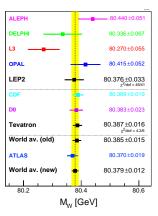
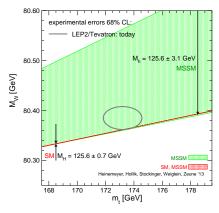
SMEFT Analysis of the W boson mass in light of the recent CDF measurement

Emanuele A. Bagnaschi

24 June 2022

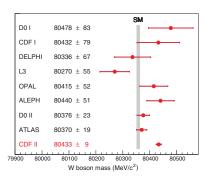

KIAS workshop on physics beyond the Standard Model in light of the CDF W boson mass anomaly


online

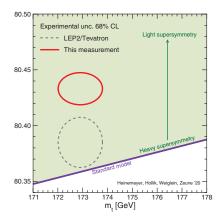
Introduction

The physics case for the W mass

- The M_W mass measurement is one of the important items of the SM precision program at colliders
- lacksquare The value of M_W is important to understand the consistency of the SM and to constrain new physics



[PDG 2021]


[1311.1663]

The physics case for the W mass

- $\,\blacksquare\,$ The M_W mass measurement is one of the important items of the SM precision program at colliders
- The value of M_W is important to understand the consistency of the SM and to constrain new physics

[CDF collaboration, Science 376 (2022) 6589, 170-176]

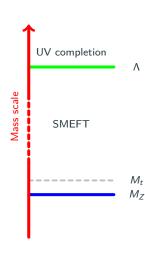
The CDF measurement and new physics models

- The new CDF measurement has created a huge interest in the community
- Still open questions on the measurement itself \rightarrow see J. Isaacson's talk
- $\mathcal{O}(xx)$ articles have been published discussing BSM perspectives

Explicit models

- MRSSM [Athron et al. 2204.05285] –
 See D. Stöckinger's talk
- 2HDMs [J. Kim et al. 2205.0170] See
 J. Song talk
- Dark sector with a Stueckelberg-Higgs portal
 [2204.09024] - See Z. Liu's talk
- NMSSM [Pang et al. 2204.04356]
- RH neutrinos [Blennow et al. 2204.04559]

EFT/generic analyses


- SMEFT See R. Gupta's talk [R. Gupta 2204.13690]
- SMEFT See T. Liu's talk
- Higgs couplings See S. Hong's talk
- EW fit/SMEFT [De Blas et al., 2204.04204; Strumia 2204.04191, Lu et al. 2204.03796...]

Theoretical Framework

SM Effective Field Theory

- Assume that New Physics (NP) is sufficiently heavy so that there are no new dynamical degrees of freedom at the scale of the measurement(s) → particle content is the same as the SM
- Description of NP effects in terms higher-dimension operators → agnostic to the detail of NP models when fitting the data at the
- Model dependent matching of the SMEFT Lagrangian required for a complete physics insight
- We use the Warsaw basis in our study

$$\mathcal{L}_{\mathsf{SMEFT}}^{\mathsf{dim-6}} = \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

SMEFT and M_W

 At linear order in the Wilson coefficients, four dimension-6 operators can induce a shift in W mass

$$\begin{split} \mathcal{O}_{HWB} &\equiv H^\dagger \tau^I H \, \mathcal{W}_{\mu\nu}^I B^{\mu\nu} \,, \qquad \mathcal{O}_{HD} \equiv \left(H^\dagger \, D^\mu H \right)^* \left(H^\dagger \, D_\mu H \right) \,, \\ \mathcal{O}_{\ell\ell} &\equiv \left(\bar{\ell}_\rho \gamma_\mu \ell_r \right) \left(\bar{\ell}_s \gamma^\mu \ell_t \right) \,, \qquad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^\dagger \, D_\mu^I \, H \right) \left(\bar{\ell}_\rho \tau^I \gamma^\mu \ell_r \right) \end{split}$$

• The shift in M_W is then given by

$$\frac{\delta m_{W}^{2}}{m_{W}^{2}} = -\frac{\sin 2\theta_{w}}{\cos 2\theta_{w}} \frac{v^{2}}{4\Lambda^{2}} \left(\frac{\cos \theta_{w}}{\sin \theta_{w}} C_{HD} + \frac{\sin \theta_{w}}{\cos \theta_{w}} \left(4C_{HI}^{(3)} - 2C_{II} \right) + 4C_{HWB} \right)$$

