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JET PHYSICS FOR BSM 
• LHC: boosted Higgs,  boosted top  for  

• heavy resonance search  

• SMEFT (high PT higgs boson, W, and Z distribution will be affected. )  

• boosted objects look like a jet.    "jet substructure" is important to  
distinguish it from QCD jets Particle Transformer for Jet Tagging

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

Figure 2. Examples of the 10 types of jets in the JETCLASS dataset, viewed as particle clouds. Each particle is displayed as a marker,
with its coordinates corresponding to the flying direction of the particle, and its size proportional to the energy. The circles, triangles
(upward- or downward-directed), and pentagons represent the particle types, which are hadrons, leptons (electrons or muons), and photons,
respectively. The solid (hollow) markers stand for electrically charged (neutral) particles. The marker color reflects the displacement of
the particle trajectory from the interaction point of the proton-proton collision, where a larger displacement results in more blue.

radiated particles further produce more particles, leading
to a cascade of O(10) to O(100) particles at the end. The
radiation also smears the characteristics of the initial particle
and makes the identification very difficult.

Traditional approaches for jet tagging rely on hand-crafted
features motivated by the principles of quantum chromo-
dynamics (QCD), the theory governing the evolution of
particles inside a jet. The rise of deep learning has led to
a plethora of new approaches (Larkoski et al., 2020). The
prevailing ones represent a jet as a particle cloud, i.e., an
unordered and variable-sized set of the outgoing particles,
as illustrated in Figure 1. Based on the particle cloud rep-
resentation, ParticleNet (Qu & Gouskos, 2020) adapts the
Dynamic Graph CNN architecture (Wang et al., 2019) and
achieves substantial performance improvement on two rep-
resentative jet tagging benchmarks. Since then, several new
models (e.g., Mikuni & Canelli (2020; 2021); Shimmin
(2021)) have been proposed, but no significant performance
improvement has been reported so far. We deem the lack of
a sufficiently large public dataset an impeding factor.

In this work, we advocate for JETCLASS, a new large and
comprehensive dataset to advance deep learning for jet tag-
ging. The JETCLASS dataset (Qu et al., 2022) consists of
100 M jets for training, about two orders of magnitude larger
than existing public datasets. It also includes more types of
jets, several of which have not been explored for tagging yet
but are promising for future applications at the LHC.

Based on this dataset, we propose Particle Transformer
(ParT), a new Transformer-based architecture for jet tagging.
We demonstrate that Transformer architectures, together
with a large dataset, can reach powerful performance on

jet tagging. We introduce a small modification to the atten-
tion mechanism by incorporating a new term characterizing
pairwise particle interactions. The resulting ParT achieves
significantly higher performance than a plain Transformer
and surpasses the previous state-of-the-art, ParticleNet, by a
large margin. We also apply the pre-trained ParT models to
two widely adopted jet tagging benchmarks with fine-tuning
and observe a substantial gain on these tasks.

2. The JETCLASS Dataset
We provide an overview of the new JETCLASS dataset in
this section. The dataset includes a total of 10 types of jets.
Representative jets of each type are visualized as particle
clouds in Figure 2. The jets in this dataset generally fall into
two categories. The background jets are initiated by light
quarks or gluons (q/g) and are ubiquitously produced at the
LHC. The signal jets are those arising either from the top
quarks (t), or from the W , Z or Higgs (H) bosons. For top
quarks and Higgs bosons, we further consider their different
decay modes as separate types, because the resulting jets
have rather distinct characteristics and are often tagged indi-
vidually. The use of jet tagging typically involves selecting
one (or a few) specific type of signal jets with high confi-
dence, and rejecting background jets as much as possible,
since the background jets usually appear orders of magni-
tude more frequently than the targeted signal jets. Note
that for several types of signal jets in this dataset, such as
H ! 4q, H ! `⌫qq0, and t ! b`⌫, no dedicated methods
have been developed so far to tag them. However, as we
will demonstrate in Section 5.1, these types of jets can also
be cleanly tagged with deep learning approaches, opening



JET AND  HEAVY OBJECT SEARCH  
(BUTTERWORTH ET AL 2008)
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the particle trajectory from the interaction point of the proton-proton collision, where a larger displacement results in more blue.
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radiation also smears the characteristics of the initial particle
and makes the identification very difficult.

Traditional approaches for jet tagging rely on hand-crafted
features motivated by the principles of quantum chromo-
dynamics (QCD), the theory governing the evolution of
particles inside a jet. The rise of deep learning has led to
a plethora of new approaches (Larkoski et al., 2020). The
prevailing ones represent a jet as a particle cloud, i.e., an
unordered and variable-sized set of the outgoing particles,
as illustrated in Figure 1. Based on the particle cloud rep-
resentation, ParticleNet (Qu & Gouskos, 2020) adapts the
Dynamic Graph CNN architecture (Wang et al., 2019) and
achieves substantial performance improvement on two rep-
resentative jet tagging benchmarks. Since then, several new
models (e.g., Mikuni & Canelli (2020; 2021); Shimmin
(2021)) have been proposed, but no significant performance
improvement has been reported so far. We deem the lack of
a sufficiently large public dataset an impeding factor.

In this work, we advocate for JETCLASS, a new large and
comprehensive dataset to advance deep learning for jet tag-
ging. The JETCLASS dataset (Qu et al., 2022) consists of
100 M jets for training, about two orders of magnitude larger
than existing public datasets. It also includes more types of
jets, several of which have not been explored for tagging yet
but are promising for future applications at the LHC.

Based on this dataset, we propose Particle Transformer
(ParT), a new Transformer-based architecture for jet tagging.
We demonstrate that Transformer architectures, together
with a large dataset, can reach powerful performance on

jet tagging. We introduce a small modification to the atten-
tion mechanism by incorporating a new term characterizing
pairwise particle interactions. The resulting ParT achieves
significantly higher performance than a plain Transformer
and surpasses the previous state-of-the-art, ParticleNet, by a
large margin. We also apply the pre-trained ParT models to
two widely adopted jet tagging benchmarks with fine-tuning
and observe a substantial gain on these tasks.

