Nucleon Decay and Pati-Salam

2nd AEI & 10th KIAS Workshop 14/11/2022

Tomasz P. Dutka

Based on TPD, J. Gargalionis: 2211.02054

Pati-Salam Basics

Pati-Salam

A theory where quarks and leptons are unified in a left-right symmetric fashion (need to introduce RHN).

$$SU(4) \otimes SU(2)_L \otimes SU(2)_R$$
$$f_L = \begin{pmatrix} Q \\ \ell \end{pmatrix}_L, \quad f_R = \begin{pmatrix} Q \\ \ell \end{pmatrix}_R \times 3$$
$$f_L \sim (\mathbf{4}, \mathbf{2}, \mathbf{1}) \qquad f_R \sim (\mathbf{4}, \mathbf{1}, \mathbf{2})$$

Pati-Salam

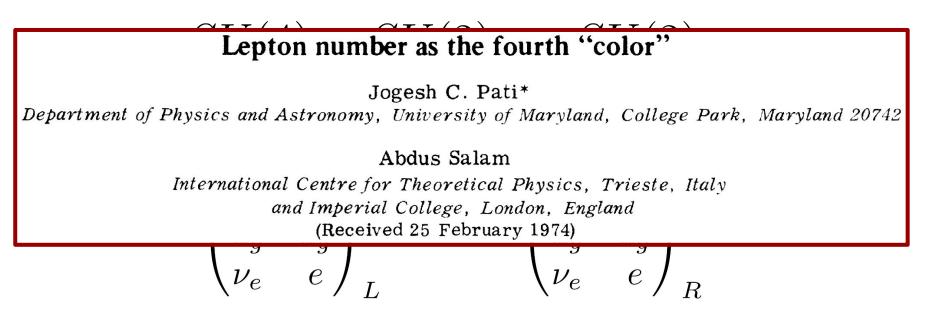
A theory where quarks and leptons are unified in a left-right symmetric fashion (need to introduce RHN).

$$SU(4) \otimes SU(2)_L \otimes SU(2)_R$$

$$f_L = \begin{pmatrix} u_r & d_r \\ u_b & d_b \\ u_g & d_g \\ \nu_e & e \end{pmatrix}_L, \quad f_R = \begin{pmatrix} u_r & d_r \\ u_b & d_b \\ u_g & d_g \\ \nu_e & e \end{pmatrix}_R \times 3$$

Pati-Salam

A theory where quarks and leptons are unified in a left-right symmetric fashion (need to introduce RHN).



Breaking Pati-Salam

Need a scalar to spontaneously break Pati-Salam...

We require:

$$\langle S \rangle$$

 $SU(4) \otimes SU(2)_R \to SU(3)_c \otimes U(1)_Y$

such that

$$Y = T_{3R} + \frac{1}{2}T_{15}$$

is unbroken.

Breaking Pati-Salam

Need a scalar to spontaneously break Pati-Salam...

We require:
$$\langle S \rangle$$

 $SU(4) \otimes SU(2)_R \rightarrow SU(3)_c \otimes U(1)_Y$

such that

$$Y = T_{3R} + \frac{1}{2}T_{15}$$

is unbroken.

$$S \in \{(\mathbf{4},\mathbf{1},\mathbf{2}), (\mathbf{10},\mathbf{1},\mathbf{3}), (\mathbf{36},\mathbf{1},\mathbf{2}), (\mathbf{20}'',\mathbf{1},\mathbf{4}), (\mathbf{35},\mathbf{1},\mathbf{5}), \dots\}$$

Breaking Pati-Salam

Need a scalar to spontaneously break Pati-Salam...

We require:
$$\langle S \rangle$$

 $SU(4) \otimes SU(2)_R \to SU(3)_c \otimes U(1)_Y$

such that

$$Y = T_{3R} + \frac{1}{2}T_{15}$$

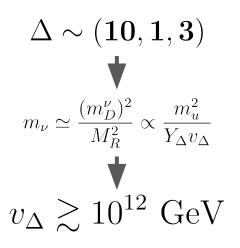
is unbroken.

$$S \in \{(4, 1, 2), (10, 1, 3), (36, 1, 2), (20'', 1, 4), (35, 1, 5), \dots\}$$

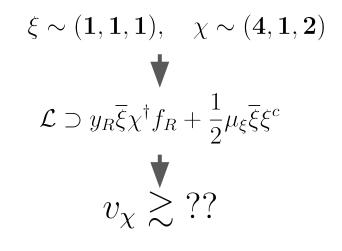
Difficult to Yukawa couple easily...which we want

Light Neutrinos

High-scale Pati-Salam



Low-scale Pati-Salam

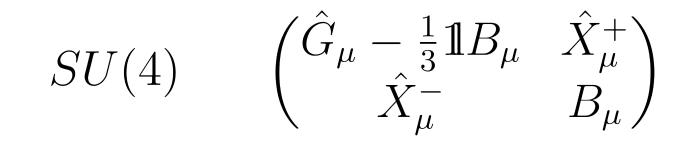


Type-I Seesaw

Inverse Seesaw

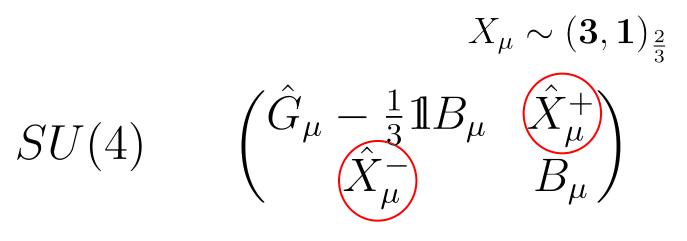
Pati-Salam breaking can naturally solve the neutrino mass problem.

Gauge Bosons of PS



 $SU(2)_{L/R} \qquad \begin{pmatrix} W_3 & W^+ \\ W^- & -W_3 \end{pmatrix}_{L/R}$

Gauge Bosons of PS



 $SU(2)_{L/R}$

 $\begin{pmatrix} W_3 & W^+ \\ W^- & -W_3 \end{pmatrix}_{L/R}$

Gauge Boson Leptoquark

$$SU(4) \begin{pmatrix} u_r & d_r \\ u_b & d_b \\ u_g & d_g \\ \nu_e & e \end{pmatrix}$$

$$\mathcal{L}_X = \frac{g_4}{\sqrt{2}} \left(\overline{d'_i} \left(K_{L/R}^{de} \right)_{ij} / P_{L/R} e'_j + \overline{u'_i} \left(K_{L/R}^{u\nu} \right)_{ij} / P_{L/R} \nu'_j \right) + \text{H.c.}$$

No diquark couplings, for the (broken) SU(4) bosons -> **no B-violating processes** In fact, like in the SM, **B is an accidental symmetry** of the theory.

