
On the construction of theories of composite
Dark Matter

KIAS HEP Seminar

Seán Mee

Based on arXiv: 2202.05191 with S. Kulkarni, A. Maas, M. Nikolic, J.
Pradler, F. Zierler

University of Graz

24th May 2022

Seán Mee Univ. Graz
On the construction of theories of composite Dark Matter 1



Outline

1 A brief introduction to dark matter (DM).
2 Candidate models for particle DM.
3 Strong interactions and composite DM.
4 Symmetries and low-energy spectrum of Sp(4) gauge

theory.
Pseudo Nambu-Golstone bosons
Spin-1 multiplet

5 Minimal portal between dark sector and SM
Explicit symmetry breaking patterns
Decay modes

6 Outlook and Conclusions.

Seán Mee Univ. Graz
On the construction of theories of composite Dark Matter 2



STRONG-DM group

A focus on strongly interacting theories of dark matter.
Several approached taken in characterizing SIMP (strongly
interacting massive particle) dark matter.
Close collaboration between lattice theorists, cosmologists,
experimentalists and phenomenologists.
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Dark Matter
One of the biggest unanswered questions in physics today
Evidence on a variety of scales
Makes up ∼ 84% of the non-relativistic matter and ∼ 25%
of the energy budget of the universe

arXiv:astro-ph/0608407
arXiv:1209.0388
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DM as a particle

Stable, or long-lived
Weakly charged under the standard model group
Mostly non-relativistic or “cold” at the time of
matter-radiation equality
Probably not an SM particle. Neutrinos were initially seen
as a natural candidate but have since been ruled out.
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The standard WIMP

χ

χ

SM

SM

Ωχh
2 ≈ 0.1

(
0.01
α

)2 ( mχ

100 GeV
)2

DM is a thermal relic
Freezes out through an incomplete annihilation process
Weakly interacting particles at the weak scale reproduce
observed relic density (Gondolo, Gelmini, Nucl. Phys. B, 360 145
(1991))
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Alternative routes to the relic density

DM

DM

DM

DM

DM

If this is the primary number changing process, then
mDM ∼ αx−1

F

(
x−1
F T 2

eqMPl

) 1
3 .

For xF ≈ 20 and α ≈ 1, we have mDM ≈ 100MeV
(Hochberg et al. arXiv:1402.5143)
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Strong interactions and composite states

In the SM, exactly these sorts of interactions sourced by
the Wess-Zumino-Witten action in QCD.
New interest in DM as a composite particle in a QCD-like
hidden sector.
In isolation, lightest hidden sector states are completely
stable.
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Why strongly interacting DM?

1 Stability of DM in isolation guaranteed.
2 Self-interactions come mostly for free.

π

π

π

π

π

π

π

π

π

3 Dark Matter can freeze out in isolation from the SM. 7
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FIG. 2: Solid curves: the solution to the Boltzmann equation of the 3→ 2 system, yielding the measured dark matter relic
abundance for the pions, mπ/fπ as a function of the pion mass (left axis). Dashed curves: the self-scattering cross section
along the solution to the Boltzmann equation, σscatter/mπ as a function of pion mass (right axis). All curves are for selected
values of Nc and Nf , for an SU(Nc) (top panel) or an O(Nc) (bottom panel) gauge group with a conserved (left panel)
or broken (right panel) SU(Nf ) or SO(Nf ) flavor symmetry, respectively. The solid horizontal line depicts the perturbative
limit of mπ/fπ ∼< 2π, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and

halo shape constraints on the self-scattering cross section, Eq. (16), placing a lower limit on the pion mass. Each shaded region
depicts the resulting approximate range for mπ for the corresponding symmetry structure.

below those depicted exhibit a tension between the per-
turbativity regime mπ/fπ ∼< 2π and the self-interaction
constraint of Eq. (16).
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Strong Dynamics in the SM

At the UV level, at a scale ΛQCD, the strong coupling
diverges and quarks confine into colour neutral
combinations. Pions are sourced by bilinears qq̄
Pions can be characterized as the pseudo
Nambu-Goldstone bosons of chiral symmetry breaking.
The condensate

〈ψ̄ψ〉 = µ3 6= 0

breaks the global flavour symmetry
SU(Nf )× SU(Nf ) → SU(Nf ).
N2

f − 1 pNGBs

Seán Mee Univ. Graz
On the construction of theories of composite Dark Matter 10



How do we study the pNGBs

1 Lattice Field Theory (DeGrand Detar, 2006)
Simulates the full theory, nonperturbative.
Allows us to access low-energy constants: pion masses and
decay constants.
Costly, especially if we want to work close to the chiral limit.