2. The JETCLASS Dataset
We provide an overview of the new JETCLASS dataset in
this section. The dataset includes a total of 10 types of jets.
Representative jets of each type are visualized as particle
clouds in Figure 2. The jets in this dataset generally fall into
two categories. The background jets are initiated by light
quarks or gluons (q/g) and are ubiquitously produced at the
LHC. The signal jets are those arising either from the top
quarks (t), or from the W , Z or Higgs (H) bosons. For top
quarks and Higgs bosons, we further consider their different
decay modes as separate types, because the resulting jets
have rather distinct characteristics and are often tagged indi-
vidually. The use of jet tagging typically involves selecting
one (or a few) specific type of signal jets with high confi-
dence, and rejecting background jets as much as possible,
since the background jets usually appear orders of magni-
tude more frequently than the targeted signal jets. Note
that for several types of signal jets in this dataset, such as
H ! 4q, H ! `⌫qq0, and t ! b`⌫, no dedicated methods
have been developed so far to tag them. However, as we
will demonstrate in Section 5.1, these types of jets can also
be cleanly tagged with deep learning approaches, opening

Particle Transformer for Jet Tagging

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

Figure 2. Examples of the 10 types of jets in the JETCLASS dataset, viewed as particle clouds. Each particle is displayed as a marker,
with its coordinates corresponding to the flying direction of the particle, and its size proportional to the energy. The circles, triangles
(upward- or downward-directed), and pentagons represent the particle types, which are hadrons, leptons (electrons or muons), and photons,
respectively. The solid (hollow) markers stand for electrically charged (neutral) particles. The marker color reflects the displacement of
the particle trajectory from the interaction point of the proton-proton collision, where a larger displacement results in more blue.

radiated particles further produce more particles, leading
to a cascade of O(10) to O(100) particles at the end. The
radiation also smears the characteristics of the initial particle
and makes the identification very difficult.

Traditional approaches for jet tagging rely on hand-crafted
features motivated by the principles of quantum chromo-
dynamics (QCD), the theory governing the evolution of
particles inside a jet. The rise of deep learning has led to
a plethora of new approaches (Larkoski et al., 2020). The
prevailing ones represent a jet as a particle cloud, i.e., an
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(2021)) have been proposed, but no significant performance
improvement has been reported so far. We deem the lack of
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100 M jets for training, about two orders of magnitude larger
than existing public datasets. It also includes more types of
jets, several of which have not been explored for tagging yet
but are promising for future applications at the LHC.

Based on this dataset, we propose Particle Transformer
(ParT), a new Transformer-based architecture for jet tagging.
We demonstrate that Transformer architectures, together
with a large dataset, can reach powerful performance on

jet tagging. We introduce a small modification to the atten-
tion mechanism by incorporating a new term characterizing
pairwise particle interactions. The resulting ParT achieves
significantly higher performance than a plain Transformer
and surpasses the previous state-of-the-art, ParticleNet, by a
large margin. We also apply the pre-trained ParT models to
two widely adopted jet tagging benchmarks with fine-tuning
and observe a substantial gain on these tasks.
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We provide an overview of the new JETCLASS dataset in
this section. The dataset includes a total of 10 types of jets.
Representative jets of each type are visualized as particle
clouds in Figure 2. The jets in this dataset generally fall into
two categories. The background jets are initiated by light
quarks or gluons (q/g) and are ubiquitously produced at the
LHC. The signal jets are those arising either from the top
quarks (t), or from the W , Z or Higgs (H) bosons. For top
quarks and Higgs bosons, we further consider their different
decay modes as separate types, because the resulting jets
have rather distinct characteristics and are often tagged indi-
vidually. The use of jet tagging typically involves selecting
one (or a few) specific type of signal jets with high confi-
dence, and rejecting background jets as much as possible,
since the background jets usually appear orders of magni-
tude more frequently than the targeted signal jets. Note
that for several types of signal jets in this dataset, such as
H ! 4q, H ! `⌫qq0, and t ! b`⌫, no dedicated methods
have been developed so far to tag them. However, as we
will demonstrate in Section 5.1, these types of jets can also
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Figure1.SchematicofCAclusteringandsoftdropgroomingalgorithm.Ontherightthebranches
thatfailtosatisfythesoftdropcriteria,showningray,arediscarded.

presentedinsection7.Section8presentsapartonshowerMonteCarlo(MC)eventgenera-

torstudywhereweconfrontourfieldtheorybaseddescriptionofthehadronizationcorrec-

tionsintheSDOEregionwithMCresultsatpartonandhadronlevel.Inparticular,wetest

theagreementofMCswithourpredictionsforuniversalitybyfittingthepowercorrections

intheSDOEregiontoresultsfromMChadronizationmodels.Weconcludeinsection9.

2Reviewofsoftdropandpartonicfactorization

2.1Softdropalgorithmandjetmass

Thesoftdropalgorithm[48]considersajetofradiusR,reclusterstheparticlesintoa

angularorderedclustertreeofsubjetsusingtheCambridge-Aachen(CA)algorithm[66,67],

andthenremovesperipheralsoftradiationbysequentiallycomparingsubjetsi,jinthe

tree.Thegroomingstopswhenasoftdropconditionspecifiedbyfixedparameterszcut
andβissatisfiedbyapairofsubjets.Forppcollisionstheconditionis

min[pTi,pTj]

(pTi+pTj)
>zcut

(
Rij

R0

)β

,(2.1)

whereRijistheangulardistanceintherapidity-φplane,R2
ij=2

(
cosh(ηi−ηj)−cos(φi−

φj)
)

orR2
ij=

√
(ηi−ηj)2+(φi−φj)2(definitionsthatareequivalentintheboosted

limit,andthelatterbeingtheoneimplementedinthesoftdropalgorithm).Ingeneral

R0isaparameterthatispartofthedefinitionofthesoftdropalgorithmwhichisoften

chosentobethejetradius.Intheactualimplementationofthesoftdropalgorithmone,

however,definesRijintermsofaEuclideandistancein(η,φ)plane,suchthatR2
ij= √

(ηi−ηj)2+(φi−φj)2.Thetwodefinitionsareequivalentintheboostedlimit.For

e+e−collisionstheconditionis

min[Ei,Ej]

(Ei+Ej)
>zcut

(√
2

sin(θij/2)

sin(Ree
0/2)

)β

.(2.2)

Thisisillustratedinfigure1whereΘsd=1−Θsdrepresentsthepass/failtestbeingapplied

bythesoftdropgroomer.Onceeq.(2.1)oreq.(2.2)issatisfiedallsubsequentconstituents

inthetreearekept,thussettinganewjetradiusRg<Rforthegroomedjet.
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A priori it is not clear whether it is better to have regular (‘soft-resilient’) or less regular (soft-
adaptable) jets. In particular, regularity implies a certain rigidity in the jet algorithm’s ability to
adapt a jet to the successive branching nature of QCD radiation. On the other hand knowledge
of the typical shape of jets is often quoted as facilitating experimental calibration of jets, and
soft-resilience can simplify certain theoretical calculations, as well as eliminate some parts of the
momentum-resolution loss caused by underlying-event and pileup contamination.

