CP violation in gauged $U(1)_B$

Toshinori Matsui^a

Collaborators:

Seungwon Baek^b, Pyungwon Ko^a, Takaaki Nomura^c, Eibun Senaha^d

^aKIAS^I, ^bKorea U.^{II}, ^cShicuan U.^{III}, ^dVan Lang U.^{III}

arXiv:2211.xxxxx

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov $13-18,\,2022$

New CP-violating signal

- ATLAS observed a new *CP*-odd effect in the *Zjj* channel
- It can be interpreted by a dim-6 *CP*-violating op. in SMEFT

 $\mathcal{L}_{\text{SMEFT}}^{CPV} \ni \frac{C_{H\widetilde{W}B}}{\Lambda^2} O_{H\widetilde{W}B} \qquad \frac{C_{H\widetilde{W}B}}{\Lambda^2} \in [0.23, 2.34] \,\text{TeV}^{-2} \quad [2006.15458 \,\text{(EPJC), ATLAS collaboration}]$

- Might be a new CPV signal beyond the KM phase in the SM
- Renormalizable model introducing vector-like leptons (VLLs)

Fields	$\Psi_{L,R}$	$E_{L,R}$	$N_{L,R}$	H	
$SU(2)_L$	2	1	1	2	
$U(1)_Y$	\mathcal{Y}	$\mathcal{Y}-1/2$	$\mathcal{Y} + 1/2$	1/2	

• $C_{H\widetilde{W}B}$ can be written by Yukawa interactions of VLLs

[2009.13394 (PRD), S. Bakshi, J. Chakrabortty , C. Englert, M. Spannowsky, P. Stylianou]

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov $13-18,\,2022$

EW baryogenesis

- Solves baryon asymmetry of the Universe
- Our extension to satisfy the Sakharov conditions
 - 1. $\Delta B \neq$ 0 ← assign the baryon number to VLLs
 - 2. *CP*-violation \leftarrow *CP* phases in interactions of VLLs
 - 3. Out-of-equilibrium (1^{st order} PT @EW scale) ← multi-Higgs extension
- We propose a model with gauged $\mathrm{U(1)}_\mathrm{B}$ symmetry

Fields	Ψ_L	Ψ_R	E_L	E_R	N_L	N_R	H_1	H_2	arphi	
$SU(2)_L$	2	2	1	1	1	1	2	2	1	$\left \frac{\langle H_2 \rangle}{\Xi} \equiv \tan \beta \right $
$U(1)_Y$	-1/2	-1/2	-1	-1	0	0	1/2	1/2	0	$\langle H_1 \rangle = \operatorname{com} \beta$
$U(1)_B$	B_1	B_2	B_2	B_1	B_2	B_1	$-(B_1+B_2)\neq 0$	0	$(B_1 - B_2) = -3$	$\left \left\langle \varphi \right\rangle \equiv v_{arphi}/\sqrt{2}$

3/15

- To avoid FCNC, f_{SM} only couples to H_2 by U(1)_B; type-I 2HDM w/o extra Z_2
- Anomaly cancellation $B_1 B_2 = -3$

Toshinori MATSUI [KIAS]

• To obtain $m_{12}^2 H_1^{\dagger} H_2$, $(B_1, B_2) = (-3, 0)$ is chosen: $\Delta V = \frac{\mu}{\sqrt{2}} H_2^{\dagger} H_1 \varphi \rightarrow m_A^2 \propto \mu v_{\varphi} \propto m_{12}^2$

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

Model parameters

- Neutral Gauge bosons: $(m_Z, m_{Z'}, \epsilon) \quad \epsilon \ll 1$
- Scalar bosons: $(m_{H^{\pm}}, m_A, m_H, m_h, m_S; \tan \beta, \sin(\beta \alpha), \alpha_1, \alpha_2)$ [2HDM+S]
- Fermions: $-\mathcal{L}_{\mathcal{Y}_{new}} = (y_{\Psi N}\overline{\Psi}_L N_R + \widetilde{y}_{\Psi N}\overline{\Psi}_R N_L)\widetilde{H}_2 + (y_{\Psi N}^c\overline{\Psi}_L^c N_L + \widetilde{y}_{\Psi N}^c\overline{\Psi}_R^c N_R)\widetilde{H}_1^* + (y_{\Psi E}\overline{\Psi}_L E_R + \widetilde{y}_{\Psi E}\overline{\Psi}_R E_L)H_2$