LQ Quantum Numbers	Minimal Pati-Salam Embedding
$\mathrm{S}_3 \sim (\overline{3}, 3)_{1/3}$	(10,3,1)
$\mathrm{R}_2 \sim (3,2)_{7/6}$	(15,2,2)
$\widetilde{R}_2 \sim ({f 3},{f 2})_{1/6}$	(15,2,2)
$\widetilde{S}_1 \sim (\overline{f 3}, {f 1})_{4/3}$	(10,1,3)
$\mathrm{S}_1 \sim (\overline{3}, 1)_{1/3}$	(4,1,2)/(10,1,3)
$\overline{S}_1 \sim (\overline{3}, 1)_{-2/3}$	(4,1,2)/(10,1,3)
${ m U}_3^\mu \sim ({f 3},{f 3})_{2/3}$	_
$\mathop{\mathrm{V}}_2^\mu\sim(\overline{3},2)_{5/6}$	-
$\widetilde{V}_{2}^{\mu} \sim ({f \overline{3}},{f 2})_{-1/6} \ \widetilde{U}_{1}^{\mu} \sim ({f 3},{f 1})_{5/3}$	-
	-
${ m U}_1^\mu \sim ({f 3},{f 1})_{2/3}$	\widehat{X}_{μ}
$\overline{U}_1^\mu \sim ({f 3},{f 1})_{-1/3}$	-

LQ Quantum Numbers	Minimal Pati-Salam Embedding
$\mathrm{S}_3 \sim (\overline{3}, 3)_{1/3}$	(10,3,1)
$\mathrm{R}_2 \sim (3,2)_{7/6}$	(15,2,2)
$\widetilde{R}_2 \sim ({f 3},{f 2})_{1/6}$	(15,2,2)
$\widetilde{S}_1 \sim (\overline{f 3}, {f 1})_{4/3}$	(10,1,3)
$\mathrm{S}_1 \sim (\overline{3}, 1)_{1/3}$	(4,1,2)/(10,1,3)
$\overline{S}_1 \sim (\overline{3}, 1)_{-2/3}$	(4,1,2)/(10,1,3)
${ m U}_3^\mu \sim ({f 3},{f 3})_{2/3}$	_
$\mathrm{V}_2^\mu \sim (\overline{f 3},{f 2})_{5/6}$	-
$\widetilde{V}^{\mu}_{2}\sim(\overline{f 3},{f 2})_{-1/6}$	-
$\widetilde{\widetilde{U}}_1^\mu \sim ({f 3},{f 1})_{5/3}$	-
${ m U}_1^\mu \sim ({f 3},{f 1})_{2/3}$	\widehat{X}_{μ}
$\overline{U}_1^\mu \sim ({f 3},{f 1})_{-1/3}$	-

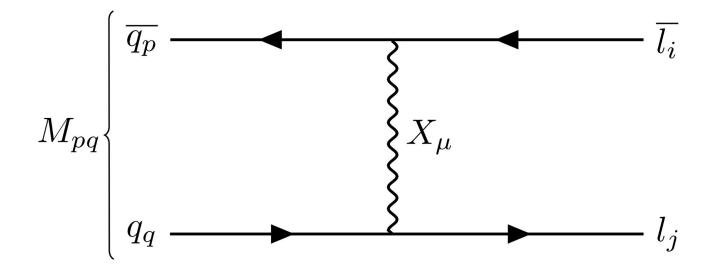
PS automatically generates scalar and vector LQs. Diquark couplings not generated -> can be light.

Experimental constraints on PS breaking (How low can we go?)

Prediction of PS

Gauge bosons don't mediate proton decay (accidental B).

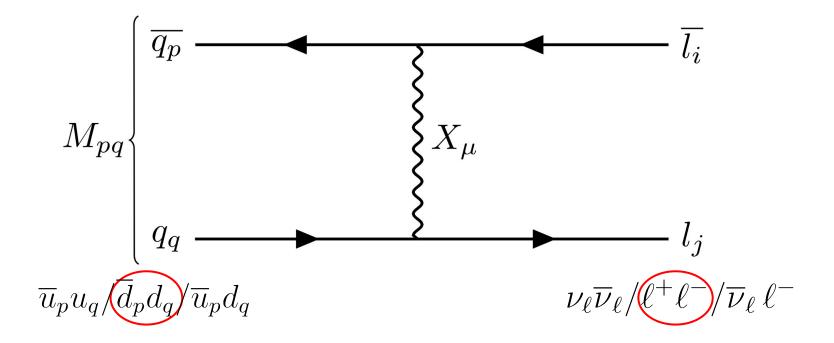
They do mediate rare meson decays.



Prediction of PS

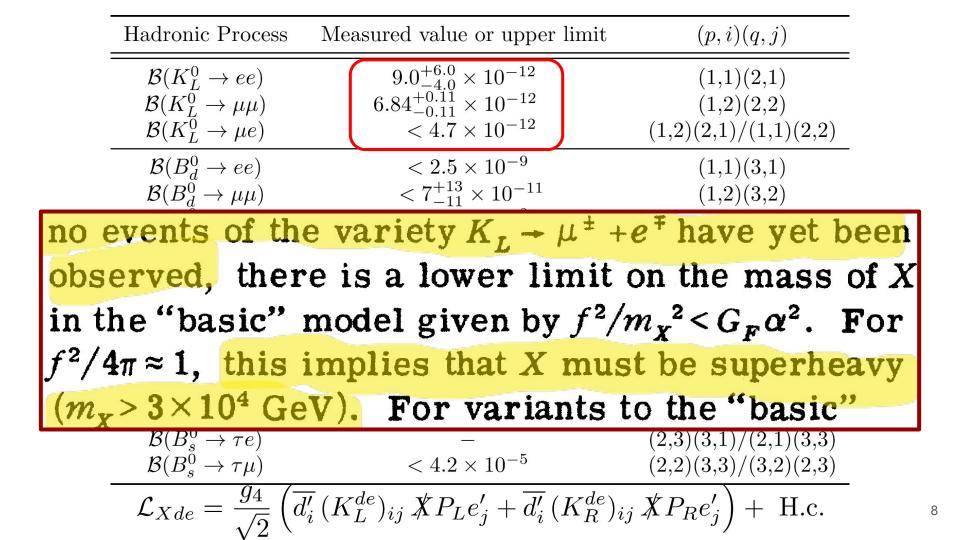
Gauge bosons don't mediate proton decay (accidental B).

They do mediate rare meson decays.