2 Chiral Perturbation Theory (χPT) (Georgi, 1984)
General and systematic expansion in the small momenta
and masses of our pNGBs.
Respects all the symmetries of the UV action
Heavier flavours integrated out, their influence can be seen
in the low-energy constants (LECs) associated with each
term.
LECs require some extra input (eg. from experimental data
or from lattice).
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From SU(3) to Sp(4)

Gauge Flavour Remaining Number of
Symmetry Symmetry Symmetry Goldstones

SU(Nc), Nc > 2 SU(Nf )L × SU(Nf )R SU(Nf )V N2
f − 1

Sp(Nc) SU(2Nf ) Sp(2Nf ) (2Nf + 1)(Nf − 1)

For a nonvanishing five-Goldstone vertex, we need at least
five pNGB states
For SU(3) gauge theory, the minimal realization is for
Nf = 3

A more minimal realization is possible if we consider
fermions in pseudoreal representations =⇒ we consider
the fundamental representation of Sp(4)

Seán Mee Univ. Graz
On the construction of theories of composite Dark Matter 12



Pseudoreality

Pseudoreal representations have the property that they are
isomorphic to their conjugate representation.
The definining property of the symplectic group is that for
U ∈ Sp(2N),

U∗ = SUS†, S = iσ2 ⊗ 1N×N

At the generator level this implies

T a∗ = −ST aS†.

=⇒ symmetry between particle and antiparticle and
expanded flavour symmetry

Seán Mee Univ. Graz
On the construction of theories of composite Dark Matter 13



From SU(3) to Sp(4)
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Expanded flavour space

Because of the larger flavour symmetry, we have a
four-dimensional flavour space.
Bound states are built of bilinears of

Ψ ≡
(
ψL

ψ̃R

)
=


uL
dL

σ2Su
∗
R

σ2Sd
∗
R


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Symmetries of Sp(4)

Sp(4) with two fundamental fermions possesses an
expanded flavour-symmetry
SU(2)× SU(2) expanded to SU(4)

Condensate

〈ψT
i ψj〉 = µ3Eij , E =

(
0 I2

−I2 0

)
breaks SU(4) → Sp(4)

15− 10 = 5 pNGBs
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Spectrum of the low-energy theory

Theory contains all the standard meson states of QCD.
Contains also extra states, due to the expanded symmetry.
Theory contains no baryons =⇒ single component dark.
matter.
In what follows, we will consider first the case of
degenerate fermions.
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Di-quarks

Sp(4) theories allow the construction of colour neutral
states of quark pairs.
Due to pseudoreality, these form part of our Goldstone
multiplet.
Along with standard ūd states, we have also uTd states,
totally degenerate with the others.
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The complete spectrum

flavoure d
unflavo ured
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The chiral Lagrangian

The dynamics of the pNGBs can be described through
fluctuations in the orientation of the vacuum condensate
The chiral EFT is built out of the field

Σ = eiπ/fπEeiπ
T /fπ .

At leading order it takes the familiar form

L2 =
f2π
4

Tr
[
∂µΣ∂

µΣ†
]
− µ3

2

(
Tr [MΣ] + Tr

[
Σ†M †

])
,
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Minimal extensions of the EFT

While χPT should describe our Goldstones well, other
states in the hidden sector may also be interesting.
The spin-1 multiplet, analogous to the ρ multiplet in QCD
can play an important role at colliders.
We make use of the idea of hidden local symmetry in order
to couple them to the EFT.
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Hidden Local Symmetry

The hidden local symmetry framework allows us to
describe the effective interactions between pNGBs and the
lightest spin-1 states.
We gauge a copy of our global Sp(4) which is completely
broken by the condensate.
15 real Nambu-Goldstones σaT a appear in our theory and
provide mass to all spin-1 states.
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Hidden Local Symmetry