 $+ y_{\Psi}\overline{\Psi}_{L}\Psi_{R}\varphi + (y_{N_{LR}}\overline{N}_{L}N_{R} + y_{E}\overline{E}_{L}E_{R})\varphi^{*} + \frac{1}{2}m_{N}\overline{N_{L}}N_{L}^{c} + \text{h.c.},$

- Complex Yukawa's (9*2)+Majorana mass (1)
- We can remove phases of $(y_{\Psi}, y_{E}, y_{N_{LR}}, m_{N})$
- 3 dof are taken independently among remained 6 complex phases
- Charged fermion: 2 mass $m_{\psi_{1,2}^{\pm}}$ + 1 mixing angle + 1 *CP*-phase $\theta_{\Psi E}$
- Neutral fermion: 4 mass $\overline{m_{\psi_{1,2,3,4}^0}}$ + 6 mixing angle + 2 *CP*-phase $(\tilde{\theta}_{\Psi N}, \tilde{\theta}_{\Psi N}^c)$

Outline

- Signal strength $(gg \rightarrow h \rightarrow \gamma \gamma) \rightarrow V_{\varphi}$
- Scalar mass constraints $\rightarrow m_A \& m_{H\pm}$
- Higgs coupling measurement $(\kappa_{V}, \kappa_{f}) \rightarrow \tan \beta \& \sin(\beta \alpha)$
- Predictions
 - EW-ino searches $\rightarrow m_{\psi 0} \& m_{\psi} \pm$ Rho parameter $\rightarrow m_{Z'}$ Electric Dipole Moment *CP*-violating signal at ATLAS $(\widetilde{\theta}_{\Psi N}, \widetilde{\theta}_{\Psi N}^c, \theta_{\Psi E})$ 3-independent *CP*-phases

- Discussion
- Conclusion

Toshinori MATSUI [KIAS]

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

Scalar mass constraints

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 - 18, 2022

Higgs coupling measurement

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 - 18, 2022

① EW-ino searches

- Two CP phases for neutral fermions are scanned
 - Absolute value of Yukawa couplings are fixed

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

(2) rho parameter

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 - 18, 2022

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

Toshinori MATSUI [KIAS]

④ *CP*-violating signal at ATLAS

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov $13-18,\,2022$

Summary

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 - 18, 2022

Discussion

- EWBG (future work)
 - Strong $1^{\rm st}$ order phase transition at EW scale & Gravitational waves
 - Estimation of the baryon number
- DM
 - Accidental Z₂ after U(1)_B breaking: $\Psi_{L,R} \rightarrow -\Psi_{L,R}$, $N_{L,R} \rightarrow -N_{L,R}$
 - The SI cross section for fermion DM with scalar mediator

$$\sigma_{\rm SI} \equiv c^2 \frac{4\mu^2}{\pi} f_N^2 , \quad \mu \equiv \frac{m_N m_{\psi_1^0}}{m_N + m_{\psi_1^0}}: \text{ reduced mass}$$

$$c \equiv \sum_{\phi=h,H,S} \frac{c_{\phi\psi_1^0\psi_1^0}\kappa_{\phi ff}}{v(t - m_{\phi}^2)} \stackrel{t \to 0}{\simeq} \frac{c_{\alpha} c_{\alpha_2} s_{\alpha_2}}{s_{\beta} v} \frac{m_{\psi_1^0}}{v_{\varphi}} \left(\frac{1}{m_h^2} - \frac{1}{m_S^2}\right) (\alpha_1 = 0 \text{ is taken})$$