Examples of jet algorithms with a soft-resilient boundary are the plain “iterative cone” algo-
rithm, as used for example in the CMS collaboration [6], and fixed-cone algorithms such as Pythia’s
[7] CellJet. The CMS iterative cone takes the hardest object (particle, calorimeter tower) in the
event, uses it to seed an iterative process of looking for a stable cone, which is then called a jet.
It then removes all the particles contained in that jet from the event and repeats the procedure
with the hardest available remaining seed, again and again until no seeds remain. The fixed-cone
algorithms are similar, but simply define a jet as the cone around the hardest seed, skipping the
iterative search for a stable cone. Though simple experimentally, both kinds of algorithm have the
crucial drawback that if applied at particle level they are collinear unsafe, since the hardest particle
is easily changed by a quasi-collinear splitting, leading to divergences in higher-order perturbative
calculations.1

In this paper it is not our intention to advocate one or other type of algorithm in the debate
concerning soft-resilient versus soft-adaptable algorithms. Rather, we feel that this debate can be
more fruitfully served by proposing a simple, IRC safe, soft-resilient jet algorithm, one that leads
to jets whose shape is not influenced by soft radiation. To do so, we take a quite non-obvious route,
because instead of making use of the concept of a stable cone, we start by generalising the existing
sequential recombination algorithms, kt [1] and Cambridge/Aachen [2].

As usual, one introduces distances dij between entities (particles, pseudojets) i and j and diB

between entity i and the beam (B). The (inclusive) clustering proceeds by identifying the smallest
of the distances and if it is a dij recombining entities i and j, while if it is diB calling i a jet and
removing it from the list of entities. The distances are recalculated and the procedure repeated
until no entities are left.

The extension relative to the kt and Cambridge/Aachen algorithms lies in our definition of the
distance measures:

dij = min(k2p
ti , k2p

tj )
∆2

ij

R2
, (1a)

diB = k2p
ti , (1b)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 and kti, yi and φi are respectively the transverse momentum,

rapidity and azimuth of particle i. In addition to the usual radius parameter R, we have added a
parameter p to govern the relative power of the energy versus geometrical (∆ij) scales.

For p = 1 one recovers the inclusive kt algorithm. It can be shown in general that for p > 0
the behaviour of the jet algorithm with respect to soft radiation is rather similar to that observed
for the kt algorithm, because what matters is the ordering between particles and for finite ∆ this
is maintained for all positive values of p. The case of p = 0 is special and it corresponds to the
inclusive Cambridge/Aachen algorithm.

1This is discussed in the appendix in detail for the iterative cone, and there we also introduce the terminology
iterative cone with split–merge steps (IC-SM) and iterative cone with progressive removal (IC-PR), so as to distinguish
the two broad classes of iterative cone algorithms.
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SEEDLESS IRC SAFE VARIABLES
• n-subjettiness (2010 Thaler Tilburg )   

minimize the distance to N axes   

 

• Energy Flow Polynomial(Komiske et al 1712.07124)                 

  

ex    ,  

• linear in  for all  particle involved ← IRC safe  
(stable against soft and infrared divergence of QCD) 

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity
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EFPG =
M

∑
i1

. . .
M

∑
iN

. . zi1 . . ziN ∏
k,l∈G

θikil

EFPβ
2 = ∑

i,j

zizjθij θij = [(yi − yj)2 + (ϕi − ϕj)]β/2

zi = Ei /EJ
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JET AND DEEP LEARNING 



Deep learning and classifier Φ(x, . . . )

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron

x1

·
·
·

xn

wi1

·
·
·

win
bi

P
'(·) '(wijxj + bi )

inputs weights bias activation output reduced notation

Build a network architecture
x1

x2

x3

ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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model parameter :              

φ: activation function   
source of non linearity 

optimization 
wij,bi
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Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron

x1

·
·
·

xn

wi1

·
·
·

win
bi

P
'(·) '(wijxj + bi )

inputs weights bias activation output reduced notation

Build a network architecture
x1

x2

x3

ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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QUICK TOUR OF JET CLASSIFICATION MODELS

A. Use Motivated (safe) input  

B. Use Most Fancy DL network at Time (many choices )  

CNN(2017 Kasieczka et al)→Particle Net (Graph NN ) (2019) 

→Particle Transformer(Graph and Attention)   (2022) 

Large GAP between A & B →origin of the difference?   



“low level" input improve classification 
• e.g. calorimeter-cluster particle-flow 

objects observables “constituent-based 
tagging”


• Graph NN（ParticleNet）improve 
background rejection significantly 


• ML beats theory?  

rejection efficiency plot 

Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (CMS Collaboration,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

Table 2. Particle input features used for jet tagging on the JETCLASS, the top quark tagging (TOP) and the quark gluon tagging (QG)
datasets. For QG, we consider two scenarios: QGexp is restricted to use only the 5-class experimentally realistic particle identification
information, while QGfull uses the full set of particle identification information in the dataset and further distinguish between different
types of charged hadrons and neutral hadrons.

Category Variable Definition JETCLASS TOP QGexp QGfull

Kinematics

�⌘ difference in pseudorapidity ⌘ between the particle and the jet axis X X X X
�� difference in azimuthal angle � between the particle and the jet axis X X X X
log pT logarithm of the particle’s transverse momentum pT X X X X
log E logarithm of the particle’s energy X X X X
log pT

pT(jet) logarithm of the particle’s pT relative to the jet pT X X X X
log E

E(jet) logarithm of the particle’s energy relative to the jet energy X X X X
�R angular separation between the particle and the jet axis (

p
(�⌘)2 + (��)2) X X X X

Particle
identification

charge electric charge of the particle X — X X
Electron if the particle is an electron (|pid|==11) X — X X
Muon if the particle is an muon (|pid|==13) X — X X
Photon if the particle is an photon (pid==22) X — X X
CH if the particle is an charged hadron (|pid|==211 or 321 or 2212) X — X Xa

NH if the particle is an neutral hadron (|pid|==130 or 2112 or 0) X — X Xb

Trajectory
displacement

tanh d0 hyperbolic tangent of the transverse impact parameter value X — — —
tanh dz hyperbolic tangent of the longitudinal impact parameter value X — — —
�d0 error of the measured transverse impact parameter X — — —
�dz error of the measured longitudinal impact parameter X — — —

a
(|pid|==211) + (|pid|==321)*0.5 + (|pid|==2212)*0.2

b
(|pid|==130) + (|pid|==2112)*0.2.

pared to ParticleNet. Moreover, for the physics-oriented
metric, the background rejection, ParT improves over Par-
ticleNet by a factor of 3 for t ! bqq0, a factor of 2 for
H ! 4q, and about 70% for H ! cc̄. It is also clear that,
the earlier PFN and P-CNN models lag substantially behind
ParticleNet and ParT on this large dataset, amounting to up
to an order of magnitude difference in background rejection.
The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Effectiveness of P-MHA. To quantify the effectiveness of
the P-MHA introduced in ParT, we carry out an ablation
study by replacing the P-MHA with a standard MHA, the re-
sulting architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. A drop of 1.2% in accuracy is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not lead to any reduction
of information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 2. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

We cannot ignore such large gain. Qu et al 2022.03772 
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number of particles each with d features, the result from Ref. [63] can be stated as:

Observable Decomposition. An observable O can be approximated arbitrarily well as:

O({p1, . . . , pM}) = F

 
MX

i=1

�(pi)

!
, (1.1)

where � : Rd
! R` is a per-particle mapping and F : R`

! R is a continuous function.

