Physics beyond the Standard Model in light of the CDF W boson mass anomaly KIAS 2022. 5. 19.

2HDM in light of the CDF W mass and the muon anomalous magnetic moment

Jeonghyeon Song

(Konkuk University, Korea)

w/ J. Kim, S. Lee, K. Cheung, C. Lu, P. Sanyal, 2204.10338, 2205.01701

- 0. CDF W boson mass
- 1. Peskin-Takeuchi oblique parameters
- 2. 2HDM
- 3. Status of 2HDM in light of CDF W mass
- 4. Characteristics of the allowed parameters
- 5. Higgs-phobic type-X for Muon g-2
- 6. Conclusions

0. CDF W boson mass: How much can we trust?

Science 376 (2022)

Science 376 (2022)

• Some figures which impressed a theorist.

Drift Chamber (COT) Alignment

Use a clean sample of ~480k cosmic muon rays

21

wal, KIAS, 3

Some figures which impressed a theorist.

Kotwal, KIAS, 31/5/22

23

- Some figures which impressed a theorist.
 - Tracker Calibration
 - alignment of the COT (~2400 cells, ~30k sense wires) using cosmic rays
 - COT momentum scale and tracker non-linearity constrained using $J/\psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ mass fits
 - Confirmed using $Z \rightarrow \mu\mu$ mass fit

Kotwal, KIAS, 31/5/22

Science 376 (2022)

Unique methods of the ALEPH

- All data collected at centre-of-mass energies between 161 and 209 GeV are fully analyzed homogeneously.
- The systematic uncertainties are determined taking into account correlations between all channels and CM energies.

PDG from the global fit: $m_W^{\rm PDG} = 80.357 \pm 0.006 \; {\rm GeV}$ ATLAS[2017]: $m_W^{\text{ATLAS}} = 80.370 \pm 0.019 \text{ GeV}$ CDF[2022]: $m_W^{\rm CDF} = 80.4335 \pm 0.0094 \; {\rm GeV}$ 1. Peskin-Takeuchi oblique parameters

- Efficient parameterization of new contributions to the gauge boson self-energies.
- For example, new Higgs bosons change S/T/U through loop corrections.

• In the SM, S=T=U=0

• Global χ^2 fit of the SM to the electroweak input parameters

Input Value		Parameter	Input Value
0.02761(11)		A_c	0.670(27)
125.25(17)		$A_{\ell}(\mathrm{SLD})$	0.1513(21)
172.76(58)		$A_{\ell}(\text{LEP})$	0.1465(33)
0.1179(9)		R_b^0	0.21629(66)
2.085(42)		R_c^0	0.1721(30)
2.4952(23)		R^0_ℓ	20.767(25)
91.1875(21)		σ_h^0 [nb]	41.540(37)
0.0992(16)		$\sin^2\theta_{\rm eff}^\ell(Q_{FB})$	0.2324(12)
0.0707(35)		$\sin^2 \theta_{\rm eff}^{\ell}$ (Teva)	0.23148(33)
0.0171(10)		$\overline{m}_c \; [\text{GeV}]$	1.27(2)
0.923(20)		$\overline{m}_b \; [\text{GeV}]$	$ 4.18^{(3)}_{(2)} $
	Input Value 0.02761(11) 125.25(17) 172.76(58) 0.1179(9) 2.085(42) 2.4952(23) 91.1875(21) 0.0992(16) 0.0707(35) 0.0171(10) 0.923(20)	Input Value 0.02761(11) 125.25(17) 172.76(58) 0.1179(9) 2.085(42) 2.4952(23) 91.1875(21) 0.0992(16) 0.0707(35) 0.0171(10) 0.923(20)	Input ValueParameter $0.02761(11)$ A_c $125.25(17)$ A_ℓ (SLD) $172.76(58)$ A_ℓ (LEP) $0.1179(9)$ R_b^0 $2.085(42)$ R_c^0 $2.4952(23)$ R_ℓ^0 $91.1875(21)$ σ_h^0 [nb] $0.0992(16)$ $\sin^2 \theta_{\text{eff}}^\ell(Q_{FB})$ $0.0707(35)$ $\sin^2 \theta_{\text{eff}}^\ell(\text{Teva})$ $0.0171(10)$ \overline{m}_c [GeV] $0.923(20)$ \overline{m}_b [GeV]

[2204.03796]