Hadronic Process	Measured value or upper limit	(p,i)(q,j)
$\mathcal{B}(K^0_L \to ee)$	$9.0^{+6.0}_{-4.0} \times 10^{-12}$	(1,1)(2,1)
$\mathcal{B}(K_L^{0} \to \mu \mu)$	$6.84^{+0.11}_{-0.11} \times 10^{-12}$	(1,2)(2,2)
$\mathcal{B}(K_L^{\overline{0}} \to \mu e)$	$< 4.7 \times 10^{-12}$	(1,2)(2,1)/(1,1)(2,2)
$\mathcal{B}(B^0_d \to ee)$	$<2.5\times10^{-9}$	(1,1)(3,1)
${\cal B}(B^0_d o \mu \mu)$	$< 7^{+13}_{-11} \times 10^{-11}$	$(1,\!2)(3,\!2)$
${\cal B}(B^0_d o au au)$	$< 2.1 \times 10^{-3}$	$(1,\!3)(3,\!3)$
$\mathcal{B}(B^0_d o \mu e)$	$< 1.0 \times 10^{-9}$	(1,2)(3,1)/(1,1)(3,2)
$\mathcal{B}(B^{\bar{0}}_d \to \tau e)$	$< 1.6 \times 10^{-5}$	(1,3)(3,1)/(1,1)(3,3)
$\mathcal{B}(B^{\bar{0}}_d o au \mu)$	$< 1.4 \times 10^{-5}$	(1,3)(3,2)/(1,2)(3,3)
$\mathcal{B}(B^0_s \to ee)$	$< 9.4 \times 10^{-9}$	(2,1)(3,1)
${\cal B}(B^0_s o \mu\mu)$	$3.01^{+0.35}_{-0.35} imes 10^{-9}$	$(2,\!2)(3,\!2)$
$\mathcal{B}(B^0_s o au au)$	$< 6.8 imes 10^{-3}$	(2,3)(3,3)
$\mathcal{B}(B^0_s \to \mu e)$	$< 5.4 \times 10^{-9}$	(2,2)(3,1)/(2,1)(3,2)
$\mathcal{B}(B^0_s o au e)$	—	(2,3)(3,1)/(2,1)(3,3)
$\mathcal{B}(B^0_s o au\mu)$	$< 4.2 \times 10^{-5}$	(2,2)(3,3)/(3,2)(2,3)
$\mathcal{L}_{Xde} = \frac{g_4}{\sqrt{2}} \left(\overline{a} \right)$	$\overline{\mathcal{U}}_{i}(K_{L}^{de})_{ij} \not X P_{L} e_{j}' + \overline{d'_{i}} (K_{R}^{de})_{ij}$	$_{j} X P_{R} e'_{j} + \text{H.c.}$

Hadronic Process	Measured value or upper limit	(p,i)(q,j)
$ \begin{array}{c} \mathcal{B}(K^0_L \to ee) \\ \mathcal{B}(K^0_L \to \mu\mu) \\ \mathcal{B}(K^0_L \to \mu e) \end{array} \end{array} $	$9.0^{+6.0}_{-4.0} \times 10^{-12} \\ 6.84^{+0.11}_{-0.11} \times 10^{-12} \\ < 4.7 \times 10^{-12}$	(1,1)(2,1) (1,2)(2,2) (1,2)(2,1)/(1,1)(2,2)
$ \begin{split} \mathcal{B}(B^0_d \to ee) \\ \mathcal{B}(B^0_d \to \mu\mu) \\ \mathcal{B}(B^0_d \to \tau\tau) \\ \mathcal{B}(B^0_d \to \mu e) \\ \mathcal{B}(B^0_d \to \tau e) \\ \mathcal{B}(B^0_d \to \tau\mu) \end{split} $	$ < 2.5 \times 10^{-9} < 7^{+13}_{-11} \times 10^{-11} < 2.1 \times 10^{-3} < 1.0 \times 10^{-9} < 1.6 \times 10^{-5} < 1.4 \times 10^{-5} $	(1,1)(3,1) (1,2)(3,2) (1,3)(3,3) (1,2)(3,1)/(1,1)(3,2) (1,3)(3,1)/(1,1)(3,3) (1,3)(3,2)/(1,2)(3,3)
$\begin{array}{c} \mathcal{B}(B^0_s \to ee) \\ \mathcal{B}(B^0_s \to \mu\mu) \\ \mathcal{B}(B^0_s \to \tau\tau) \\ \mathcal{B}(B^0_s \to \mu e) \\ \mathcal{B}(B^0_s \to \tau e) \\ \mathcal{B}(B^0_s \to \tau \mu) \end{array}$	$ \begin{array}{c} < 9.4 \times 10^{-9} \\ 3.01 \substack{+0.35 \\ -0.35} \times 10^{-9} \\ < 6.8 \times 10^{-3} \\ < 5.4 \times 10^{-9} \\ - \\ < 4.2 \times 10^{-5} \end{array} $	$\begin{array}{c}(2,1)(3,1)\\(2,2)(3,2)\\(2,3)(3,3)\\(2,2)(3,1)/(2,1)(3,2)\\(2,3)(3,1)/(2,1)(3,3)\\(2,2)(3,3)/(3,2)(2,3)\end{array}$
$\mathcal{L}_{Xde} = \frac{g_4}{\sqrt{2}} \left(\overline{a} \right)$	$\overline{V_i} (K_L^{de})_{ij} \not X P_L e'_j + \overline{d'_i} (K_R^{de})_{ij}$	$_{j} X P_{R} e'_{j} + \text{H.c.}$



Kaon Decays

For two generations, Kaon decays are inevitable from unitarity:

$$\mathcal{L}_{Xde} = \frac{g_4}{\sqrt{2}} \left(\overline{d'_i} (K_L^{de})_{ij} \not X P_L e'_j + \overline{d'_i} (K_R^{de})_{ij} \not X P_R e'_j \right) + \text{ H.c.}$$
$$K_{L/R}^{de} = \begin{pmatrix} \cos_x & \sin_x \\ -\sin_x & \cos_x \end{pmatrix}$$

For three generations, flavour can conspire to suppress these decays e.g.

$$K_{L/R}^{de} = \begin{pmatrix} 0 & 0 & 1\\ \cos_x & \sin_x & 0\\ -\sin_x & \cos_x & 0 \end{pmatrix}$$

Dominant limits arise from B-meson decays in this case -> less severe constraints.