A schematic representation of Eq. (1.1) is shown in Fig. 1. Inherent in the decomposition of

Eq. (1.1) is a latent space of dimension ` that serves to embed the particles such that an overall

latent event representation is obtained when the sum is carried out. One should think of the

d features for each particle as possibly being kinematic information, such as the particle’s pT ,

rapidity y, and azimuthal angle �, or other quantum numbers such as the particle’s charge

or flavor. Sec. 2 contains additional mathematical details regarding this decomposition.

With a suitable modification of Eq. (1.1), we can restrict the decomposition to infrared-

and collinear-safe (IRC-safe) observables:

IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated

arbitrarily well as:

O({p1, . . . , pM}) = F

 
MX

i=1

zi�(p̂i)

!
, (1.2)

where zi is the energy (or pT ) and p̂i the angular information of particle i.

The energy-weighting factors zi as well as the energy-independent p̂i in Eq. (1.2) ensure that

the event representation in the latent space is IRC-safe.

In this paper, we show that many common observables are naturally encompassed by

simple choices of � and F from Eqs. (1.1) and (1.2). Furthermore, we can parametrize �

and F by neural network layers, capable of learning essentially any function, in order to

explore more complicated observables. In keeping with the naming convention of Ref. [29]

for methods involving IRC-safe observables, we term a network architecture implementing

Eq. (1.2) an Energy Flow Network (EFN). By contrast, we refer to the more general case

of an architecture that implements Eq. (1.1) as a Particle Flow Network (PFN). These two

network architectures can be mathematically summarized as:

EFN: F

 
MX

i=1

zi�(p̂i)

!
, PFN: F

 
MX

i=1

�(pi)

!
. (1.3)

Our framework manifestly respects the variable length and permutation invariance of par-

ticle sets, achieves performance competitive with existing techniques on key collider tasks,

and provides a platform for visualizing the information learned by the model. Beyond this,

we demonstrate how our framework unifies the existing event representations of calorimeter
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angle.2 In practice, we typically focus on dimensionless observables and use the appropriate

normalized weights: zi = Ei/
P

j Ej or zi = pT,i/
P

j pT,j .

Any IRC-safe observable O can be approximated arbitrarily well by the decomposition:

O
�
{pi}

M
i=1

�
= F

 
MX

i=1

zi �(p̂i)

!
, (2.3)

where � : Rd
! R` is a per-particle angular mapping and F : R`

! R is continuous. All

observables of the form in Eq. (2.3) are manifestly IRC safe due to the energy-weighted

linear sum structure, the dependence of � on purely geometric inputs p̂i, and the fact that

continuous functions of IRC-safe observables are IRC safe.3

The fact that the energy-weighted decomposition in Eq. (2.3) su�ces to approximate all

IRC-safe observables is intuitive from the fact that a continuous function of a su�ciently high-

resolution calorimeter image can be used to approximate an IRC-safe observable arbitrarily

well [101–103]. As discussed in Sec. 2.3, an image of the calorimeter deposits is exactly

encompassed by the energy-weighted observable decomposition.

Here, we provide a direct argument to arrive at Eq. (2.3), building o↵ the Deep Sets

Theorem and following similar logic as Ref. [29]. Given the decomposition of an IRC-safe

observable O into F and � via Eq. (2.2), the IRC safety of the observable O corresponds to

the following statements:

IR safety : F

 
MX

i=1

�(zi, p̂i)

!
= F

 
�(0, p̂0) +

MX

i=1

�(zi, p̂i)

!
, (2.4)

C safety : F

 
MX

i=1

�(zi, p̂i)

!
= F

 
�(�z1, p̂1) + �((1 � �)z1, p̂1) +

MX

i=2

�(zi, p̂i)

!
, (2.5)

where Eq. (2.4) holds for all directions p̂0 that a soft particle could be emitted and Eq. (2.5)

holds for all energy fractions � 2 [0, 1] of the collinear splitting. In Eq. (2.5), we have selected

particle 1 to undergo the collinear splitting but the statement holds for any of the particles by

permutation symmetry. The equations here only hold to a specified accuracy of approximation

in the Observable Decomposition, which we leave implicit since it does not alter the structure

of our argument.

We now make the following suggestive redefinition of � to ensure that the latent repre-

sentation of a particle vanishes if the particle has zero energy:

�(z, p̂) ! �(z, p̂) � �(0, p̂). (2.6)

Infrared safety via Eq. (2.4) ensures that the value of the observable is unchanged under this

redefinition, so without loss of generality we may take � to vanish on arbitrarily soft particles.

2
As discussed in Ref. [29], another sensible choice for the angular measure is p̂i = pµ

i /pT,i. Particle mass

information, if present, can be passed to a PFN via flavor information.
3
Ratios of IRC-safe observables are not necessarily IRC safe [99, 100] since division is discontinuous at zero.
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Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary

– 3 –
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Limited to the correlation relative to leading jet
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TYPE B:   CNN AND GRAPHES

•  Transfer image by KxK filter → cutoff 
(pooling ) to find correlation.  

• Performance: CNN> EFN   

• Demerit  "point by point" fluctuation 
near the boundary of the jets. 
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Practical Example with CNN: Image Recognition Techniques with Jet Image
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer

h(n)
k,xy = '(

X

�x ,�y

w (n)
k`,�x�y

h(n�1)
`,(x+�x )(y+�y ) + b(n)

k )

Convolution

f ⇤ g(x) =

Z
dx 0f (x 0)g(x � x 0)

Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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 (Now it is independent to QCD etc )
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Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches
that fail to satisfy the soft drop criteria, shown in gray, are discarded.

presented in section 7. Section 8 presents a parton shower Monte Carlo (MC) event genera-

tor study where we confront our field theory based description of the hadronization correc-

tions in the SDOE region with MC results at parton and hadron level. In particular, we test

the agreement of MCs with our predictions for universality by fitting the power corrections

in the SDOE region to results from MC hadronization models. We conclude in section 9.

