simplicity and familiarity.

Image: Image:

Dark photon

- U(1) symmetry under which dark quarks are charged.
- Broken by a dark Higgs mechanism.
- Weak Hypercharge portal:

$$\mathcal{L}_{int} \sim \frac{\varepsilon}{2\cos\theta_W} B_{\mu\nu} V^{\mu\nu}.$$

Image: Image:

• *Millicharged* dark matter under SM group.

Explicit symmetry breaking

- U(1) couplings can break part of our remaining flavour symmetry.
- Symmetry breaking in effective theory should match that of UV Lagrangian.

< □ > < 同 > <

• Important implications for stability of the DM.

Global Symmetries and Goldstone stability

• The symmetry breaking term in the UV is of the form

 $\mathcal{L}_{\text{break}} \sim V \Psi^{\dagger} \mathcal{Q} \partial \Psi,$

4日 × 西 × 4

with \mathcal{Q} a charge matrix in flavour space.

• Can perform flavour rotation to work out conserved symmetry.

Goldstone Decay

• If a Goldstone can decay, it does so through the AVV anomaly:

■ Decay can only occur if the particle is no longer protected by symmetry ⇒ falls into a *trivial* representation of the flavour group.

On the construction of theories of composite Dark Matter

Charge assignment and multiplet structure

Q	Breaking Pattern	Multiplet Structure
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$Sp(4) \rightarrow SU(2) \times U(1)$	$\begin{pmatrix} \pi^C \\ \pi^{D,E} \end{pmatrix}, (\pi^{A,B})$
$\left(egin{array}{cccc} a & 0 & 0 & 0 \ 0 & a & 0 & 0 \ 0 & 0 & -a & 0 \ 0 & 0 & 0 & -a \end{array} ight)$	$Sp(4) \rightarrow SU(2) \times U(1)$	$\begin{pmatrix} \pi^C \\ \pi^{A,B} \end{pmatrix}, (\pi^{D,E})$
$\left(\begin{array}{cccc} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & -a & 0 \\ 0 & 0 & 0 & -b \end{array}\right), \qquad a \neq b$	$Sp(4) \rightarrow U(1)^2$	$(\pi^{C}), (\pi^{A,B}), (\pi^{D,E})$
$\left(\begin{array}{cccc} 0 & 0 & a & 0 \\ 0 & 0 & 0 & \pm a \\ a & 0 & 0 & 0 \\ 0 & \pm a & 0 & 0 \end{array}\right),$	$Sp(4) \rightarrow SU(2) \times U(1)$	$\begin{pmatrix} \pi^C \\ \pi^{A,B} \\ \pi^{E,D} \end{pmatrix}, \begin{pmatrix} \pi^{D,E} \\ \pi^{B,A} \end{pmatrix}$
All other off-diagonal prescriptions	$Sp(4) \rightarrow U(1)^2$	$(\pi^{C}), (\pi^{A,B}), (\pi^{D,E})$

Seán Mee

Univ. Graz

< □ ▶ < 同 ▶</p>

On the construction of theories of composite Dark Matter

• Unlike for a standard SU(3) gauge symmetry, nontrivial assignments can *completely* stabilize the DM.

< 口 > < 同 >

- No need for external stabilizing symmetry.
- Contact still made with the standard model.

Decay of the ρ

Seán Mee

• A singlet ρ can mix with our U(1) field through interactions of the form

$$\mathcal{L}_{V-
ho} \sim -\frac{e_D}{g} V_{\mu\nu} Tr\left(\mathcal{Q}\rho^{\mu\nu}\right)$$

- DM component completely stable \rightarrow heavier states can decay into the SM.
- If $m_{\rho} > 2m_{\pi}$, ρ should decay democratically to SM $f\bar{f}$ pairs.
- If m_{π} is below threshold, then the ρ will decay dominantly back into the hidden sector.

Univ. Graz

Dark Showers

- In general, can lead to dark showers at colliders.
 - Characterized by semi-visible jets.
 - Searches limited by current event generators.