- In theory, SMEFT could in principle also influence the measurement process
- However, it has been found in [Bjørn and Trott, PLB 762 (2016) 426-431] that this effect
 is negligible

The setup

Fitmaker

The framework

- Python framework introduced in [Ellis et al. JHEP 04 (2021) 279]
- Used to perform a fit of Higgs, Electroweak, Higgs and top data using data from LHC Run
- Allows for a flexible implementations of constraints and various fit setups
- Fast analytical method for linear order fits; MCMC procedure to incorporate positivity priors in operator coefficients for specific BSM scenarios
- Available on Gitlab. https://gitlab.com/ kenmimasu/fitrepo

Fit strategy

- SMEFT predictions computed using MadGraph5_aMC@NLO with SMEFTsim and/or SMEFT@NLO
- Predictions used to extract the linear contribution a_i^X of a given Wilson coefficient

$$\mu_X \equiv \frac{X}{X_{SM}} = 1 + \sum_i a_i^X \frac{C_i}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

- No theory uncertainty on the SMEFT prediction, assumed to be subdominant wrt the SM ones
- Quadratic dim-6 or dim-8 contributions neglected

Experimental inputs

EW scheme

 $\begin{cases} \alpha_{EW}, G_F, M_Z \} \\ \alpha_{EW}^{-1} = 127.95 \\ G_F = 1.16638 \times 10^{-5} \text{ GeV}^{-2} \\ m_Z = 91.1876 \text{ GeV} \end{cases}$ [Brivio et al. 2111.12515]

Other input parameters

- $m_h = 125.09 \text{ GeV}$
- $m_T = 173.2 \text{ GeV}$
- $m_{\mu} = 0.106 \text{ GeV}$
- $m_{\tau} = 1.77 \text{ GeV}$
- $m_c = 0.907 \text{ GeV}$
- $m_b = 3.237 \text{ GeV}$

EWPOs

 $\Gamma_{Z}, \sigma_{\mathsf{had}.}^{0}, R_{I}^{0}, A_{FB}^{I}, A_{I}, R_{b}^{0}, R_{c}^{0}, A_{FB}^{b}, A_{FB}^{c}, A_{b}, A_{c}, M_{W}$

Diboson

- W^+W^- cross-sections and angular distributions at LFP
- fiducial differential cross-section in leading lepton p_T by ATLAS at the LHC and ATLAS and CMS fiducial differential cross-section measurements of the Z-boson p_T in leptonic W[±]Z production.
- Differential distribution in $\Delta \phi_{jj}$ for Zjj
- Total: 118 measurements

Experimental inputs

EW scheme

 $\begin{cases} \alpha_{EW}, G_F, M_Z \} \\ \alpha_{EW}^{-1} = 127.95 \\ G_F = 1.16638 \times 10^{-5} \text{ GeV}^{-2} \\ m_Z = 91.1876 \text{ GeV} \end{cases}$ [Brivio et al. 2111.12515]

Other input parameters

- $m_h = 125.09 \text{ GeV}$
- $m_T = 173.2 \text{ GeV}$
- $m_{\mu} = 0.106 \text{ GeV}$
- $m_{ au} = 1.77 \; \text{GeV}$
- $m_c = 0.907 \text{ GeV}$
- $m_b = 3.237 \text{ GeV}$

EWPOs

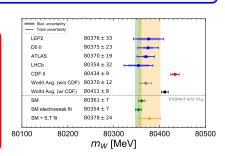
 $\Gamma_{Z}, \sigma_{\text{had.}}^{0}, R_{I}^{0}, A_{FB}^{I}, A_{I}, R_{b}^{0}, R_{c}^{0}, A_{FB}^{b}, A_{FB}^{c}, A_{b}, A_{c}, M_{W}$

Higgs

- Combination of Higgs signal strengths by ATLAS and CMS for Run 1
- For Run 2 both signal strengths and STXS measurements are used
- Total: 72 measurements

Results

S & T fit


 $\:\:$ Common parametrization of NP effects in the terms of the oblique parameters S & T

$$\frac{\alpha S}{4s_W^2 c_W^2} = \left[\frac{\delta \Pi_{ZZ}(M_Z^2) - \delta \Pi_{ZZ}(0)}{M_Z^2} \right] - \frac{(c_W^2 - s_W^2)}{s_W c_W} \delta \Pi'_{Z\gamma}(0) - \delta \Pi'_{\gamma\gamma}(0)$$