2 Review of soft drop and partonic factorization

2.1 Soft drop algorithm and jet mass

The soft drop algorithm [48] considers a jet of radius R, reclusters the particles into a

angular ordered cluster tree of subjets using the Cambridge-Aachen (CA) algorithm [66, 67],

and then removes peripheral soft radiation by sequentially comparing subjets i, j in the

tree. The grooming stops when a soft drop condition specified by fixed parameters zcut
and β is satisfied by a pair of subjets. For pp collisions the condition is

min[pT i, pTj ]

(pT i + pTj)
> zcut

(
Rij

R0

)β

, (2.1)

where Rij is the angular distance in the rapidity-φ plane, R2
ij = 2

(
cosh(ηi − ηj)− cos(φi −

φj)
)
or R2

ij =
√
(ηi − ηj)2 + (φi − φj)2 (definitions that are equivalent in the boosted

limit, and the latter being the one implemented in the soft drop algorithm). In general

R0 is a parameter that is part of the definition of the soft drop algorithm which is often

chosen to be the jet radius. In the actual implementation of the soft drop algorithm one,

however, defines Rij in terms of a Euclidean distance in (η,φ) plane, such that R2
ij =√

(ηi − ηj)2 + (φi − φj)2. The two definitions are equivalent in the boosted limit. For

e+e− collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

(√
2
sin(θij/2)

sin(Ree
0 /2)

)β

. (2.2)

This is illustrated in figure 1 where Θsd = 1−Θsd represents the pass/fail test being applied

by the soft drop groomer. Once eq. (2.1) or eq. (2.2) is satisfied all subsequent constituents

in the tree are kept, thus setting a new jet radius Rg < R for the groomed jet.
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Figure 1: (a) Schematic representation of the LJP. The line z✓ . ⇤QCD roughly indicates the transition between
regions where either perturbative (z✓ > ⇤QCD) or nonperturbative (z✓ < ⇤QCD) e�ects are expected to dominate.
“UE/MPI” denotes the region where sources of nearly uniform radiation are relevant. (b) The ratio of the Lund jet
plane as simulated by the H����� 7.1.3 MC generator with either an angle-ordered parton shower or a dipole parton
shower. (c) The ratio of the Lund jet plane as simulated by the S����� 2.2.5 MC generator with either the AHADIC
cluster-based or Lund string-based hadronization algorithm. (d) The ratio of the LJP as simulated by either the
P�����+P����� 8.230 or P����� 8.230 MC generators. The inner set of axes indicate the coordinates of the LJP
itself, while the outer set indicate corresponding values of z and �R.
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Jets are collimated sprays of particles resulting from high-energy quark and gluon production. The details
of the process that underlies the fragmentation of quarks and gluons with quantum chromodynamic (QCD)
charge into neutral hadrons is not fully understood. In the soft gluon (‘eikonal’) picture of jet formation, a
quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1, 2]. As QCD
is nearly scale-invariant, this emission pattern is approximately uniform in the two-dimensional space
spanned by ln(1/z) and ln(1/✓), where z is the momentum fraction of the emitted gluon relative to the
primary quark or gluon core and ✓ is the emission opening angle. This space is called the Lund plane [3].
The Lund plane probability density can be extended to higher orders in QCD and is the basis for many
calculations of jet substructure observables [4–7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane
is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to
construct an observable analog of the Lund plane using jets, which captures the salient features of this
representation. Jets are formed using clustering algorithms that sequentially combine pairs of proto-jets
starting from the initial set of constituents [9]. Following the proposal, a jet’s constituents are reclustered
using the Cambridge/Aachen (C/A) algorithm [10, 11], which imposes an angle-ordered hierarchy on
the clustering history. Then, the C/A history is followed in reverse (‘declustered’), starting from the
hardest proto-jet. The Lund plane can be approximated by using the softer (harder) proto-jet to represent
the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A
declustering sequence, an entry is made in the approximate Lund plane (henceforth, the ‘primary Lund jet
plane’ or LJP) using the observables ln (1/z) and ln (R/�R), with

z =
pemission

T
pemission

T + pcore
T

and �R2 = (yemission � ycore)2 + (�emission � �core)2,

where pT is transverse momentum,1 y is rapidity, R is the jet radius parameter, and �R measures the
angular separation. Using this approach, individual jets are represented as a set of points within the LJP.
Ensembles of jets may be studied by measuring the double-di�erential cross section in this space. The
substructure of emissions, which may themselves be composite objects, is not considered in this analysis.
To leading-logarithm (LL) accuracy, the average density of emissions within the LJP is uniform [8]:

1
Njets

d2Nemissions
d ln(1/z)d ln(R/�R) / constant, (1)

where Njets is the number of jets. This construction of the plane is selected to separate momentum and
angular measurements, although other choices such as (ln(R/�R), kt = z�R) are valid.

The Lund plane has played a central role in state-of-the-art QCD calculations of jet substructure [12–17]
which have so far only been studied with the jet mass mjet [18, 19] (which is itself a diagonal line in the LJP:
ln 1/z ⇠ ln m2

jet/p2
T � 2 ln R/�R) and groomed jet radius [20, 21]. The number of emissions within regions

of the LJP is also calculable and provides optimal discrimination between quark and gluon jets [5].

This Letter presents a double-di�erential cross-section measurement of the LJP, corrected for detector
e�ects, using an integrated luminosity of 139 fb�1 of

p
s = 13 TeV proton–proton (pp) collision data

collected by the ATLAS detector. A unique feature of this measurement is that contributions from various

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle # as ⌘ = � ln tan(#/2).
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Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches
that fail to satisfy the soft drop criteria, shown in gray, are discarded.

presented in section 7. Section 8 presents a parton shower Monte Carlo (MC) event genera-

tor study where we confront our field theory based description of the hadronization correc-

tions in the SDOE region with MC results at parton and hadron level. In particular, we test

the agreement of MCs with our predictions for universality by fitting the power corrections

in the SDOE region to results from MC hadronization models. We conclude in section 9.

2 Review of soft drop and partonic factorization

2.1 Soft drop algorithm and jet mass

The soft drop algorithm [48] considers a jet of radius R, reclusters the particles into a

angular ordered cluster tree of subjets using the Cambridge-Aachen (CA) algorithm [66, 67],

and then removes peripheral soft radiation by sequentially comparing subjets i, j in the

tree. The grooming stops when a soft drop condition specified by fixed parameters zcut
and β is satisfied by a pair of subjets. For pp collisions the condition is

min[pT i, pTj ]

(pT i + pTj)
> zcut

(
Rij

R0

)β

, (2.1)

where Rij is the angular distance in the rapidity-φ plane, R2
ij = 2

(
cosh(ηi − ηj)− cos(φi −

φj)
)
or R2

ij =
√
(ηi − ηj)2 + (φi − φj)2 (definitions that are equivalent in the boosted

limit, and the latter being the one implemented in the soft drop algorithm). In general

R0 is a parameter that is part of the definition of the soft drop algorithm which is often

chosen to be the jet radius. In the actual implementation of the soft drop algorithm one,

however, defines Rij in terms of a Euclidean distance in (η,φ) plane, such that R2
ij =√

(ηi − ηj)2 + (φi − φj)2. The two definitions are equivalent in the boosted limit. For

e+e− collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

(√
2
sin(θij/2)

sin(Ree
0 /2)

)β

. (2.2)