• 23 observable - 7 free parameters = 16 d.o.f in the SM

• 7 free parameters

$$M_h, \quad m_Z, \quad \bar{m}_c, \quad \bar{m}_b, \quad \bar{m}_t, \quad \Delta \alpha_{\text{had}}^{(5)}, \quad \alpha_s(m_Z^2)$$

PDG 2021 $\chi^2_{min}(dof) = 18.73(16)$ **p=0.28** <u>CDF 2022</u> $\chi^2_{min}(dof) = 64.45(16)$

p<0.00001

[2204.03796]

- We need BSM.
- U from dimension-8 operator
- Setting U=0, but S and T as free parameters
- 23 observable 9 free parameters = 14 d.o.f

p=0.22

• Basic theory setup

$$\Phi_i = \begin{pmatrix} w_i^+ \\ \frac{v_i + h_i + i\eta_i}{\sqrt{2}} \end{pmatrix}, \quad i = 1, 2,$$

where $v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV}.$

• Discrete Z₂ symmetry to avoid tree-level FCNC

$$\Phi_1 \to \Phi_1, \quad \Phi_2 \to -\Phi_1$$

• Scalar potential with CP-invariance

$$\begin{split} V_{\Phi} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \text{H.c.}) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \frac{1}{2} \lambda_5 \left[(\Phi_1^{\dagger} \Phi_2)^2 + \text{H.c.} \right], \end{split}$$

• Four types

	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q_L, L_L
Туре І	+	_	_	_	_	+
Type II	+	—	_	+	+	+
Type X	+	—	_	_	+	+
Type Y	+			+		+

• 2 scenarios

$$h_{\rm SM} = s_{\beta-\alpha}h + c_{\beta-\alpha}H.$$

NS: $m_h = m_{125};$ IS: $M_H = m_{125},$

- Four types & two scenarios = 8 cases
- 8 cases for PDG mW and CDF mW ➡16 cases
- No assumptions on the masses and couplings: 6 parameters

$$\{m_h, M_{H^{\pm}}, M_H, M_A, m_{12}^2, t_{\beta}, s_{\beta-\alpha}\}.$$

• theoretical stability = quartic couplings cannot be too large

In the Higgs alignment limit

$$\begin{split} \lambda_1 &= \frac{1}{v^2} \left[m_{125}^2 + t_\beta^2 \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_2 &= \frac{1}{v^2} \left[m_{125}^2 + \frac{1}{t_\beta^2} \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_3 &= \frac{1}{v^2} \left[m_{125}^2 - m_{\varphi^0}^2 - M^2 + 2M_{H^{\pm}}^2 \right] \\ \lambda_4 &= \frac{1}{v^2} \left[M^2 + M_A^2 - 2M_{H^{\pm}}^2 \right], \\ \lambda_5 &= \frac{1}{v^2} \left[M^2 - M_A^2 \right], \end{split}$$

 $M^2 = m_{12}^2 / (s_\beta c_\beta)$

,

Mass degeneracy!

• CDF mW + theoretical stability ➡ upper bounds on the masses

$$\Delta M_i = M_i - M_{H^{\pm}}$$

3. Status of 2HDM In light of CDF W mass

• Scanning ranges

NS:
$$M_H \in [130, 2000] \text{ GeV}, M_A \in [15, 2000] \text{ GeV},$$

 $s_{\beta-\alpha} \in [0.8, 1.0], m_{12}^2 \in [0, 1000^2] \text{ GeV}^2,$
IS: $m_h \in [15, 120] \text{ GeV}, M_A \in [15, 2000] \text{ GeV},$
 $c_{\beta-\alpha} \in [0.8, 1.0], m_{12}^2 \in [0, 1000^2] \text{ GeV}^2.$

type-I & type-X: $M_{H^{\pm}} \in [80, 2000] \text{ GeV}, \quad t_{\beta} \in [1, 50],$ type-II & type-Y: $M_{H^{\pm}} \in [580, 2000] \text{ GeV}, \quad t_{\beta} \in [0.5, 50].$

• Scanning steps

Step-(i) Theory+FCNC: Step-(ii) EWPD: Step-(iii) RGEs for $\Lambda_c > 1$ TeV: Step-(iv) Collider:

Step-(i) Theory+FCNC:

- 1. Higgs potential being bounded from below;
- 2. Perturbative unitarity of the scattering amplitudes;
- 3. Perturbativity of the quartic couplings;
- 4. Vacuum stability;
- 5. FCNC observables.

Step-(i) Theory+FCNC:

Not too large quartic couplings

- 4. vacuum stability;
- 5. FCNC observables.