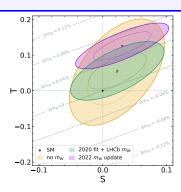
$$\alpha T = \frac{\delta \Pi_{WW}(0)}{M_W^2} - \frac{\delta \Pi_{ZZ}(0)}{M_Z^2}$$

 We can express S & T in terms of dimension-6 operators

$$\begin{split} \frac{v^2}{\Lambda^2} C_{HWB} &= \frac{g_1 g_2}{16\pi} S \\ \frac{v^2}{\Lambda^2} C_{HD} &= -\frac{g_1^2 g_2^2}{2\pi (g_1^2 + g_2^2)} T \end{split}$$

S & T fit

 \bullet Common parametrization of NP effects in the terms of the oblique parameters S & T


$$\frac{\alpha S}{4s_W^2 c_W^2} = \left[\frac{\delta \Pi_{ZZ}(M_Z^2) - \delta \Pi_{ZZ}(0)}{M_Z^2} \right] - \frac{(c_W^2 - s_W^2)}{s_W c_W} \delta \Pi'_{Z\gamma}(0) - \delta \Pi'_{\gamma\gamma}(0)$$

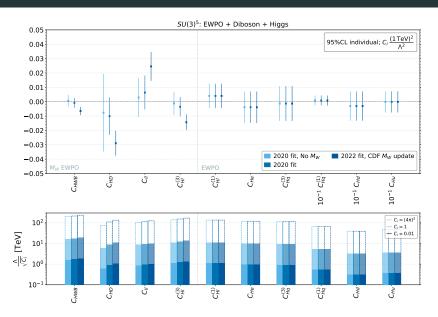
$$\alpha T = \frac{\delta \Pi_{WW}(0)}{M_W^2} - \frac{\delta \Pi_{ZZ}(0)}{M_Z^2}$$

 We can express S & T in terms of dimension-6 operators

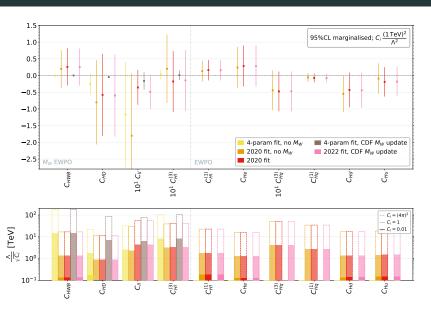
$$\frac{v^2}{\Lambda^2} C_{HWB} = \frac{g_1 g_2}{16\pi} S$$

$$\frac{v^2}{\Lambda^2} C_{HD} = -\frac{g_1^2 g_2^2}{2\pi (g_1^2 + g_2^2)} T$$

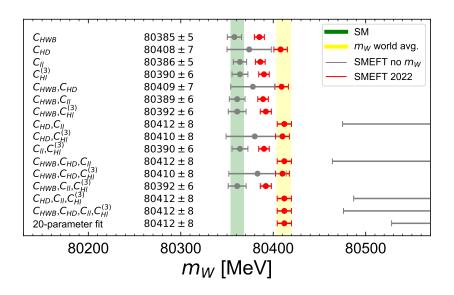
$SU(3)^5$ SMEFT fit: EWPO + Diboson + Higgs

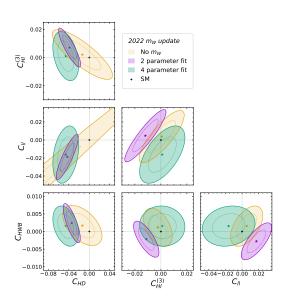

- To reduce the number of operators, we assume a SU(3)⁵ flavor symmetry and consider 20 operators in the analysis
- It was shown in [Ellis et al. JHEP 04 (2021) 279] that since correlations between the top sector and bosonic data are small, then including top data or breaking the flavor symmetry down to $SU(2)^2 \times SU(3)^2$ should yield similar results