	$K_L^{de} = K_R^{de} = \mathbb{1}_{3 \times 3}$	scenario 1	SCENARIO 2	scenario 3	scenario 4
$\mathcal{B}(K^0_L \to ee)$	0	$13 \kappa_1^{K^{ee}}$ TeV	0	$1817 \kappa_3^{K^{ee}} { m TeV}$	0
$\mathcal{B}(K_L^{\vec{0}} o \mu \mu)$	0	$177 \kappa_1^{\overline{K^{\mu\mu}}} \mathrm{TeV}$	0	0	$1900 \kappa_4^{K^{\mu\mu}} { m TeV}$
$\mathcal{B}(K_L^0 o \mu e)$	2467 TeV	$230 \kappa_1^{K^{\mu e}} { m TeV}$	0	0	0
$\mathcal{B}(B^0_d \to ee)$	0	$39.7 \kappa_1^{B^{ee}} {\rm TeV}$	0	0	0
${\cal B}(B^0_d o \mu \mu)$	0	$151 \kappa_1^{B^{\mu\mu}} \text{ TeV}$	0	0	0
$\mathcal{B}(B^0_d o au au)$	0	0	0	0	0
$\mathcal{B}(B^0_d o \mu e)$	0	$140 \kappa_1^{B^{\mu e}} {\rm TeV}$	0	$140 \kappa_3^{B^{\mu e}} { m TeV}$	$140 \kappa_4^{B^{\mu e}} { m TeV}$
$\mathcal{B}(B^{\widetilde{0}}_d \to \tau e)$	$12.1 { m ~TeV}$	$10.6 \kappa_1^{B^{\tau e}} \text{ TeV}$	$10.6 \kappa_2^{B^{ au e}} ext{ TeV}$	0	$10.6 \kappa_4^{B^{ au e}} \mathrm{TeV}$
$\mathcal{B}(B_d^{\tilde{0}} \to \tau \mu)$	0	$11.3 \kappa_1^{\tilde{B}^{\tau\mu}} \mathrm{TeV}$	$11.3 \kappa_2^{\bar{B}^{ au\mu}} \mathrm{TeV}$	$11.3 \kappa_3^{B^{ au\mu}} \mathrm{TeV}$	0
$\mathcal{B}(B^0_s \to ee)$	0	$29.5 \kappa_1^{B_s^{ee}} {\rm TeV}$	$29.5 \kappa_2^{B_s^{ee}} {\rm TeV}$	0	0
$\mathcal{B}(B^0_s o \mu \mu)$	0	$90.0 \kappa_1^{\tilde{B}_s^{\mu\mu}} \mathrm{TeV}$	$90.0 \kappa_2^{B_s^{\mu\mu}} { m TeV}$	0	
$\mathcal{B}(B_s^0 \to \tau \tau)$	0	0	0	0	0
$\mathcal{B}(B^0_s \to \mu e)$	0	$92.3 \kappa_1^{B_s^{\mu e}} { m TeV}$	$92.3 \kappa_2^{B_s^{\mu e}} \mathrm{TeV}$	$92.3 \kappa_3^{B_s^{\mu e}} {\rm TeV}$	$92.3 \kappa_4^{B_s^{\mu e}} { m TeV}$
$\mathcal{B}(B^0_s o au e)$	0	—	0	0	_
$\mathcal{B}(B^0_s \to \tau \mu)$		_	0	_	0
M. Dolan, R. Volkas, ⁻	TPD: 2012.05976	$K^{de}_{L/R}$ \sim	$\smile \qquad \begin{pmatrix} 0 & 0 & 1 \\ \cdot & \cdot & 0 \\ \cdot & \cdot & 0 \end{pmatrix}$	$\begin{pmatrix} \cdot & 0 & \cdot \\ \cdot & 0 & \cdot \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & 0 & 0 \end{pmatrix} \qquad 10$

	$K_L^{de} = K_R^{de} = \mathbb{1}_{3 \times 3}$	scenario 1	SCENARIO 2	scenario 3	SCENARIO 4
$\mathcal{B}(K^0_L \to ee)$	0	$13 \kappa_1^{K^{ee}} { m TeV}$	0	$1817 \kappa_3^{K^{ee}} { m TeV}$	0
${\cal B}(K_L^{ar 0} o \mu \mu)$	0	$177 \kappa_1^{K^{\mu\mu}} { m TeV}$	0	0	$1900 \kappa_4^{K^{\mu\mu}} { m TeV}$
$\mathcal{B}(K_L^0 o \mu e)$	$2467 {\rm ~TeV}$	$230 \kappa_1^{K^{\mu e}} {\rm TeV}$	0	0	0
$\mathcal{B}(B^0_d \to ee)$	0	$39.7 \kappa_1^{B^{ee}} {\rm TeV}$	0	0	0
${\cal B}(B^0_d o \mu \mu)$	0	$151 \kappa_1^{B^{\mu\mu}} \mathrm{TeV}$	0	0	0
${\cal B}(B^0_d o au au)$	0	0	0	0	0
$\mathcal{B}(B^0_d o \mu e)$	0	$140 \kappa_1^{B^{\mu e}} \mathrm{TeV}$	0	$140 \kappa_3^{B^{\mu e}} {\rm TeV}$	$140 \kappa_4^{B^{\mu e}} { m TeV}$
$\mathcal{B}(B^0_d o au e)$	$12.1 { m ~TeV}$	$10.6 \kappa_1^{B^{ au e}} { m TeV}$	$10.6 \kappa_2^{B^{\tau e}} \text{ TeV}$	0	$10.6 \kappa_4^{B^{ au e}} { m TeV}$
$\mathcal{B}(B_d^{\widetilde{0}} o au \mu)$	0	$11.3 \kappa_1^{\bar{B}^{\tau\mu}} \text{ TeV}$	$11.3 \kappa_2^{\bar{B}^{ au\mu}} \mathrm{TeV}$	$11.3 \kappa_3^{B^{ au\mu}} \mathrm{TeV}$	0
$\mathcal{B}(B^0_s \to ee)$	0	$29.5 \kappa_1^{B_s^{ee}} {\rm TeV}$	$29.5 \kappa_2^{B_s^{ee}} {\rm TeV}$	0	0
$\mathcal{B}(B^0_s o \mu \mu)$	0	$90.0 \kappa_1^{B_s^{\mu\mu}} { m TeV}$	$90.0 \kappa_2^{\bar{B}_s^{\mu\mu}} { m TeV}$	0	
$\mathcal{B}(B_s^0 \to \tau \tau)$	0	0	0	0	0
$\mathcal{B}(B^0_s \to \mu e)$	0	$92.3 \kappa_1^{B_s^{\mu e}} { m TeV}$	$92.3 \kappa_2^{B_s^{\mu e}}$ TeV	$92.3 \kappa_3^{B_s^{\mu e}} { m TeV}$	$92.3 \kappa_4^{B_s^{\mu e}} { m TeV}$
$\mathcal{B}(B^0_s o au e)$	0	_	0	0	_
$\mathcal{B}(B^0_s \to \tau \mu)$	-	—	0	_	0
M. Dolan, R. Volkas, ⁻	FPD: 2012.05976	$K^{de}_{L/R} \sim$	$\boldsymbol{\smile} \begin{pmatrix} 0 & 0 & 1 \\ \cdot & \cdot & 0 \\ \cdot & \cdot & 0 \end{pmatrix}$	$\begin{pmatrix} \cdot & 0 & \cdot \\ \cdot & 0 & \cdot \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & 0 & 0 \end{pmatrix} \qquad 10$

PS Breaking Limits

Depending on the flavour structure of 'de' mixing, gauge LQ mass limits vary between:

$$m_X \gtrsim \mathcal{O}(80 - 2500) \text{ TeV}$$

M. Dolan, R. Volkas, TPD: 2012.05976

Leading to direct constraints on the PS breaking scale:

$$m_X \propto g_4 \max(v_\chi, v_\Delta, \dots)$$

Not *that* low, if lower masses are desired modifications need to minimal model can be made to further suppress these meson decay limits.