• Constraints from FCNC

Allowed regions after Step-(i)

30

Similar masses

- NS: almost degenerate masses for heavy BSM scalars
- IS: light mh brings down the other new scalars

• Origin of the similar masses: theoretical stability

$$\begin{split} \lambda_1 &= \frac{1}{v^2} \left[m_{125}^2 + t_\beta^2 \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_2 &= \frac{1}{v^2} \left[m_{125}^2 + \frac{1}{t_\beta^2} \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_3 &= \frac{1}{v^2} \left[m_{125}^2 - m_{\varphi^0}^2 - M^2 + 2M_{H^{\pm}}^2 \right], \\ \lambda_4 &= \frac{1}{v^2} \left[M^2 + M_A^2 - 2M_{H^{\pm}}^2 \right], \\ \lambda_5 &= \frac{1}{v^2} \left[M^2 - M_A^2 \right], \end{split}$$

Step-(ii) EWPD:

U = 0	PDG	2021		CDF 2022			
	Result	Correlation		Result	Correlation		
14 dof	$\chi^2_{\rm min} = 15.48$	S	T	$\chi^2_{\rm min} = 17.82$	$\mid S$	T	
S	0.05 ± 0.08	1.00	0.92	0.15 ± 0.08	1.00	0.93	
T	0.09 ± 0.07		1.00	0.27 ± 0.06		1.00	

Step-(iii) RGEs for $\Lambda_c > 1$ TeV:

- Running of quartic couplings via RGE can be too fast to break unitarity, vacuum stability, or perturbativity.
- We require that the scalar potential be stable up to 1 TeV.

Step-(iv) Collider:

- 1. Higgs precision data via HIGGSSIGNALS;
- 2. direct searches at high energy collider via HIGGSBOUNDS.

• Survival probabilities about ten million points that pass Step-(i)

		EWPD	$\Lambda_{\rm c} > 1 { m TeV}$	Collider	EWPD	$\Lambda_{\rm c} > 1 { m TeV}$	Collider	
		Normal scenario			Inverted scenario			
type-I	PDG	12.98%	5.13%	0.60%	7.20%	5.08%	0.85%	
	CDF	4.42%	1.31%	0.14%	1.30%	0.72%	0.19%	
type-II	PDG	10.76%	0.43%	0.20%	2.14%	0	0	
	CDF	3.36%	0.03%	0.01%	0.69%	0	0	
type-X	PDG	12.98%	5.13%	0.18%	7.20%	5.08%	0.03%	
	CDF	4.42%	1.31%	0.03%	1.30%	0.72%	0.01%	
type-Y	PDG	10.76%	0.43%	0.20%	2.14%	0	0	
	CDF	3.36%	0.03%	0.01%	0.69%	0	0	
3. Scan

• Survival probabilities about Step-(i)

		EWPD	$\Lambda_{\rm c} > 1 { m TeV}$	Collider	EWPD	$\Lambda_{\rm c} > 1 { m ~TeV}$	Collider
		Normal scenario			Inverted scenario		
type-I	PDG	12.98%	5.13%	0.60%	7.20%	5.08%	0.85%
	CDF	4.42%	1.31%	0.14%	1.30%	0.72%	0.19%
type-II	PDG	10.76%	0.43%	0.20%	2.14%	0	0
	CDF	3.36%	0.03%	0.01%	0.69%	0	0
type-X	PDG	12.98%	5.13%	0.18%	7.20%	5.08%	0.03%
	CDF	4.42%	1.31%	0.03%	1.30%	0.72%	0.01%
type-Y	PDG	10.76%	0.43%	0.20%	2.14%	0	0
	CDF	3.36%	0.03%	0.01%	0.69%	0	0

• In terms of survival probabilities, PDG wins, especially in type-II and type-Y

3. Scan

• Survival probabilities about Step-(i)

		EWPD	$\Lambda_{\rm c} > 1 \ {\rm TeV}$	Collider	EWPD	$\Lambda_{\rm c} > 1 { m ~TeV}$	Collider
		Normal scenario			Inverted scenario		
type-I	PDG	12.98%	5.13%	0.60%	7.20%	5.08%	0.85%
	CDF	4.42%	1.31%	0.14%	1.30%	0.72%	0.19%
type-II	PDG	10.76%	0.43%	0.20%	2.14%		
	CDF	3.36%	0.03%	0.01%	0.69%		0
type-X	PDG	12.98%	5.13%	0.18%	7.20%	5.08%	0.03%
	CDF	4.42%	1.31%	0.03%	1.30%	0.72%	0.01%
type-Y	PDG	10.76%	0.43%	0.20%	2.14%		
	CDF	3.36%	0.03%	0.01%	0.69%		

• PDG wins, especially in type-II and type-Y

4. Characteristics: Which step removes which parameters?

• type-I in NS

• type-I in NS

Torture by hope

• In the PDG, heavy BSM scalar with degenerate masses are still allowed.