SUð6Þ=SOð6Þ coset, the composite vector mesons V trans-
form as the 15 of SOð6Þ ∼ SUð4Þ, which decomposes as
15 ¼ 1þ 3C þ 8 of SUð3Þc, and the axial-vector mesons
AV transform as the 200 of SOð6Þ, which decomposes as
200 ¼ 8þ 6C of SUð3ÞC.
We study a reformulation of the low-energy EFT

description of the model, that is intended to capture also
the behavior of the lightest vector and axial-vector states, in
addition to the pNGBs (as in the chiral Lagrangian). It is
based on hidden local symmetry [69–73] (see also [74–77])
and illustrated by the diagram in Fig. 1. There are well-
known limitations to the applicability of this type of EFT
treatment, which we will discuss in due time.
We consider the two moose diagrams as completely

independent from one another. We follow closely the
notation of Ref. [62] in describing the SUð4Þ=Spð4Þ coset,
except for the fact that we include only single-trace
operators in the Lagrangian density. Because the breaking
is due to the condensate of the operator transforming in

the 6 of SUð4Þ, we label all the fields of relevance to the
low-energy EFTwith a subscript, as in S6. The scalar fields
S6 transform as a bifundamental of SUð4Þ6B × SUð4Þ6A,
while Σ6 transform as the antisymmetric representations of
SUð4Þ6A. Hence the transformation rules are as follows:

S6 → U6BS6U
†
6A; Σ6 → U6AΣ6UT

6A; ð15Þ

where U6A and U6B are group elements of SUð4Þ6A and
SUð4Þ6B, respectively.
The EFT is built by imposing the nonlinear constraints

Σ6Σ
†
6 ¼ 14 ¼ S6S

†
6, which are solved by parameterizing

S6 ¼ e2iσ6=F and Σ6 ¼ e2iπ6=fΩ ¼ Ωe2iπT6=f.M6 ¼ MΩ is a
constant matrix, introducing explicit symmetry breaking.
One can think of it as a spurion in the antisymmetric
representation of SUð4Þ6B, so that as a field it would
transform according to M�

6 → U6BM�
6U

T
6B. The 15 real

Nambu-Goldstone fields σ6 ¼ σA6T
A and five real π6 ¼

πA6T
A are in part gauged into providing the longitudinal

components for the 15 gauge bosons of SUð4Þ6A, so that
only five linear combinations remain in the spectrum as
physical pseudoscalars. One then usesΣi and its derivatives,
as well asMi, to build all possible operators allowed by the
symmetries, organizes them as an expansion in derivatives
(momenta p2) and explicit mass terms (M), and writes a
Lagrangian density that includes all such operators up to a
given order in the expansion. We also restrict attention to
operators that can be written as single traces, as anticipated.
Truncated at the next-to-leading order, the Lagrangian

density takes the following form, which we borrow from
Ref. [62]3:

L6 ¼ −
1

2
TrAμνAμν −

κ

2
TrfAμνΣðAμνÞTΣ�g þ f2

4
TrfDμΣðDμΣÞ†g þ F2

4
TrfDμSðDμSÞ†g

þ b
f2

4
TrfDμðSΣÞðDμðSΣÞÞ†g þ c

f2

4
TrfDμðSΣSTÞðDμðSΣSTÞÞ†g − v3

8
TrfMSΣSTg þ H:c:

−
v1
4
TrfMðDμSÞΣðDμSÞTg − v2

4
TrfMSðDμΣÞðDμSÞTg þ H:c:

−
y3
8
TrfAμνΣ½ðAμνÞTSTMS − STMSAμν�g þ H:c:

−
y4
8
TrfAμνΣ½ðAμνÞTSTMSþ STMSAμν�g þ H:c:

þ v25
32

TrfMSΣSTMSΣSTg þ H:c: ð16Þ

We omitted, for notational simplicity, the subscript
“6” on all fields and all the parameters. We should
stress that we made some simplifications, and omitted
some operators, as discussed in [62]. The covariant
derivatives introduce the parameter gV, controlling the
coupling of the spin-1 states. They can be written as
follows:

FIG. 1. The moose diagrams representing the low-energy EFT
descriptions. On the left SUð4Þ6A is gauged, while SUð4Þ6B is a
global symmetry [including the SUð2ÞL × SUð2ÞR], and the
combination of the nontrivial VEVs of S6 and Σ6 breaks the
symmetry to Spð4Þ, giving mass to all the vector mesons and
leaving a set of five light pions. On the right, the same principles
are applied to SUð6Þ21B × SUð6Þ21A and to its breaking to the
SOð6Þ subgroup.