14/15

• Can be suppressed by taking $m_S \sim m_{h_*}$

Toshinori MATSUI [KIAS] The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

Conclusion

- ATLAS observed a new *CP*-odd effect in the *Zjj* channel which can be interpreted by a dim-6 CPV op. in SMEFT $\frac{C_{H\widetilde{W}B}}{\Lambda^2} \in [0.23, 2.34] \text{ TeV}^{-2}$
- We have proposed a model for EWBG with gauged $\overline{\rm U(1)_B}$
 - New fermions are assigned $\mathrm{U(1)}_{\mathrm{B}}$ charges & generate CP phases
 - In scalar sector, ($H_{1,2}$, S) are introduced & break U(1)_B
- We have derived constraints in v_{φ} , $(m_{Z'}, m_A, m_{H^{\pm}})$, $(t_{\beta}, s_{\beta \alpha})$
- At fixed Yukawa couplings, we have shown predictions in *CP*phases considering bounds on (EW-ino searches, *T* parameter, EDMs) which are consistent with CPV signal at ATLAS $\beta_{ZZh} \in [0.049, 0.157] \text{ TeV}^-$

15/15

• Complete work for successful EWBG is planed as future work

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

Model

	$SU(3)_C$	$SU(2)_L$	Isospin	$U(1)_Y$	$U(1)_{EM}$	$U(1)_B$	Flavor	Z_2
Fields			T^3	Q_Y	$Q = T^3 + Q_Y$	Q_X	i	
$\label{eq:QL} Q_L^i = (u_L^i d_L^i)^T$	3	2	(1/2, -1/2)	1/6	(+2/3, -1/3)	1/3	3	+1
u_R^i	u_R^i 3		0	2/3	+2/3	1/3	3	+1
d_R^i	3	1	0	-1/3	-1/3	1/3	3	+1
$L_L^i = (\nu_L^i e_L^i)^T$	1	2	(1/2, -1/2)	-1/2	(0,-1)	0	3	+1
e^i_R	1	1	0	-1	-1	0	3	+1
$\Psi_L = (\Psi_L^0 \Psi_L^-)^T$	1	2	(1/2, -1/2)	-1/2	(0,-1)	-3	1	-1
$\Psi_R = (\Psi_R^0 \Psi_R^-)^T$	1	2	(1/2, -1/2)	-1/2	(0,-1)	0	1	-1
E_L^-	E_L^- 1		0	-1	-1	0	1	-1
E_R^-	1	1	0	-1	-1	-3	1	-1
N_L	1	1	0	0	0	0	1	-1
N_R	1	1	0	0	0	-3	1	-1
$H_1 = (\phi_1^+ \varphi_1^0)^T$	1	2	(1/2, -1/2)	1/2	(+1,0)	3	1	+1
$H_2 = (\phi_2^+ \varphi_2^0)^T$	1	2	(1/2, -1/2)	1/2	(+1,0)	0	1	+1
φ	1	1	0	0	0	-3	1	+1

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm YM} + \mathcal{L}_{\rm gauge} - V + \mathcal{L}_{\rm kin} + \mathcal{L}_{\mathcal{Y}_{\rm SM}} + \mathcal{L}_{\mathcal{Y}_{\rm new}} ,$$