• type-I in NS

• In the CDF, RGE removes BSM Higgs masses above 1 TeV.

• type-II in NS

• type-II in NS

• RGE excludes sizable mass gaps among BSM Higgs masses below 500 GeV.

• type-II in NS

• In the CDF, there are upper bounds on BSM Higgs masses.

• type-I vs type-X in NS

• type-I vs type-X in NS

• MA ~ 200 GeV is excluded in type-X.

• Mysterious disappearance of MA=200 in type-X

1.
$$t \to H^{\pm}b \to \tau\nu b$$
 in ATLAS;
2. $pp \to H/A \to \tau^{+}\tau^{-}$ in ATLAS;
3. $gg \to A \to Zh \to \ell\ell b\bar{b}$ in CMS & ATLAS.

- Why MH+, MH affect the pseudoscalar phenomenology?
- Similar masses.

• type-I vs type-X

More separated two regions in type-X with CDF W mass.

Effects of Higgs precision data on type-I vs type-X in NS

Right-sign tau Yukawa

type-I:
$$\xi_{\tau}^{h} = \frac{c_{\alpha}}{s_{\beta}} = s_{\beta-\alpha} + \frac{c_{\beta-\alpha}}{t_{\beta}},$$

type-X: $\xi_{\tau}^{h} = -\frac{s_{\alpha}}{c_{\beta}} = s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}.$

Inverted Senario

• type-I vs type-X in IS

5. Higgs-phobic type-X for Muon g-2

• Persistent anomaly with 4.2σ which has been around for some time

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-11}.$$

• 2HDM: two kinds of contributions

1-loop Barr-Zee 2-loop

- Higgs aligned type-X cannot explain Lepton Flavor Universality (LFU) data
- 1. For the τ decay,

$$\frac{g_{\tau}}{g_{\mu}}, \quad \frac{g_{\tau}}{g_{e}}, \quad \frac{g_{\mu}}{g_{e}}, \quad \left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi}, \quad \left(\frac{g_{\tau}}{g_{\mu}}\right)_{K}$$

2. Michel parameters, based on the energy and angular distribution of ℓ^- in the decay of $\tau^- \rightarrow \ell^- \nu \nu_{\tau}$:

$$\rho_e, \quad (\xi\delta)_e, \quad \xi_e, \quad \eta_\mu, \quad \rho_\mu, \quad (\xi\delta)_\mu, \quad \xi_\mu, \quad \xi_\pi, \quad \xi_\rho, \quad \xi_{a_1}.$$

3. Leptonic Z decays:

$$\frac{\Gamma(Z \to \mu^+ \mu^-)}{\Gamma(Z \to e^+ e^-)}, \quad \frac{\Gamma(Z \to \tau^+ \tau^-)}{\Gamma(Z \to e^+ e^-)}.$$

2104.10175 [hep-ph]

• Higgs aligned type-X cannot explain Lepton Flavor Universality (LFU) data

Global fit to Δa_{μ} and the LFU data after all the theoretical/experimental constraints

p(SM) = 0.003 p(aligned type - X) < 0.02

Why?

Higgs aligned type-X

NIC

• Higgs-phobic A in type-X

$$\hat{\lambda}_{hAA} = \left(2M^2 - 2M_A^2 - m_h^2\right)s_{\beta-\alpha} + \left(m_h^2 - M^2\right)\left(t_\beta - \frac{1}{t_\beta}\right)c_{\beta-\alpha}.$$

Higgs-phobic A:
$$\frac{s_{\beta-\alpha}}{c_{\beta-\alpha}} = -\left(t_{\beta} - \frac{1}{t_{\beta}}\right)\frac{m_h^2 - M^2}{2M^2 - 2M_A^2 - m_h^2}.$$

• Higgs-phobic A cannot coexist with 100% alignment. BUT

• Higgs-phobic \rightarrow almost Higgs alignment

- Random scanning
 - step I: Δa_{μ} +Theory
 - step II: S/T
 - step III: Higgs precision and direct search bounds (Collider)
 - step IV: global fit to Δa_{μ} +LFU
- Survival probabilities about step I

PDG:
$$P_{\text{Step-II}} = 5.47\%$$
, $P_{\text{Step-III}} = 3.15\%$, $P_{\text{Step-IV}} = 0.62\%$,
CDF: $P_{\text{Step-II}} = 1.56\%$, $P_{\text{Step-III}} = 1.00\%$, $P_{\text{Step-IV}} = 0.21\%$.