These operators are mostly constrained by


- EWPOs: constrained by Electroweak Precision Observables
- Bosonic: Higgs and diboson measurements
- Yukawa: operators that induce shifts in the Yukawa couplings

$$\begin{split} \textbf{EWPOs} &\rightarrow ~~ \mathcal{O}_{HWB}, ~~ \mathcal{O}_{HD}, ~~ \mathcal{O}_{II}, ~~ \mathcal{O}_{HI}^{(3)}, ~~ \mathcal{O}_{HI}^{(1)}, ~~ \mathcal{O}_{He}, ~~ \mathcal{O}_{Hq}^{(3)}, ~~ \mathcal{O}_{Hq}^{(1)}, ~~ \mathcal{O}_{Hd}, ~~ \mathcal{O}_{Hu} \\ \textbf{Bosonic} &\rightarrow ~~ \mathcal{O}_{H\square}, ~~ \mathcal{O}_{HG}, ~~ \mathcal{O}_{HW}, ~~ \mathcal{O}_{HB}, ~~ \mathcal{O}_{W}, ~~ \mathcal{O}_{G} \\ \textbf{Yukawa} &\rightarrow ~~ \mathcal{O}_{\tau H}, ~~ \mathcal{O}_{\mu H}, ~~ \mathcal{O}_{bH}, ~~ \mathcal{O}_{tH} \end{split}$$


Fit result – individual coefficients


Fit result – marginalised coefficients

M_W – preferred range from the fits

2D planes – correlations

Fit qualities

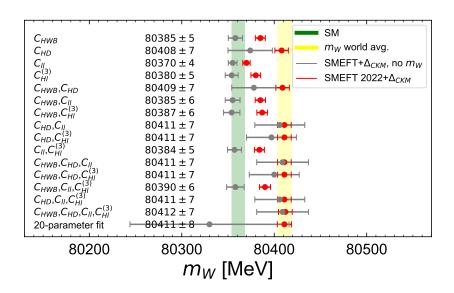
EWPO, H	Previous	Combined	Parameter	$N_{ m dof}$	χ^2/dof	<i>p</i> -value
diboson	m_W	m_W	Count			
√			20	182	0.92	0.76
✓	✓		20	185	0.93	0.75
✓		✓	20	185	0.97	0.59
√			4	198	0.93	0.76
√	✓		4	201	0.93	0.75
✓		✓	4	201	0.97	0.60

- Results show for three choices: without any M_W measurements; with the pre-CDF M_W combinations; combination including the CDF result
- In all cases we have a $\chi^2/{\rm dof} < 1$ and p-values $> 0.5 \to {\rm good}$ description of the data in all cases

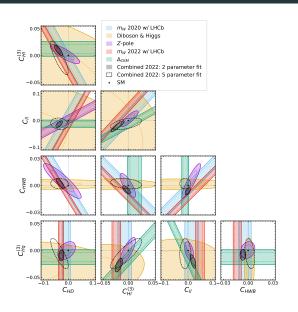
The role of low-energy constraints

β -decay, CKM unitarity and the W mass in SMEFT

- The consistency of β -decay measurements with the unitarity of the CKM matrix imposes a significant constraint on a specific combination of dimension-6 operators that are relevant for M_W [Blennow et al., 2204.04559, Cirigliano et al., 2204.08440]
- We can express the quantity $\Delta_{\it CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 1$ in terms of dim-6 operators


$$\Delta_{\textit{CKM}} = 2 rac{v^2}{\Lambda^2} \left[C_{\textit{Hq}}^{(3)} - C_{\textit{H\ell}}^{(3)} + C_{\ell\ell} - C_{\ell q}^{(3)}
ight]$$

lacktriangle Measurements of $0^+ o 0^+$ nuclear transitions and kaon decays indicate that


$$\Delta_{CKM} = -0.0015 \pm 0.0007$$

 We include this constraint in our fit, with a more thorough study left to a future work

M_W – preferred range from the fits

2D planes – correlations

Fit qualities

EWPO, H	Previous	Combined	Δ_{CKM}	Parameter	$N_{ m dof}$	χ^2/dof	<i>p</i> -value
diboson	m_W	m_W		Count			
✓			✓	20	183	0.94	0.71
✓	✓		✓	20	186	0.93	0.74
√		✓	✓	20	186	0.98	0.56
√			√	4	199	0.93	0.74
✓	√		✓	4	202	0.93	0.75
✓		✓	✓	4	202	0.97	0.62

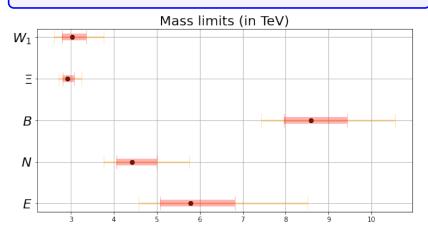
- \blacksquare Results show for three setup: without any M_W measurements; with the pre-CDF M_W combinations; combination including the CDF result
- \blacksquare As before, in all cases we have a $\chi^2/{\rm dof}<1$ and p-values $>0.5\to{\rm good}$ description of the data in all cases