3The very last term of the Lagrangian density differs from
Ref. [62], as we rewrite the subleading correction to the pion mass
in terms of a single-trace operator. The equations giving the
masses and decay constants are independent of the dimension-
ality of the matrices used. We notice also an inconsequential typo
in Eq. (2.16) of [62], in which the last term should have a þ sign
rather than a − sign, in order to be consistent with Eqs. (2.30) and
(2.31) of [62] itself.

SPð4Þ GAUGE THEORIES ON THE LATTICE: QUENCHED … PHYS. REV. D 101, 074516 (2020)

074516-5

From (Bennett et al. arXiv:1912.06505)

One symmetry is global, the other is gauged.
Nonvanishing vev of Σ and S6 break the symmetry down to
global Sp(4).
Masses of vector states fixed completely in terms of
low-energy constants of the full theory with real
Goldstones.
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What characterizes the low-energy states?

Scales of the full UV theory → µ, mQ, Λ
Encoded in the low-energy constants of the EFT → mπ,
mρ, fπ, fρ
Lattice computations of these already available for
degenerate fermions.
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Results for degenerate case (Bennett et al. arXiv:1912.06505)21

V. GLOBAL FITS
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FIG. 9: Decay constants and masses in the continuum limit after subtracting lattice artefacts due to the finite lattice spacing.
The global fit results are denoted by blue solid bands for the mesons constituted of fundamental fermions Q, and red bands for
the ones constituted of antisymmetric fermions Ψ. The width of the bands indicates the statistical errors.

In this section, we perform a global fit of the continuum-extrapolated masses and decay constants of PS, V, and
AV mesons to the EFT described in Sec. II C. As stated there, the EFT equations are applicable both to mesons
constituted of fermions in the fundamental as well as 2-index antisymmetric representations of the Sp(4) gauge group.
We also recall from Ref. [62] that several working assumptions have been used to arrive at Eqs. (19)–(24). We follow
in the analysis the prescription introduced in Ref. [67]. We only repeat some of the essential features of the process,
while referring the reader to Ref. [67] for details. We focus instead on the results of the global fit.

We start by restricting the data analysed to lie in the mass range over which all the measured masses and
decay constants can be extrapolated to the continuum limit using Eqs. (40) and (41). In the case of the fun-
damental representation, we restrict our measurements to include only QB1FM3−QB1FM6, QB2FM1−QB2FM3,
QB3FM4−QB3FM7, QB4FM6−QB4FM8, and QB5FM2−QB5FM3. In the case of antisymmetric representation,
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Minimal coupling to the SM

Hidden sector in isolation interacts only gravitationally.
Simple portals allow the model to talk to the SM.
U(1) extension often discussed because of simplicity and
familiarity.
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Dark photon

U(1) symmetry under which dark quarks are charged.
Broken by a dark Higgs mechanism.
Weak Hypercharge portal:

Lint ∼
ε

2 cos θW
BµνV

µν .

Millicharged dark matter under SM group.
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Explicit symmetry breaking

U(1) couplings can break part of our remaining flavour
symmetry.
Symmetry breaking in effective theory should match that
of UV Lagrangian.
Important implications for stability of the DM.
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Global Symmetries and Goldstone stability

The symmetry breaking term in the UV is of the form

Lbreak ∼ VΨ†Q∂Ψ,

with Q a charge matrix in flavour space.
Can perform flavour rotation to work out conserved
symmetry.
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Goldstone Decay

If a Goldstone can de-
cay, it does so through the
AVV anomaly:

π

V

V

Decay can only occur if the particle is no longer protected
by symmetry =⇒ falls into a trivial representation of the
flavour group.
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Charge assignment and multiplet structure

Q Breaking Pattern Multiplet Structure
a 0 0 0
0 −a 0 0
0 0 −a 0
0 0 0 a

 Sp(4) → SU(2)× U(1)

(
πC

πD,E

)
,
(
πA,B

)


a 0 0 0
0 a 0 0
0 0 −a 0
0 0 0 −a

 Sp(4) → SU(2)× U(1)

(
πC

πA,B

)
,
(
πD,E

)


a 0 0 0
0 b 0 0
0 0 −a 0
0 0 0 −b

, a 6= b Sp(4) → U(1)2 (πC), (πA,B), (πD,E)


0 0 a 0
0 0 0 ±a
a 0 0 0
0 ±a 0 0

, Sp(4) → SU(2)× U(1)

 πC

πA,B

πE,D

,
(
πD,E

πB,A

)
All other off-diagonal prescriptions Sp(4) → U(1)2 (πC), (πA,B), (πD,E)
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Unique properties

Unlike for a standard SU(3) gauge symmetry, nontrivial
assignments can completely stabilize the DM.
No need for external stabilizing symmetry.
Contact still made with the standard model.
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Decay of the ρ

A singlet ρ can mix with our U(1) field through
interactions of the form

LV−ρ ∼ −eD
g
VµνTr (Qρµν) .

