Composite Dirac neutrinos with QCD axion

Tae Hyun Jung KIAS

Ref S. Chakraborty, THJ, T. Okui, arXiv: 2108.04293

Composite Dirac neutrinos

Why are neutrinos so light?

 $y_{\nu} H l \nu^{c} + \text{h.c.} + M_{\nu} \nu^{c} \nu^{c}$

1. See-saw mechanism (Majorana neutrinos): $M_{\nu} \gg y_{\nu}v_h$

Composite Dirac neutrinos

N. Arkani-Hamed, Y. Grossman (1999)

 ψ , χ : fundamental Weyl fermions charged under a hidden non-Abelian gauge v^c : a composite Weyl fermion (like proton/neutron in QCD: $p \propto uud$, $n \propto udd$)

Effective description **after** confinement

 $H l \nu^{c}$

Fundamental description **before** confinement

 $H l (\psi \psi \chi)$ <u>Dim: 7</u> $(\psi\psi\chi)\sim\Lambda_c^3\nu^c$ $H'_{\mathbf{N}}$ Dim: $3 \cdot \frac{3}{2}$

 $\frac{\Lambda_c}{M} \sim 10^{-4} \Rightarrow m_{\nu} \sim 0.1 \text{ eV}$

Q: How can those composite <u>fermions</u> remain massless? cf) protons and neutrons

Composite Dirac neutrinos

Arkani-Hamed, Grossman (1999)

	Gauge	Global	
	<i>SU</i> (6)	<i>U</i> (1)	
ψ	6	-2/3	$\times 2$ (Two generation)
X	15	1/3	
$v^c \propto \psi \psi \chi$	1	-1	$\times 3$ (Three generation)

How $v^c \propto \psi \psi \chi$ can be massless after confinement:

S. Dimopoulos, S. Raby, L Susskind (1980) 't Hooft anomaly matching conditions

Composite Dirac neutrinos

	προδιι		ac neu	
	_	Gauge	Global	Arkani-Hamed, Grossman (1999)
		<i>SU</i> (6)	<i>U</i> (1)	_
	ψ	6	-2/3	~ 2 (Two generation)
	χ	15	1/3	
Does not gain mass from the confinement	$\nu^c \propto \psi \psi \chi$	1	-1	$\times 3$ (Three generation)

Effective operator with SM: $\frac{1}{M^3}Hl(\psi\psi\chi) \rightarrow \frac{\Lambda_c^3}{M^3}Hl\nu_c$

Composite Dirac neutrinos Arkani-Hamed, Grossman (1999)

				Arkani-Hamod Grossman (199
		Gauge	Global	
		<i>SU</i> (6)	<i>U</i> (1)	_
	ψ	6	-2/3	$\times 2$ (Two generation)
	χ	15	1/3	
Does not gain mass	$v^c \propto \psi \psi \chi$	1	-1	\times 3 (Three generation)
	l	1	+1	\times 3 (Three generation)

Effective operator with SM:
$$\frac{1}{M^3}Hl(\psi\psi\chi) \rightarrow \frac{\Lambda_c^3}{M^3}Hl\nu_c$$

Composite Dirac neutrinos

-	Gauge	Global	Arkani-Hamed, Grossman (1999)
	<i>SU</i> (6)	<i>U</i> (1)	-
ψ	6	-2/3	~ 2 (Two generation)
χ	15	1/3	
$v^c \propto \psi \psi \chi$	1	-1	$\times 3$ (Three generation)
l	1	+1	\times 3 (Three generation)
	$\frac{\psi}{\chi}$ $\frac{\chi}{\nu^{c} \propto \psi \psi \chi}$ l	Gauge ψ $\overline{6}$ χ 15 $\nu^c \propto \psi \psi \chi$ 1 l 1	GaugeGlobal \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{V} $\overline{6}$ \mathcal{X} 15 \mathcal{X} 15 $\mathcal{V}^c \propto \psi \psi \chi$ 1 -1 \boldsymbol{l} 1 1

Effective operator with SM:
$$\frac{1}{M^3}Hl(\psi\psi\chi) \rightarrow \frac{\Lambda_c^3}{M^3}Hl\nu_c$$

$$\begin{aligned} m_{\nu} \sim \left(\frac{\Lambda_c}{M}\right)^3 v_h \\ \frac{\Lambda_c}{M} \sim 10^{-4} \implies m_{\nu} \sim 0.1 \text{ eV} \end{aligned}$$

Many ways of UV completion *M* comes from other particles' mass.

Axiogenesis

Once we have $\dot{a} \neq 0$, baryons and leptons get nonzero chemical potential.

1. Chirality asymmetry is generated by $\dot{a} \neq 0$.

$$\frac{a}{f_a}G\tilde{G} \to \frac{a}{f_a}\partial_{\mu}J^{\mu}_A \to -\frac{\partial_{\mu}a}{f_a}J^{\mu}_A \to -\frac{\dot{a}}{f_a}(n_L - n_R)$$

2. Weak sphaleron converts only left-handed quarks into (anti-)leptons.

3. *B* + *L* asymmetry is generated!

$$n_B \sim \mu_{B+L} T^2 \sim rac{\dot{a}}{f_a} T^2$$

Redshift of the axion motion

Axion dark matter

*Larger abundance compared to the conventional misalignment scenario since we start from nonzero \dot{a} .

What happens when T is as high as M?

 $L_{SM} \leftrightarrow L_c$ active

	gauge	global	
	SU(6)	$\mathrm{SU}(2)_{\psi}$	$\mathrm{U}(1)_L$
ψ	$\overline{6}$	2	-2/3
χ	15	1	1/3
$\left \nu^{\mathrm{c}} \propto \psi \psi \chi \right $	1	3	-1

$$T > T_{LD} \Rightarrow B - L_{SM}$$
 : broken by $L_{SM} \leftrightarrow L_{c}$

$$T < T_{LD} \Rightarrow B - L_{SM}$$
: approximately conserved

Baryogenesis with composite Dirac ν f_a [GeV]

Baryogenesis with composite Dirac v

Other prediction?

For baryogenesis, the composite sector should be in chemical equilibrium with \Rightarrow Many RH neutrinos in the end?

 $\Delta N_{\rm eff}$ = additional relativistic abundance normalized by one generation of SM neutrino

 $\Delta N_{eff} < 0.33$ from CMB at 2σ

ΔN_{eff}

ΔN_{eff}

Not ruled out, and testable in future CMB stage IV: $\Delta N_{\rm eff} < 0.03$

Summary

Summary