• step I: Δa_{μ} +Theory

• Light MA and large tan β

Random scanning

• Common feature 1: upper bounds on MH and MH+

Common feature 2: lower bounds on MH+ for light MA

Common feature 2: lower bounds on MH+ for light MA from h → τ τ

Common feature : LFU removes most of region with MA>38 GeV

• Difference-1: PDG island

• Difference-1: PDG island

PDG-island: $M_H \in [130.0, 165.3] \text{ GeV}, \quad M_A \in [84.1, 111.9] \text{ GeV},$ $M_{H^{\pm}} \in [96.5, 127.9] \text{ GeV}, \quad t_{\beta} > 154.9.$

- Difference-1: How can the PDG-island evade the LFU?
- Cancellation!

Difference-2: lower bound on MH+

• Difference-3: tan β

• Difference-4: right-sign and wrong-sign tau Yukawa coupling

Random scanning

- RGE analysis
 - 1. Run each parameter point via the RGEs.
 - 2. Check three conditions—unitarity, perturbativity, and vacuum stability—as increasing the energy scale.
 - If any condition is broken at a particular energy scale, we stop the evolution and record the energy scale as the cutoff scale.

$$g_s, g, g', \lambda_{1,\dots,5}, \xi_f^{h,H,A}, m_{ij}^2, v_i, (i = 1, 2).$$

• RGE: distribution of the cutoff scales

• In the CDF, the maximum cutoff scale is about 100 TeV, due to LFU.

• PDG vs CDF in the RGE analysis

• The maximum cutoff scale is in the PDG-island.

• Branching ratios of BSM Higgs bosons

In most of the parameter space, bosonic modes are dominant.

• Branching ratios of BSM Higgs bosons

• In the PDG-island, the leptonic decays are dominant.

• 3τ and 4τ states associated with gauge bosons

$$3\tau: pp \to H^{\pm}A \to [\tau^{\pm}\nu_{\tau}][\tau^{+}\tau^{-}],$$
$$pp \to H^{\pm}H \to [\tau^{\pm}\nu_{\tau}][\tau^{+}\tau^{-}].$$

$$\begin{aligned} 4\tau : \quad pp \to HA \to [\tau^+\tau^-][\tau^+\tau^-], \\ 4\tau + V : \quad pp \to H^{\pm}A \to [W^{\pm}A]A \to [W^{\pm}\tau^+\tau^-][\tau^+\tau^-], \\ pp \to HA \to [ZA]A \to [Z\tau^+\tau^-][\tau^+\tau^-], \end{aligned}$$

 $\begin{aligned} 4\tau + VV': \quad pp \to H^{\pm}H \to [W^{\pm}A][ZA] \to [W\tau^{+}\tau^{-}][Z\tau^{+}\tau^{-}], \\ pp \to H^{+}H^{-} \to [W^{+}A][W^{-}A] \to [W^{+}\tau^{+}\tau^{-}][W^{-}\tau^{+}\tau^{-}], \end{aligned}$

• Cross sections of 3τ and 4τ states associated with gauge bosons

Gross sections of 3τ and 4τ states associated with gauge bosons

• In the PDG-island, 3τ and 4τ states are the golden channels.

• Cross sections of 3τ and 4τ states associated with gauge bosons

• In the mainland, 4τ +VV' states are the golden channels.

- Almost the background-free environment
- Irreducible backgrounds

$$\sigma(pp \to 4\tau + ZW^{\pm}) \simeq 0.26 \,\mathrm{ab},$$

 $\sigma(pp \to 4\tau + W^+W^) \simeq 0.54 \,\mathrm{ab}.$

Reducible backgrounds: 4 QCD jets + VV' can be tamed

$$P_{j \to \tau_h} \simeq 0.01 \Longrightarrow P_{j \to \tau_h}^4 \simeq 10^{-8}$$

6. Conclusions

- The new W boson mass measurement by the CDF constrains NP models.
- NP scale is below about 1 TeV.
- When combined with the muon g-2 anomaly, the NP scale is further reduced.
- High-energy and high-luminosity experiments are more important than ever.