where

$$\begin{split} \mathcal{L}_{\rm YM} &= -\frac{1}{4} \mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} - \frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu} + \frac{\epsilon'}{2} \hat{B}^{\mu\nu} \hat{X}_{\mu\nu} ,\\ \mathcal{L}_{\rm gauge} &= |D_{\mu}H_{1}|^{2} + |D_{\mu}H_{2}|^{2} + |D_{\mu}\varphi|^{2} ,\\ V &= \lambda_{1} |H_{1}|^{4} + \lambda_{2} |H_{2}|^{4} + \lambda_{3} |H_{1}|^{2} |H_{2}|^{2} + \lambda_{4} \left| H_{1}^{\dagger} H_{2} \right|^{2} + \lambda_{\varphi} (\varphi^{*}\varphi)^{2} \\ &+ (\lambda_{1\varphi}\varphi^{*}\varphi + m_{1}^{2}) |H_{1}|^{2} + (\lambda_{2\varphi}\varphi^{*}\varphi + m_{2}^{2}) |H_{2}|^{2} + m_{\varphi}^{2}\varphi^{*}\varphi + \Delta V + \text{h.c.} ,\\ -i\mathcal{L}_{\rm kin} &= \overline{\Psi}_{L} D\Psi_{L} + \overline{\Psi}_{R} D\Psi_{R} + \overline{E}_{L} DE_{L} + \overline{E}_{R} DE_{R} + \overline{N}_{L} DN_{L} + \overline{N}_{R} DN_{R} ,\\ -\mathcal{L}_{\mathcal{Y}_{\rm SM}} &= y_{u} \, \overline{Q}_{L} \, u_{R} \, \widetilde{H_{2}} + (y_{d} \, \overline{Q}_{L} \, d_{R} + y_{e} \, \overline{L}_{L} \, e_{R}) \, H_{2} + \text{h.c.} ,\\ -\mathcal{L}_{\mathcal{Y}_{\rm new}} &= (y_{\Psi N} \overline{\Psi}_{L} N_{R} + \widetilde{y}_{\Psi N} \overline{\Psi}_{R} N_{L}) \, \widetilde{H}_{2} + (y_{\Psi N}^{c} \overline{\Psi}_{L}^{c} N_{L} + \widetilde{y}_{\Psi}^{c} \overline{\Psi}_{R}^{c} N_{R}) \, \widetilde{H}_{1}^{*} \\ &+ (y_{\Psi E} \overline{\Psi}_{L} E_{R} + \widetilde{y}_{\Psi E} \overline{\Psi}_{R} E_{L}) \, H_{2} \\ &+ y_{\Psi} \overline{\Psi}_{L} \Psi_{R} \, \varphi + (y_{N_{LR}} \overline{N}_{L} N_{R} + y_{E} \overline{E}_{L} E_{R}) \, \varphi^{*} + \frac{1}{2} m_{N} \overline{N_{L}} N_{L}^{c} + \text{h.c.} , \end{split}$$

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov $13-18,\,2022$

CP phases

• 3 physical phases

$$\operatorname{Im}\left(y_{\Psi E}\widetilde{y}_{\Psi E}^{*}e^{-i\left(\theta_{y_{\Psi}}+\theta_{y_{E}}\right)}\right) = \sin\left(\theta_{\Psi E}-\widetilde{\theta}_{\Psi E}-\theta_{\Psi}-\theta_{E}\right),$$
$$\operatorname{Im}\left(\widetilde{y}_{\Psi N}y_{\Psi N}^{c}e^{i\left(\theta_{y_{\Psi}}\right)}\right) = \sin\left(\widetilde{\theta}_{\Psi N}-\theta_{\Psi N}^{c}+\theta_{\Psi}\right),$$
$$\operatorname{Im}\left(y_{\Psi N}\widetilde{y}_{\Psi N}^{c}e^{-i\left(\theta_{y_{\Psi}}+2i\left(\theta_{N_{LR}}\right)\right)}\right) = \sin\left(\theta_{\Psi N}-\widetilde{\theta}_{\Psi N}^{c}-\theta_{\Psi}-2\left(\theta_{N_{LR}}\right)\right)$$

• We define 3 independent phases as

$$\left(\widetilde{\theta}_{\Psi N}, \widetilde{\theta}_{\Psi N}^c, \theta_{\Psi E}\right)$$

taking $\theta_{\Psi N} = \theta_{\Psi N}^c = \widetilde{\theta}_{\Psi E} = \theta_E = \theta_{\Psi} = \theta_{N_{LR}} = 0$.

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 – 18, 2022

rho parameter at tree / $(S, T)_{scalar}$

Toshinori MATSUI [KIAS]

The 2nd AEI & the 10th KIAS workshop on BSM at Jeju, Nov 13 - 18, 2022