This is illustrated in figure 1 where Θsd = 1−Θsd represents the pass/fail test being applied

by the soft drop groomer. Once eq. (2.1) or eq. (2.2) is satisfied all subsequent constituents

in the tree are kept, thus setting a new jet radius Rg < R for the groomed jet.
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charge into neutral hadrons is not fully understood. In the soft gluon (‘eikonal’) picture of jet formation, a
quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1, 2]. As QCD
is nearly scale-invariant, this emission pattern is approximately uniform in the two-dimensional space
spanned by ln(1/z) and ln(1/✓), where z is the momentum fraction of the emitted gluon relative to the
primary quark or gluon core and ✓ is the emission opening angle. This space is called the Lund plane [3].
The Lund plane probability density can be extended to higher orders in QCD and is the basis for many
calculations of jet substructure observables [4–7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane
is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to
construct an observable analog of the Lund plane using jets, which captures the salient features of this
representation. Jets are formed using clustering algorithms that sequentially combine pairs of proto-jets
starting from the initial set of constituents [9]. Following the proposal, a jet’s constituents are reclustered
using the Cambridge/Aachen (C/A) algorithm [10, 11], which imposes an angle-ordered hierarchy on
the clustering history. Then, the C/A history is followed in reverse (‘declustered’), starting from the
hardest proto-jet. The Lund plane can be approximated by using the softer (harder) proto-jet to represent
the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A
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plane’ or LJP) using the observables ln (1/z) and ln (R/�R), with
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and �R2 = (yemission � ycore)2 + (�emission � �core)2,

where pT is transverse momentum,1 y is rapidity, R is the jet radius parameter, and �R measures the
angular separation. Using this approach, individual jets are represented as a set of points within the LJP.
Ensembles of jets may be studied by measuring the double-di�erential cross section in this space. The
substructure of emissions, which may themselves be composite objects, is not considered in this analysis.
To leading-logarithm (LL) accuracy, the average density of emissions within the LJP is uniform [8]:
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Njets

d2Nemissions
d ln(1/z)d ln(R/�R) / constant, (1)

where Njets is the number of jets. This construction of the plane is selected to separate momentum and
angular measurements, although other choices such as (ln(R/�R), kt = z�R) are valid.

The Lund plane has played a central role in state-of-the-art QCD calculations of jet substructure [12–17]
which have so far only been studied with the jet mass mjet [18, 19] (which is itself a diagonal line in the LJP:
ln 1/z ⇠ ln m2

jet/p2
T � 2 ln R/�R) and groomed jet radius [20, 21]. The number of emissions within regions

of the LJP is also calculable and provides optimal discrimination between quark and gluon jets [5].

This Letter presents a double-di�erential cross-section measurement of the LJP, corrected for detector
e�ects, using an integrated luminosity of 139 fb�1 of

p
s = 13 TeV proton–proton (pp) collision data

collected by the ATLAS detector. A unique feature of this measurement is that contributions from various

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle # as ⌘ = � ln tan(#/2).
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5 Robustness study

We will now investigate the robustness of the di↵erent models we considered in our bench-

marks. To this end we will consider three axes: their resilience to non-perturbative e↵ects,

their resilience to detector e↵ects, and the complexity and computational cost of each

tagger.

5.1 Non-perturbative e↵ects

Beyond its raw performance, it is important for practical applications that a tagger be

relatively robust to model-dependent non-perturbative e↵ects. To carry out studies of

sensitivity to non-perturbative e↵ects, we compare performance between a data sample of

both 50k signal and background jets produced at parton level, and a sample obtained with

hadronisation and underlying event models turned on in the event generator. The same

model, trained on hadron-level data, is evaluated on both samples for the comparison. For

this study, we use the same 2 TeV W jet sample as was used in section 4.1 as well as the
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 SOFT PARTICLES SYSTEMATICS

• top vs QCD  

    Emission from top quark may be smaller  

Energy of decay product is small  

• hadronization modeling (ad hok model)   

• string model (PYTHIA)  

• cluster model (HERWIG Sherpa) 

Eq ≪ Et

192 5 Parton branching and jet simulation

Fig. 5.14. Parton shower with string hadronization model for e+e− → hadrons.

quark and antiquark in the simplest e+e− final state. It seems most rea-
sonable to stretch the string between these colour-connected neighbours.
The reformulation of parton showers in terms of sequential splitting of
colour dipoles [18] leads to the same prescription for string connection.

A schematic picture of the production of a multihadronic final state
in e+e− annihilation according to the string model is shown in Fig. 5.14.
Notice that whenever a gluon splits perturbatively into a quark-antiquark
pair during the evolution of the parton shower, an additional string seg-
ment is produced. On the other hand, gluons which remain at the end of
the shower (i.e. at the cut-off scale t0) lead to kinks in the string segment
which connects them. Each string segment then breaks up into hadrons
as described above.

5.6.3 Cluster model

An important property of the parton branching process is the precon-
finement of colour [19]. Preconfinement implies that the pairs of colour-
connected neighbouring partons discussed above have an asymptotic mass
distribution that falls rapidly at high masses and is asymptotically Q2-
independent and universal. This suggests a class of cluster hadronization
models, in which colour-singlet clusters of partons form after the pertur-

194 5 Parton branching and jet simulation

Fig. 5.15. Parton shower with cluster hadronization model for e+e− → hadrons.

Probably on account of its simplicity, it was initially the model used most
widely in conjunction with initial- and final-state parton branching for
the simulation of hard hadron-hadron collisions, in the programs ISAJET
[23], COJETS [24] and FIELDAJET [25].

The string hadronization model outlined above, with many further re-
finements, is the basis of the JETSET simulation program [26], which also
includes final-state parton branching with optional angular ordering. This
program gives a very good detailed description of hadronic final states in
e+e− annihilation up to the highest energies studied so far.

The JETSET hadronization scheme is also used, in combination with
initial- and final-state parton branching, in the other very successful Lund
simulation programs PYTHIA [27] for hadron-hadron and LEPTO [28] for
lepton-hadron collisions. The alternative formulation of parton showers
in terms of colour dipole splitting mentioned above is implemented in the
program ARIADNE [29], which also uses JETSET for hadronization.

The program HERWIG [4,30] uses a low-mass cluster hadronization
model [21] in conjunction with initial- and final-state parton branching
to simulate a wide variety of hard scattering processes. The branching
algorithm includes angular ordering and azimuthal correlations due to

String model Cluster model 

Graph NNs are eager to learn the soft particle correlation if it is relevant 
to classification. 

→Event Generator  have to be modeled carefully  toward low PT regions 

      "SOFT PHYSICS MEETS ML " 
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 SOFT PARTICLES GEOMETRY IN JET CLASSIFICATION 
(FURUICHI,  LIM, MN, IN PREPARATION )  

• We have constructed a simple NN 
of following  features represent 
GNN 

• "SOFT IMPUTS" and "IRC SAFE 
INPUTS" are separated  before  
the first feature extraction.  