J. Pati, A. Salam: 1974	L. Luzio, A. Greljo, M. Nardecchia: 1708.08450
R. Foot: hep-ph/9708205	C. Cornella, J. Fuentes-Martin, G. Isidori: 1903.11517
G. Filewood, R. Foot: hep-ph/9903374	J. Fuentes-Martin, P. Strangl: 2004.11376

PS Breaking Limits

Depending on the flavour structure of 'de' mixing, gauge LQ mass limits vary between:

$$m_X \gtrsim \mathcal{O}(80 - 2500) \text{ TeV}$$

M. Dolan, R. Volkas, TPD: 2012.05976

Leading to direct constraints on the PS breaking scale:

$$m_X \propto g_4 \max(v_\chi, v_\Delta, \dots)$$

Not *that* low, if lower masses are desired modifications need to minimal model can be made to further suppress these meson decay limits.

In this talk I only focus on the minimal 'low-scale' model: $\ \xi \sim ({f 1},{f 1},{f 1}), \quad \chi \sim ({f 4},{f 1},{f 2})$

Pati-Salam and UV Physics (*Can* we go lower?)

B-conservation in PS

Baryon number is an **accidental** symmetry in Pati-Salam (unlike B-L)

Therefore there are **higher-dimensional** operators which will violate B.

B-conservation in PS

Baryon number is an **accidental** symmetry in Pati-Salam (unlike B-L)

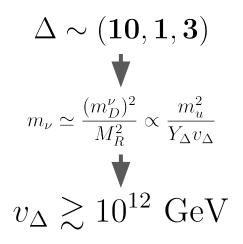
Therefore there are **higher-dimensional** operators which will violate B.

Particularly important if such operators exist at dimension-5.

Even a Planck-scale suppression of such an operator can generate rapid proton decay for light (TeV) leptoquarks.

J. Arnold, M. Wise: 1304.6119 N. Assad, B. Fornal, B. Grinstein: 1708.06350 C. Murgui, M. Wise: 2105.14029

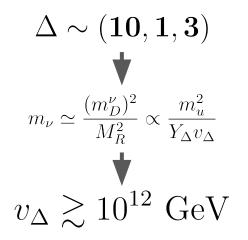
High-scale Pati-Salam



Low-scale Pati-Salam

$$\begin{split} \xi &\sim (\mathbf{1}, \mathbf{1}, \mathbf{1}), \quad \chi \sim (\mathbf{4}, \mathbf{1}, \mathbf{2}) \\ & \bigstar \\ \mathcal{L} \supset y_R \overline{\xi} \chi^{\dagger} f_R + \frac{1}{2} \mu_{\xi} \overline{\xi} \xi^c \\ & \bigstar \\ & \mathbf{v}_{\chi} \gtrsim 80 \times 10^3 \, \mathrm{GeV} \, ?? \end{split}$$

High-scale Pati-Salam



With the bare-minimum particle content (for a realistic theory) there are **no dimension 5** operators whatsoever.

But the LQs here are expected to have large masses due to the large PS breaking.

Dimension 5

Field content	J	Number of operators
$\Phi^\dagger \Phi^\dagger \xi \xi$	0	$n_{\xi}(n_{\xi}+1)/2$
$\Phi^\dagger \chi^\dagger f_L \xi$	0	$n_{\xi}n_{f}$
$\Phi^\dagger\Phi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$
$\chi^\dagger \chi^\dagger f_L f_L$	0	$n_f(n_f + 1)/2$
$\chi^\dagger\chi^\dagger f_R f_R$	0	$n_f(n_f+1)$
$\Phi\chi^\dagger f_L \xi$	0	$n_{\xi}n_{f}$
$\chi^\dagger\chi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$
$\chi\chi f_L f_L$	4	$n_f(n_f + 1)/2$
$\chi\chi f_R f_R$	4	$n_f(n_f + 1)/2$
$\Phi\Phi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$

Low-scale Pati-Salam

$$\begin{split} \boldsymbol{\xi} &\sim (\mathbf{1}, \mathbf{1}, \mathbf{1}), \quad \boldsymbol{\chi} \sim (\mathbf{4}, \mathbf{1}, \mathbf{2}) \\ & \bigstar \\ \mathcal{L} \supset y_R \overline{\boldsymbol{\xi}} \boldsymbol{\chi}^{\dagger} f_R + \frac{1}{2} \mu_{\boldsymbol{\xi}} \overline{\boldsymbol{\xi}} \boldsymbol{\xi}^c \\ & \bigstar \\ & \boldsymbol{\psi} \\ v_{\boldsymbol{\chi}} \gtrsim 80 \times 10^3 \, \mathrm{GeV} \, ?? \end{split}$$

Dimension 5

Field content	J	Number of operators
$\Phi^\dagger \Phi^\dagger \xi \xi$	0	$n_{\xi}(n_{\xi}+1)/2$
$\Phi^\dagger \chi^\dagger f_L \xi$	0	$n_{\xi}n_{f}$
$\Phi^\dagger\Phi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$
$\chi^\dagger \chi^\dagger f_L f_L$	0	$n_f(n_f + 1)/2$
$\chi^\dagger\chi^\dagger f_R f_R$	0	$n_f(n_f+1)$
$\Phi\chi^\dagger f_L \xi$	0	$n_{\xi}n_{f}$
$\chi^\dagger\chi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$
$\chi\chi f_L f_L$	4	$n_f(n_f+1)/2$
$\chi\chi f_R f_R$	4	$n_f(n_f+1)/2$
$\Phi\Phi\xi\xi$	0	$n_{\xi}(n_{\xi}+1)/2$

Low-scale Pati-Salam $\xi \sim (\mathbf{1}, \mathbf{1}, \mathbf{1}), \quad \chi \sim (\mathbf{4}, \mathbf{1}, \mathbf{2})$ \mathbf{v} $\mathcal{L} \supset y_R \overline{\xi} \chi^{\dagger} f_R + \frac{1}{2} \mu_{\xi} \overline{\xi} \xi^c$ \mathbf{v} $v_{\chi} \gtrsim 80 \times 10^3 \,\mathrm{GeV}\,??$

B violation already occurs at dim 5! Operators are Weinberg-like. Contain the **PS-breaking** scalar.