Bernreuther et al. arXiv:1907.04346

Other searches

Bump searches in dilepton production cross section

• More distinctive signatures from e.g.

< □ ▶ < 同 ▶</p>

On the construction of theories of composite Dark Matter

Symmetry breaking in the EFT

- Symmetry breaking amongst Goldstones
 mass-splitting
- Relevant term in the EFT is

$$\mathcal{L}_{V-\mathrm{split}} = \kappa \operatorname{Tr}\left(\mathcal{Q}\Sigma \mathcal{Q}\Sigma^{\dagger}\right)$$

• We compute the corrections through one-loops contributions to the self-energy given in the figure.

One-loop contributions to renormalized Goldstone masses. Empty dots indicate that all contributions of $\mathcal{O}(e_D^2)$ must be accounted for

< 17 >

On the construction of theories of composite Dark Matter

Mass-splitting

Seán Mee

Ultimately corrections take the form

$$\Delta m_\pi^2 \approx \frac{6e_D^2}{(2\pi)^2} \frac{m_\rho^4}{m_V^2 - m_\rho^2} \log\left(\frac{m_V^2}{m_\rho^2}\right)$$

at leading order in χPT .

- Different symmetry breaking properties than $\mathcal{O}(\Delta m_{ud}^2)$ corrections.
- Can still have fine splitting while preserving DM stability, even when coupled to the SM.

(日)

Other sources of explicit breaking

- Another source of symmetry breaking is introduced by fermion mass-splitting.
- The global Sp(4) breaks to $SU(2) \times SU(2)$.
- The pNGBs always transform in a 4-plet and a singlet of of the remaining symmetry ⇒ mass-splitting between flavour singlet and off-diagonal 4-plet.

Image: Image:

Non-degenerate fermions

• GMOR relation predicts a degenerate spectrum $\mathcal{O}(m_Q^2)$ corrections break the degeneracy \implies NLO chiral Lagrangian

$$\begin{aligned} \mathcal{L}_{4,mass} &= a_4 \operatorname{Tr} \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right] \operatorname{Tr} \left[M \Sigma + \Sigma^{\dagger} M^{\dagger} \right] + a_5 \operatorname{Tr} \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \left(\Sigma M + M^{\dagger} \Sigma^{\dagger} \right) \right] \\ &+ a_6 \left(\operatorname{Tr} \left[M \Sigma + \Sigma^{\dagger} M^{\dagger} \right] \right)^2 + a_7 \left(\operatorname{Tr} \left[M \Sigma - \Sigma^{\dagger} M^{\dagger} \right] \right)^2 \\ &+ a_8 \operatorname{Tr} \left[M \Sigma M \Sigma + \Sigma^{\dagger} M^{\dagger} \Sigma^{\dagger} M^{\dagger} \right]. \end{aligned}$$

- Corrections to masses and decay constants can be expressed in terms of $\mathcal{O}(p^4)$ LECs.
- In the full theory, masses and decay constants calculable from lattice.

Seán Mee

Fits from lattice for non-degenerate fermions

(Maas, Zierler arXiv:2109.14377)

< 日 > < 同 >

Univ. Graz

Seán Mee

On the construction of theories of composite Dark Matter

Outlook and Conclusions

- Dark matter remains one of the most important unanswered questions in physics today.
- Strongly interacting theories can naturally explain some of the properties we expect of particle dark matter.
- As a minimal realisation of the SIMP scenario, we have constructed the low-energy theory of pNGBs of SU(4)/Sp(4) symmetry breaking.

Outlook and Conclusions

- Through the use of hidden local symmetry we have coupled the pNGBs to the lightest spin-1 states in the hidden sector
- We've coupled the hidden sector to a simple U(1) mediator and completely described the associated symmetry breaking patterns.
- We've described the decays of hidden sector particles and the associated phenomenological consequences.
- Moving forward: FeynRules implementation of our model
 → decay widths and cross-sections, constraining our parameter space.

< □ > < 同 >

Seán Mee