• A "complete" bases of 
aggregated  input of #soft 
particles & geometry  

• No need of complicated 
network. just MLP

IRC safe SOFT

MLP MLP 

MLP 

CONCATENATE

feature 
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for all  MC
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QUANTIFYING QCD SIMULATION DIFFERENCES 

Particle Transformer 

IRC safe inputs (two point energy 
correlation) + constituent pt distribution 

SOFT geometry 
+constituent pt  + IRC 

safe inputs
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SOFT  INPUTS: MINKOWSKI FUNCTIONAL 

jet image 
circle at every hit resulting image  S 

Area   A(R) 
Boundary Length  L(R) 
Euler Characteristic  E(R) 
 

Nojiri Lim 

A(R), L(R), E(R) is the base of all function F with  
and translation and rotation invariant

F(S ∪ S′ ) = F(S) + F(S′ ) − F(S ∩ S′ )

Statistical Physics (liquid crystal)  
Astrophysics

Additivity, Convexity, and Beyond 113

Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant

Application in other field 

All point  distribution information 
 can be encoded  here

Minkowski Functionals 



SOFT  INPUTS 2. MINKOWSKI FUNCTIONAL 

jet image 
circle at every hit resulting image  S 

Area   A(R) 
Boundary Length  L(R) 
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Nojiri Lim (2010.13469) 
 

Minkowski Functionals 

Euler characteristic  E(R)

aggregation of  local information  (Deepset)  
Full geometry information up to rot/trans 

number of particle,  distance between  
particles, global effect such as  
color coherence... 

Several threshold  (0.5GeV, 1 GeV, 2GeV, 4GeV) 



QUANTIFYING QCD SIMULATION DIFFERENCES 

Particle Transformer 

IRC safe inputs (two point energy 
correlation) + constituent pt distribution 

MF(no cut, 2GeV, 4GeV) 
+constituent pt + IRC 

safe inputs geometry is 
important! 

DIFFERENCE BEYOND TWO 
POINT ENERGY CORRELATION  

AND SOFT PARTICLE GEOMETRY 
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SUMMARY

• A part of improvement of DL comes from the soft particle information  

• Maybe there is  more "unknown gods".   GNN learns "everything"! 

• We show the majority of soft particle effects can be parametrized by  
relatively simple aggregated inputs  ("Minkowski Functionals")  and 
simple MLP  

• These inputs maybe used to  

• analyze experimental data, 

• reweight simulated events to improve the agreement between 
simulation and data in ML  

• GAN soft particles ? 

to improve the  "Event generators in the era of ML"



BY PETAR MAKSIMOVIC (JOHNS HOPKINS) 

EXPERIMENTAL INTRO AT ML 4JET

             ML4Jets 2022

17
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QCD modeling for the future

● With a better QCD modeling, we could:

● Train ML algorithms 

→ better data/MC                                                                          
     agreement

→ minimize signal                                                                          
     efficiency systematics

● Decorrelate taggers 

→ well-behaved background shapes → better bkg estimates

→ if there’s a BSM excesses, it would be “easier” to see

● Estimate efficiencies of tagging jets with exotic substructure

(see above) 

● In general, experimentalist’s life would become a lot easier

Certainly not easy --Maybe  need  "wish list" for soft QCD and ML



PD  opening in KEK ML& particle, astro, cosmo. 
(no ML publication history required. )   

https://academicjobsonline.org/ajo/jobs/23019



Physics Machine Learning

Machine Learning  Physics 

Precise Prediction, 
Mathematical  description 

Innovation that can change 
society

Approach to  fundamental Problem in Physics  
by integrating machine learning and theoretical methods

discovery of new phenomena, new rule
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GRAPH NEURAL NETWORK (GNN) 

NN using  
vertex ( particle information)  
edge (two point correlation )  

as input.  

Calculate edge variables of nearby 7 pairs  
 →update vertex and edge-> use this to select  next 7 pairs 

1902.08570 Qu  and Goukos "Jet Tagging via Particle Clouds" )  

• ParticleNet, treat nearby two point particle correlations directly 

Now the idea of "distance" is controlled by the samples, not by theory.
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N, C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The

Edge information
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second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N,C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The

two point correlation of all particle
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NN using  
vertex ( particle information)  
edge (two point correlation )  

as input.  

Calculate edge variables of nearby 7 pairs  
 →update vertex and edge-> use this to select  next 7 pairs 

1902.08570 Qu  and Goukos "Jet Tagging via Particle Clouds" )  

• ParticleNet, treat nearby two point particle correlations directly 

Now the idea of "distance" is controlled by the samples, not by theory nor geometry.
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of particles, in a shape (N, N, C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
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second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW
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(b) ParticleNet-Lite

FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector

pair 

product of particles info 
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Figure 3: Representative horizontal and vertical slices through the LJP. Unfolded data are compared with particle-level
simulation from several MC generators. The uncertainty band includes all sources of systematic and statistical
uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) 0.67 < ln(R/�R) < 1.00, (b)
1.80 < ln(1/z) < 2.08, (c) 3.33 < ln(R/�R) < 3.67, and (d) 5.13 < ln(1/z) < 5.41.
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angular scale R.

S2,ab(R) =
X

i2a,j2b

pT,ipT,j�(R � Rij). (24)

By using S2,ab, the nested summation in Eq. 23 can be
replaced to a single integral as follows,

Z
dR S2,ab(R)�ab(R). (25)

This model covers various jet substructure variables.
For example, the two-point energy correlation functions
EFPn

2 [14, 16] can be written in terms of a linear combi-
nation of the S2 as follows,

EFPn

2,ab =

Z 1

0
dR S2,ab(R) R

n
, (26)

Therefore, this network covers all information encoded in
EFPn

2 .
For the practical use of this RN with IRC-safe con-

straints, we discretize the integral in Eq. 25 by binning
the integrand with bin size �R. The discrete version of
S2,ab is then defined as follows.

S
(k)
2,ab =

Z (k+1)�R

k�R

dR S2,ab(R), (27)

where k is the bin index. The integral in Eq. 25 can be

expressed as a inner product between S
(k)
2,ab and a weight

vector �(k)
ab

,

Z
dR S2,ab(R)�(R) =

X
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S
(k)
2,ab�

(k)
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. (28)

For our numerical study, we take bin size �R = 0.1,
which is the hadronic calorimeter resolution. The S2’s
are directly calculated from the HCAL and ECAL out-
puts. If we use an MLP to model the function f of the RN
in Eq. 23, we can embed �(k) to the first fully-connected
layer. The fully-connected layer that maps one inputP

k
S

(k)
2,ab�

(k)
ab

to the latent dimension is equivalent to a

fully connected layer that maps S
(k)
2,ab’s to the latent di-

mension, i.e.,
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The RN is modelled by an MLP taking S
(k)
2,ab, and the

first layer can be regarded as a trainable two-point energy
correlation.