Implications

$$\mathcal{L} \supset \frac{1}{4\Lambda} \sum_{X} (C_X)^{pq} (\mathcal{O}_X)_{pq} + \text{H.c.}$$

Let's consider these B-violating dim-5 operators in more detail

$$(\mathcal{O}_X)_{pq} \equiv (\overline{f_X^c})_p^{\alpha i} (f_X)_q^{\beta j} \chi^{\gamma k} \chi^{\delta l} \epsilon_{\alpha\beta\gamma\delta} \epsilon_{ij} \epsilon_{kl}$$

Implications

$$\mathcal{L} \supset \frac{1}{4\Lambda} \sum_{X} (C_X)^{pq} (\mathcal{O}_X)_{pq} + \text{H.c.}$$

Let's consider these B-violating dim-5 operators in more detail

$$(\mathcal{O}_X)_{pq} \equiv (\overline{f_X^c})_p^{\alpha i} (f_X)_q^{\beta j} \chi^{\gamma k} \chi^{\delta l} \epsilon_{\alpha\beta\gamma\delta} \epsilon_{ij} \epsilon_{kl}$$
After PS breaking:

$$(\mathcal{O}_X)_{pq} \supset \frac{4v_R}{\sqrt{2}} (\overline{d_X^c})_p^a (u_X)_q^b (\chi^d)^c \epsilon_{abc}$$

Di-quark couplings are now generated for the scalar LQ -> proton decay!

Nucleon decay

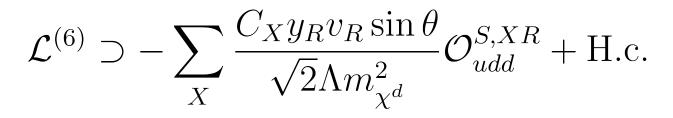
$$\mathcal{L} \supset \overline{f_X^c} f_X \chi \chi + \overline{\xi} \chi^{\dagger} f_R + \text{H.c}$$

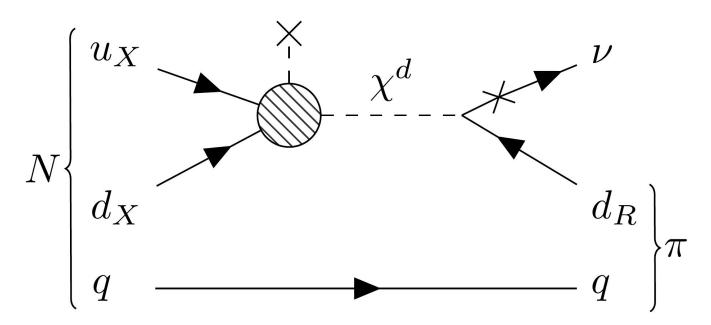
In combination they generate nucleon decay at dim-6:

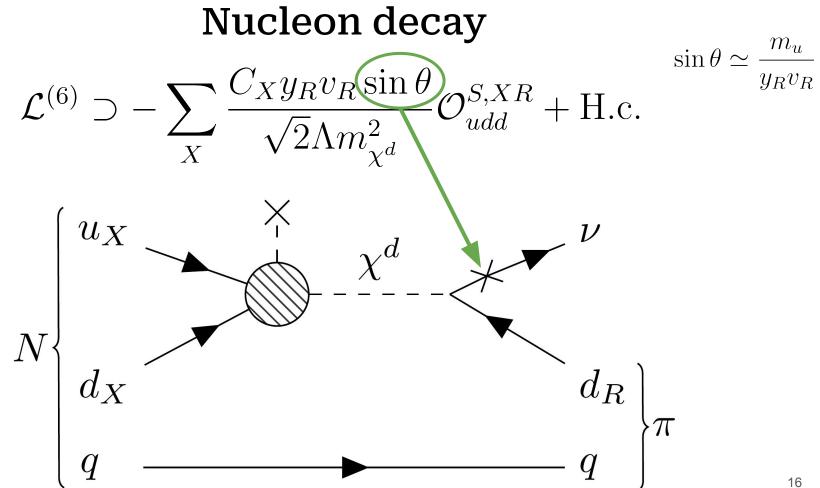
$$\mathcal{L}^{(6)} \supset -\sum_{X} \frac{C_X y_R v_R \sin \theta}{\sqrt{2} \Lambda m_{\chi^d}^2} \mathcal{O}_{udd}^{S,XR} + \text{H.c.}$$

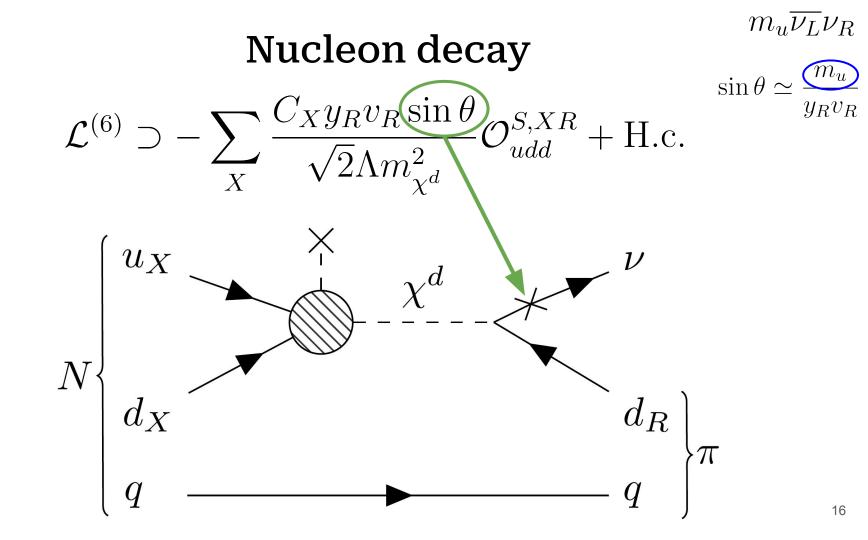
Nucleon decay

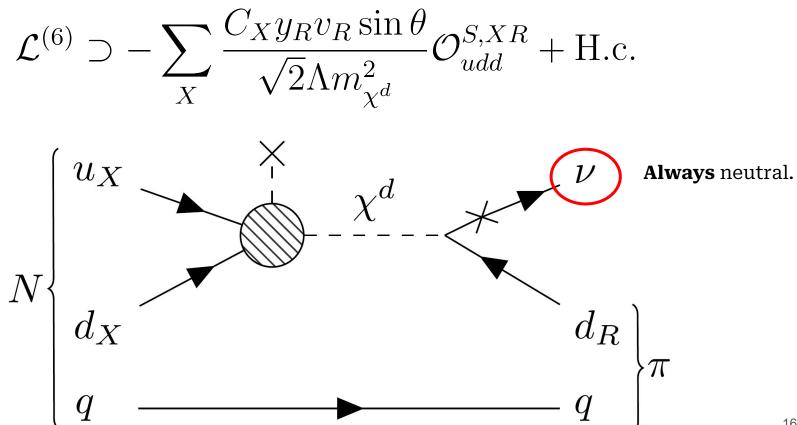
$$\mathcal{L}^{(6)} \supset -\sum_{X} \frac{C_X y_R v_R \sin \theta}{\sqrt{2} \Lambda m_{\chi^d}^2} \mathcal{O}_{udd}^{S,XR} + \text{H.c.}$$