UV physics: single field extensions of the SM

Single field extensions and M_W

Consider single field extensions of the SM that can contribute at tree level to M_W, assuming that only a single coupling to the Higgs is present (catalogue given in [J. De Blas et al., JHEP 03 (2018) 109])

Model	Spin	SU(3)	SU(2)	U(1)	Parameters
S_1	0	1	1	1	(M_S, κ_S)
Σ	$\frac{1}{2}$	1	3	0	$(M_{\Sigma}, \lambda_{\Sigma})$
Σ_1	$\frac{1}{2}$	1	3	-1	$(M_{\Sigma_1}, \lambda_{\Sigma_1})$
N	$\frac{1}{2}$	1	1	0	(M_N, λ_N)
Ε	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)
В	1	1	1	0	(M_B, \hat{g}_H^B)
B_1	1	1	1	1	(M_{B_1}, λ_{B_1})
Ξ	0	1	3	0	(M_{Ξ}, κ_{Ξ})
W_1	1	1	3	1	$(M_{W_1},\hat{\boldsymbol{g}}_{W_1}^{\phi})$
W	1	1	3	0	(M_W,\hat{g}_W^H)


Single field extensions and M_W

Model	C _{HD}	C_{II}	$C_{HI}^{(3)}$	$C_{HI}^{(1)}$	C_{He}	C _{H□}	$C_{ au H}$	C_{tH}	C _{bH}
S_1		-1							
Σ			1 16	3 16			<u>Y</u> 7 4		
Σ_1			$\frac{1}{16}$	$-\frac{3}{16}$			<u>y_</u> 8		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
Ε			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_T}{2}$		
B_1	1					$-\frac{1}{2}$	$-\frac{y_T}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
В	-2						$-y_{\tau}$	$-y_t$	$-y_b$
Ξ	$-2\left(\frac{1}{M_{\Xi}}\right)^2$					$\frac{1}{2} \left(\frac{1}{M_{\Xi}} \right)^2$	$y_{\tau} \left(\frac{1}{M_{\Xi}}\right)^2$	$y_t \left(\frac{1}{M_{\Xi}}\right)^2$	$y_b \left(\frac{1}{M_{\Xi}}\right)^2$
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{\tau}$	$-y_t$	-y _b

- No single-field models contribute at tree level to C_{HWB}
- Only S1 contributes to C_{II}
- Five single-field models contribute to C_{HD} , and four to $C_{HI}^{(3)}$ (these models also contribute to other operators
- Models grayed-out can not explain the observed M_W value (wrong sign contribution)

Mass range for the preferred models

Mass range obtained assuming unit coupling

Mass and coupling range for the preferred models

- Mass range obtained assuming unit coupling
- Coupling range obtained assuming 1 TeV mass

Model	Pull	Best-fit mass	1 - σ mass	2 - σ mass	1 - σ coupling ²
		(TeV)	range (TeV)	range (TeV)	range
W_1	6.4	3.0	[2.8, 3.6]	[2.6, 3.8]	[0.09, 0.13]
В	6.4	8.6	[8.0, 9.4]	[7.4, 10.6]	[0.011, 0.016]
Ξ	6.4	2.9	[2.8, 3.1]	[2.7, 3.2]	[0.011, 0.016]
N	5.1	4.4	[4.1, 5.0]	[3.8, 5.8]	[0.040, 0.060]
Ε	3.5	5.8	[5.1, 6.8]	[4.6, 8.5]	[0.022, 0.039]

Conclusions and outlook

Conclusions and outlook

Study outcome

- We have shown that a large M_W value as implied by the CDF measurement is compatible with new-physics as parameterized by dimension-6 operators, without any tension with Higgs, diboson and EW precision data
- Fit qualities are good
- Several single-field extensions of the SM could explain this measurement

Future prospects

- Inclusion of SMEFT operator running (see R. Gupta talk)
- Study of more complex and more motivated UV models

EWPO, H	Previous	Combined	Parameter	$N_{ m dof}$	χ^2/dof	<i>p</i> -value
diboson	m _W	m _W	Count			
✓			20	182	0.92	0.76
✓	✓		20	185	0.93	0.75
✓		✓	20	185	0.97	0.59
√			4	198	0.93	0.76
✓	✓		4	201	0.93	0.75
✓		✓	4	201	0.97	0.60