B. Energy Flow Network

Energy flow network (EFN) [19] is also a graph neural
network based on the energy correlators, but this network

uses only pointwise features. This network is based on
the deep set architecture [24], i.e.,
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#
. (30)

As discussed before, this pointwise feature g(pi) should
be a linear function of energy when the IRC-safe con-
straint is assumed, and we have the following model of
the EFN.
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#
(31)

For the pixelated image analysis, the pT -weighted sum
over the jet constituents is replaced to the energy-
weighted sum over all pixels,
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pT,i�(Ri) ⇡
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i,j

P
(ij)
T

�ij , (32)

where P
ij

T
is the energy deposit of the (i, j)-th pixel, and

�ij is the corresponding angular weights.
When we replace f with an MLP, the angular weights

�ij can be absorbed into the MLP. The product between
the weights W` of the first dense layer and �ij can be
considered as an e↵ective weights W`ij of an MLP taking

P
(ij)
T

as inputs, i.e., the dense layer can be rewritten as
follows.
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(33)
Therefore, an MLP for the pixelated image analysis mod-
els the EFN for the pixelated jet image.

Note that using the standardized inputs results does
not change the conclusion since the standardization is
a linear transformations. Let us consider the following
transformation of the inputs and parameters of the dense
layer transforms,

P
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where µ
(ij) and �

(ij) are the mean and standard deviation

of the inputs.4 The first dense layer,
P

i,j
P

(ij)
T

W`ij +B`

is invariant under this transformation, we may safely use
the MLP for the standardized image to model the EFN.

4
For the pixels which do not have energy variations, we assign

�(ij)
= 1.
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Particle Transformer for Jet Tagging

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

Figure 2. Examples of the 10 types of jets in the JETCLASS dataset, viewed as particle clouds. Each particle is displayed as a marker,
with its coordinates corresponding to the flying direction of the particle, and its size proportional to the energy. The circles, triangles
(upward- or downward-directed), and pentagons represent the particle types, which are hadrons, leptons (electrons or muons), and photons,
respectively. The solid (hollow) markers stand for electrically charged (neutral) particles. The marker color reflects the displacement of
the particle trajectory from the interaction point of the proton-proton collision, where a larger displacement results in more blue.

radiated particles further produce more particles, leading
to a cascade of O(10) to O(100) particles at the end. The
radiation also smears the characteristics of the initial particle
and makes the identification very difficult.

Traditional approaches for jet tagging rely on hand-crafted
features motivated by the principles of quantum chromo-
dynamics (QCD), the theory governing the evolution of
particles inside a jet. The rise of deep learning has led to
a plethora of new approaches (Larkoski et al., 2020). The
prevailing ones represent a jet as a particle cloud, i.e., an
unordered and variable-sized set of the outgoing particles,
as illustrated in Figure 1. Based on the particle cloud rep-
resentation, ParticleNet (Qu & Gouskos, 2020) adapts the
Dynamic Graph CNN architecture (Wang et al., 2019) and
achieves substantial performance improvement on two rep-
resentative jet tagging benchmarks. Since then, several new
models (e.g., Mikuni & Canelli (2020; 2021); Shimmin
(2021)) have been proposed, but no significant performance
improvement has been reported so far. We deem the lack of
a sufficiently large public dataset an impeding factor.

In this work, we advocate for JETCLASS, a new large and
comprehensive dataset to advance deep learning for jet tag-
ging. The JETCLASS dataset (Qu et al., 2022) consists of
100 M jets for training, about two orders of magnitude larger
than existing public datasets. It also includes more types of
jets, several of which have not been explored for tagging yet
but are promising for future applications at the LHC.

Based on this dataset, we propose Particle Transformer
(ParT), a new Transformer-based architecture for jet tagging.
We demonstrate that Transformer architectures, together
with a large dataset, can reach powerful performance on

jet tagging. We introduce a small modification to the atten-
tion mechanism by incorporating a new term characterizing
pairwise particle interactions. The resulting ParT achieves
significantly higher performance than a plain Transformer
and surpasses the previous state-of-the-art, ParticleNet, by a
large margin. We also apply the pre-trained ParT models to
two widely adopted jet tagging benchmarks with fine-tuning
and observe a substantial gain on these tasks.

2. The JETCLASS Dataset
We provide an overview of the new JETCLASS dataset in
this section. The dataset includes a total of 10 types of jets.
Representative jets of each type are visualized as particle
clouds in Figure 2. The jets in this dataset generally fall into
two categories. The background jets are initiated by light
quarks or gluons (q/g) and are ubiquitously produced at the
LHC. The signal jets are those arising either from the top
quarks (t), or from the W , Z or Higgs (H) bosons. For top
quarks and Higgs bosons, we further consider their different
decay modes as separate types, because the resulting jets
have rather distinct characteristics and are often tagged indi-
vidually. The use of jet tagging typically involves selecting
one (or a few) specific type of signal jets with high confi-
dence, and rejecting background jets as much as possible,
since the background jets usually appear orders of magni-
tude more frequently than the targeted signal jets. Note
that for several types of signal jets in this dataset, such as
H ! 4q, H ! `⌫qq0, and t ! b`⌫, no dedicated methods
have been developed so far to tag them. However, as we
will demonstrate in Section 5.1, these types of jets can also
be cleanly tagged with deep learning approaches, opening
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5 Robustness study

We will now investigate the robustness of the di↵erent models we considered in our bench-

marks. To this end we will consider three axes: their resilience to non-perturbative e↵ects,

their resilience to detector e↵ects, and the complexity and computational cost of each

tagger.

5.1 Non-perturbative e↵ects

Beyond its raw performance, it is important for practical applications that a tagger be

relatively robust to model-dependent non-perturbative e↵ects. To carry out studies of

sensitivity to non-perturbative e↵ects, we compare performance between a data sample of

both 50k signal and background jets produced at parton level, and a sample obtained with

hadronisation and underlying event models turned on in the event generator. The same

model, trained on hadron-level data, is evaluated on both samples for the comparison. For

this study, we use the same 2 TeV W jet sample as was used in section 4.1 as well as the
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Figure 9. Background rejection as a function of W tagging e�ciency. Dotted lines indicate a W
tagger applied on parton-level data.

corresponding models shown in figure 5, which are now used to label jets from both parton

and hadron-level data.

Figure 8 shows the robustness of the tagger in conjunction with its performance. This

robustness is measured through the resilience ⇣NP [59], calculated using both the e�ciency

on the hadron-level sample, ✏, and that on the parton-level sample, ✏0

⇣NP =

 
�✏2W
h✏i2W

+
�✏2QCD

h✏i2QCD

!�1/2

, (5.1)

where �✏ = ✏ � ✏0 and h✏i = 1/2 (✏+ ✏0). The e�ciencies are obtained with a fixed cut

corresponding to a signal e�ciency ✏W = 70% on the hadron-level sample. The curves in

figure 8 are obtained by increasing a transverse momentum cut on the kt variable of the

Lund plane, progressively removing declustering nodes that fall below the cut. Each curve

starts on the upper left of figure 8, with a model trained without any cuts on the Lund

plane, and ends in the lower right part of the figure with a model trained with a transverse

momentum cut ln kt/GeV > 2 that has higher resilience but lower performance due to the

removal of parts of the Lund tree. We can observe that despite their good performance,

the ParticleNet and RecNN models have very little resilience to non-perturbative e↵ects,
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