Therefore predict the nucleon decays:

$$\Gamma(n \to M^0 \nu)$$

$$\Gamma(p \to M^+ \nu)$$

$$m_{\chi^d} \gtrsim 8 \times 10^6 \,\mathrm{GeV} \sqrt{|C_L|} \frac{10^{19} \mathrm{GeV}}{\Lambda} \frac{m_u}{171 \mathrm{GeV}}$$

Therefore predict the nucleon decays:

$$\Gamma(n \to M^0 \nu)$$

$$\Gamma(p \to M^+ \nu)$$

$$m_{\chi^d} \gtrsim 8 \times 10^6 \,\mathrm{GeV} \sqrt{|C_L|} \frac{10^{19} \mathrm{GeV}}{\Lambda} \frac{m_u}{171 \mathrm{GeV}}$$

Constrained by the PS breaking scale.

Therefore predict the nucleon decays:

$$\begin{split} \Gamma(n \to M^0 \nu) \\ \Gamma(p \to M^+ \nu) \\ & \Lambda_{\text{Planck}} & \Lambda_{\text{GUT}} \\ v_R \gtrsim \begin{pmatrix} 10^4 \,\text{GeV} \\ 3 \times 10^5 \,\text{GeV} \\ 5 \times 10^6 \,\text{GeV} \end{pmatrix} & v_R \gtrsim \begin{pmatrix} 4 \times 10^5 \,\text{GeV} \\ 9 \times 10^6 \,\text{GeV} \\ 10^8 \,\text{GeV} \end{pmatrix} & \text{for} & m_c \\ m_t \end{split}$$

The full three-generational mixing case:

$$\mathcal{L}^{(6)} \supset -\sum \frac{(C_X)_{pq} v_R}{\sqrt{2}\Lambda m_{\chi^d}^2} \Omega_{rs} (\mathcal{O}_{udd}^{S,XR})_{pqrs} + \text{H.c.}$$

$$\mathbf{\Omega} \equiv \mathbf{K}_{L}^{u\nu\dagger} \mathbf{M}_{u} [v_{R} \mathbf{Y}_{R}^{\mathsf{T}}]^{-1} \mathbf{Y}_{R} \mathbf{V}_{\mathrm{CKM}}^{R}$$

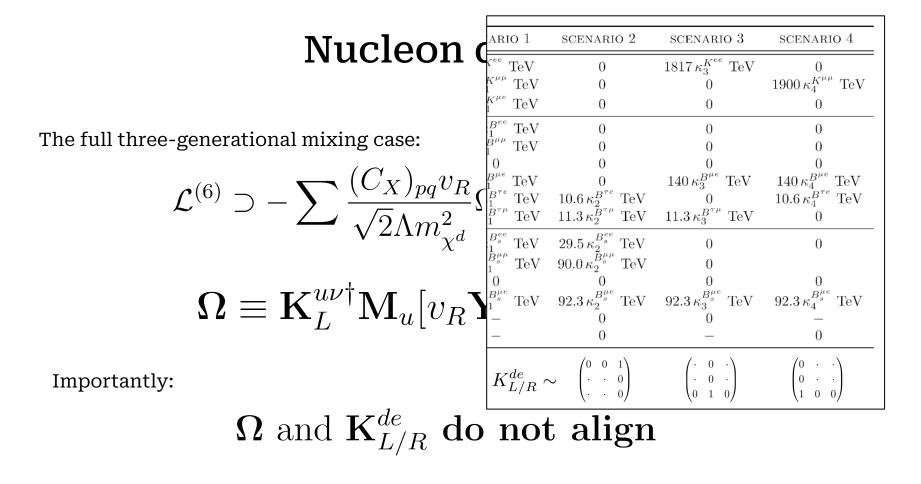
The full three-generational mixing case:

$$\mathcal{L}^{(6)} \supset -\sum \frac{(C_X)_{pq} v_R}{\sqrt{2}\Lambda m_{\chi^d}^2} \Omega_{rs} (\mathcal{O}_{udd}^{S,XR})_{pqrs} + \text{H.c.}$$

$$\mathbf{\Omega} \equiv \mathbf{K}_{L}^{u\nu\dagger} \mathbf{M}_{u} [v_{R} \mathbf{Y}_{R}^{\mathsf{T}}]^{-1} \mathbf{Y}_{R} \mathbf{V}_{\mathrm{CKM}}^{R}$$

Importantly:

$$\Omega$$
 and $\mathbf{K}_{L/R}^{de}$ do not align



The full three-generational mixing case:

$$\mathcal{L}^{(6)} \supset -\sum \frac{(C_X)_{pq} v_R}{\sqrt{2}\Lambda m_{\chi^d}^2} \Omega_{rs}(\mathcal{O}_{udd}^{S,XR})_{pqrs} + \text{H.c.}$$

$$\mathbf{\Omega} \equiv \mathbf{K}_{L}^{u\nu\dagger} \mathbf{M}_{u} [v_{R} \mathbf{Y}_{R}^{\mathsf{T}}]^{-1} \mathbf{Y}_{R} \mathbf{V}_{\mathrm{CKM}}^{R}$$

Importantly:

$$\Omega$$
 and $\mathbf{K}^{de}_{L/R}$ do not align

Consequence: You cannot suppress **both** the meson and nucleon decays at the same time.

Quick Example

Assume that

$$K^{de}_{L/R} \sim \left(egin{smallmatrix} 0 & 0 & 1 \ \cdot & \cdot & 0 \ \cdot & \cdot & 0 \end{pmatrix}$$

Chosen such that the constraints from rare meson decays (mediated by the gauge boson LQ) are minimised. This fixes:

Quick Example

Assume that

$$K_{L/R}^{de} \sim \begin{pmatrix} 0 & 0 & 1 \\ \cdot & \cdot & 0 \\ \cdot & \cdot & 0 \end{pmatrix}$$

Chosen such that the constraints from rare meson decays (mediated by the gauge boson LQ) are minimised. This fixes:

$$i \in \{1, 2\} = \{d, s\}$$

 $\sum_{j} \Omega_{ji} \simeq 0.5 \, m_u \tilde{\mathbf{V}}_{1i} + 1.3 \, m_c \tilde{\mathbf{V}}_{2i} + 1.0 \, m_t \tilde{\mathbf{V}}_{3i}$

Limits dominated by top-mass unless more flavour structure is assumed, **at worst** the charm quark contribution dominates.