DM component completely stable → heavier states can
decay into the SM.
If mρ > 2mπ, ρ should decay democratically to SM ff̄
pairs.
If mπ is below threshold, then the ρ will decay dominantly
back into the hidden sector.
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Dark Showers

In general, can lead to dark
showers at colliders.
Characterized by
semi-visible jets.
Searches limited by current
event generators.

Bernreuther et al. arXiv:1907.04346
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Other searches

Bump searches in dilepton production cross section

V

qSM

qSM

l+

l−

More distinctive signatures from e.g.

ρ

qSM

qSM

ρ

π
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Symmetry breaking in the EFT

Symmetry breaking
amongst Goldstones
=⇒ mass-splitting
Relevant term in the
EFT is

LV -split = κTr
(
QΣQΣ†

)
.

We compute the
corrections through
one-loops contributions
to the self-energy given
in the figure.

One-loop contributions to
renormalized Goldstone
masses. Empty dots indicate
that all contributions of O(e2D)
must be accounted for
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Mass-splitting

Ultimately corrections take the form

∆m2
π ≈

6e2D
(2π)2

m4
ρ

m2
V −m2

ρ

log
(
m2

V

m2
ρ

)
at leading order in χPT.
Different symmetry breaking properties than O(∆m2

ud)
corrections.
Can still have fine splitting while preserving DM stability,
even when coupled to the SM.
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Other sources of explicit breaking

Another source of symmetry breaking is introduced by
fermion mass-splitting.
The global Sp(4) breaks to SU(2)× SU(2).
The pNGBs always transform in a 4-plet and a singlet of of
the remaining symmetry =⇒ mass-splitting between
flavour singlet and off-diagonal 4-plet.
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Non-degenerate fermions

GMOR relation predicts a degenerate spectrum.O(m2
Q)

corrections break the degeneracy =⇒ NLO chiral
Lagrangian

L4,mass = a4Tr
[
∂µΣ∂

µΣ†
]

Tr
[
MΣ+ Σ†M†

]
+ a5Tr

[
∂µΣ∂

µΣ†
(
ΣM +M†Σ†

)]
+ a6

(
Tr

[
MΣ+ Σ†M†

])2

+ a7

(
Tr

[
MΣ− Σ†M†

])2

+ a8Tr
[
MΣMΣ+ Σ†M†Σ†M†

]
.

Corrections to masses and decay constants can be
expressed in terms of O(p4) LECs.
In the full theory, masses and decay constants calculable
from lattice.
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Fits from lattice for non-degenerate fermions
(Maas, Zierler arXiv:2109.14377)

Strong isospin breaking in 𝑆𝑝(4) gauge theory Axel Maas
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Figure 2: Masses of the flavoured and unflavoured Goldstone and iso-nonsinglet vector mesons masses in
lattice units. At sufficiently large fermionic mass difference the unflavoured vectors get even lighter than the
flavoured Goldstones.
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Figure 3: Decay constants of the flavoured and unflavoured Goldstone and iso-nonsinglet vector mesons in
lattice units. For large mass differences of the fermions the decay constants show hints of non-monotonicity.
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Outlook and Conclusions

Dark matter remains one of the most important
unanswered questions in physics today.
Strongly interacting theories can naturally explain some of
the properties we expect of particle dark matter.
As a minimal realisation of the SIMP scenario, we have
constructed the low-energy theory of pNGBs of
SU(4)/Sp(4) symmetry breaking.
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Outlook and Conclusions

Through the use of hidden local symmetry we have coupled
the pNGBs to the lightest spin-1 states in the hidden sector
We’ve coupled the hidden sector to a simple U(1) mediator
and completely described the associated symmetry
breaking patterns.
We’ve described the decays of hidden sector particles and
the associated phenomenological consequences.
Moving forward: FeynRules implementation of our model
→ decay widths and cross-sections, constraining our
parameter space.
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