SO(10) connection

What (heavy) particles would generate the B-violating dim-5 operators?

Scalars:

$$S \sim (\mathbf{6}, \mathbf{1}, \mathbf{1})$$

Fermions:

$$F_R \sim ({f 6}, {f 1}, {f 1}) \ \sim ({f 6}, {f 1}, {f 3}) \ F_L \sim ({f 6}, {f 2}, {f 2})$$

SO(10) connection

What (heavy) particles would generate the B-violating dim-5 operators?

Scalars:

 $S \sim ({\bf 6}, {\bf 1}, {\bf 1})$

$$SO(10): \frac{10}{126} \supset (6, 1, 1)$$

At least one required in SO(10) theories for fermion mass generation. Generation of dim-5 operator seems inevitable with GUT scale suppression.

Further Work

• While Pati-Salam is popular, modified theories of PS are usually considered in low-scale models to allow for even lighter (TeV) scale models.

What are the implications (if any) that such dimension-5 B-violating operators have on the allowed breaking scale in such 'ultra-low-scale' models? Might be even more important here as even lighter breaking scales are desired.

E.g. 4321, chiral PS.

• What are the minimum ingredients necessary in PS to allow for low breaking scales **without** generating these dim-5 operators?

Tied to how neutrino mass is made small in the model.

E.g. (10,1,3) scalar breaks PS without dim-5 operators however leads to type-1 seesaw which minimally requires high-scale breaking.

Conclusions

- Constraining models with Pati-Salam symmetries is interesting. It predicts exotic particles as well as interesting observational decay channels.
- Recently Pati-Salam theories have seen a resurgence due to the ability of light LQs present in the theory as a candidate for various anomalous measurements.
- We have found that there are dimension-5 operators which can lead to sizeable levels of nucleon decay in the minimal model, even with a Planck scale suppression. These lead to limits comparable, or stronger, to the usual rare meson decays that are used to constrain PS.
- Cannot manipulate the flavour structure to suppress these nucleon decays as well as the rare meson decays. **Important to consider** possible dimension-5 operators when assessing various low-scale theories with a Pati-Salam symmetry.

Fin

Backup

Decay Calculations

$$\Gamma(p \to \pi^+ \nu) = \frac{m_p v_R^2}{16\pi \Lambda^2 m_{\chi^d}^4} \left| \sum_{X,p} (C_X)_{11} \Omega_{p1} \langle \pi^+ | (ud)_X d_R | p \rangle \right|^2$$
$$\Gamma(n \to \pi^0 \nu) = \frac{1}{2} \Gamma(p \to \pi^+ \nu)$$

$$\Gamma(p \to K^+ \nu) = \frac{m_p v_R^2}{16\pi \Lambda^2 m_{\chi^d}^4} \left| \sum_{X,p} (C_X)_{12} \Omega_{p1} \langle K^+ | (us)_X d_R | p \rangle + \sum_{X,p} (C_X)_{11} \Omega_{p2} \langle K^+ | (ud)_X s_R | p \rangle \right|^2$$

Mass generation in PS

$$f_L \sim ({f 4},\,{f 2},\,{f 1}) \qquad f_R \sim ({f 4},\,{f 1},\,{f 2})$$

Generating fermion masses requires mass term of the form:

$$\mathcal{L} \supset Y_{ij}(\overline{f_L})^i \langle A \rangle (f_R)^j$$
$$\implies A \in \{ \phi \sim (\mathbf{1}, \mathbf{2}, \mathbf{2}), \ \Phi \sim (\mathbf{15}, \mathbf{2}, \mathbf{2}) \}$$
$$\implies \{ \phi : Y_{ij}^{d/u} = Y_{ij}^{e/\nu}, \ \Phi : Y_{ij}^{d/u} = -3Y_{ij}^{e/\nu} \}$$

Mass generation in PS

$$\mathcal{L} \supset \overline{Y_1^{\phi} f_L \phi} f_R + Y_2^{\phi} \overline{f_L} \phi^c f_R + \overline{Y_\Delta f_R^c} \Delta f_R + \text{H.c.}$$

$$\phi \supset H$$

$$m_e \propto m_d \qquad Y_\Delta v_\Delta \overline{\nu_R^c} \nu_R$$

$$m_D^{\nu} \propto m_u$$

$$m_{\nu} \simeq \frac{(m_D^{\nu})^2}{M_R^2} \propto \frac{m_u^2}{Y_\Delta v_\Delta}$$

$$m_u \simeq 170 \text{ GeV} \implies v_\Delta \gtrsim 10^{12} \text{ GeV}$$

Physical Mixing Matrices

$$\mathbf{K}_{L/R}^{u\nu} = (U_{L/R}^{u})^{\dagger} V_{L/R}^{\nu}$$
$$\mathbf{K}_{L/R}^{de} = (U_{L/R}^{d})^{\dagger} U_{L/R}^{e}$$
$$\mathbf{V}_{L/R}^{\text{CKM}} = (U_{L/R}^{u})^{\dagger} U_{L/R}^{d}$$
$$\mathbf{U}_{L/R}^{\text{PMNS}} = (U_{L/R}^{e})^{\dagger} V_{L/R}^{\nu}$$

$$\mathbf{K}_{L/R}^{u\nu} = \mathbf{V}_{\mathrm{CKM}}^{L/R} \mathbf{K}_{L/R}^{de} \mathbf{U}_{\mathrm{PMNS}}^{L/R}$$

So we predict that (with a single mass generating scalar):

$$m_u \propto m_{\nu}, \quad m_d \propto m_e$$

	$\mu = m_Z$	$\mu=1~{\rm TeV}$	$\mu = 10~{\rm TeV}$	$\mu = 100 {\rm ~TeV}$	$\mu = 1000 {\rm ~TeV}$	$\mu = M_{\rm GUT}$
$m_e/m_d \ m_\mu/m_s$	$0.177 \\ 1.891$	$0.205 \\ 2.195$	$\begin{array}{c} 0.230 \\ 2.454 \end{array}$	$0.251 \\ 2.688$	$\begin{array}{c} 0.271 \\ 2.902 \end{array}$	$0.399 \\ 4.265$
$m_{ au}/m_b$	0.612	0.724	0.823	0.913	0.997	1.565