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With the LHC

* The long lived king is dead!”
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Hunt for new physics afterwards

1. Anomaly detection (different from SM expectations)
- Need to have precise tools (importance of MC)

2. Try to interpret a new signal with various model
assumptions or Model-independent way so called
simplified model
- For each model, we start with specific "feynman-
diagram"

(event-topology, without specific spin assignment.)

- Determine parameters (spin, mass) with various methods



Example: anomaly
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diagram from Lian-Tao Wang et.al. arxiv:1303.6638



Purely bottom-up approach

1. Figure out what is the relevant event-topology
behind anomalous (deviation from SM) events.

2. Check the mass spectrum.

3. Check spin configuration.

e So far, there are very few literatures for #1.
Here | will introduce how one can identify the event-

topology



Our examples (multi-jets)

Jb J .

1. Under the a simple assumption: pp — X, ¥ — {j,.} U {J,}
(No prejudiceson X and Y')

2. Find a right combination to reconstruct X and Y particles.
— Read off information on Mass and Spin from event
reconstruction.



26 — 64 cases.

Nno special assignment
for b-jet

/

e Standard example of six jets

pp = tt = {J,, (W= jp} U {j,, (W—jj)}

(when A and B have same mass)

« Right answer is (n4, ng) = (3,3)

‘ (reconstructed) particle

\
B



e Different mother particles

pp = ZH — {j,j} U{(W = jj), (W* = jj)}

o Right answer is (14, ng) = (2,4)

26 = 64 cases,

no prior knowledge on
A and B masses

‘ (reconstructed) particle

\
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 Complicate situation ( 12 jets)
pp — 00 — {1, 1} U {1, 1}

0 = 1t = {Jp, (W=D} U {Jjp, (W—jj)}
7 6 = 11 = {jp, (W= j)} U {jp, (W = )}

j\

12 _
272 = 4096 cases, reconstructed) particle
no prior knowledge on

a decay-structure / \



 Complicate situation ( 12 jets)

pp — 00 — {t,t} U {1, 1} 0(\‘
o — It = {jb’ (Wﬁ]])] 00 "/_>]])}
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An algorithm

 With the only assumption of 2 — (2 — n) process

- No special treatment on any flavor-tagged particle

- No assumption on M, and My

- No assumption on any decaying structure

* What could be a good guide line 7



A Classic algorithm

* Hemisphere method: a seed-based method (iterative and converge)

A particle with

/ highest pr

/ \ With a proper metric d,

A particle with decide which hemisphere
largest pAR with a seed it belongs

CMS hemisphere TDR,

Shigeki Matsumoto, Mihoko M Nojiri, and Daisuke Nomura (2006)



Non-geometric algorithm

Pl * For each assignment,
J calculate invariant mass

J

) (M?:, M3z) = (P, P3)

ry to minimize the mass difference H = (Mj — MI%)2



Non-geometric algorithm

Pl * For each assignment,
J calculate invariant mass

) (M, Mz) = (P, P3)

» Try to minimize the mass difference H = (Mj — MI%)2

- How can we deal with the case of M, = My ?



* [ry to minimize the mass ditference

Pp H = (M3 — M)

. How can we deal with the case of M, = My ?

+ (even with M, = M) we need to handle

1) off-shell mass due to the width of A and B
2) from smearing effects due to imperfect detectors

. One suggestion: Add a regularization term of /I(Pl2 + P22)

(A is a dimension full "hyper-parameter")



e 2 = 2process: {p;} = P,UP,
Using a binary operation x; € {0,1}

For p, to be either in P, (x; = 1) orin P, (x; = 0)
P1=2Pixia PZZZPi(l_Xi)

Pl e [ry to minimize

J

fj H = (P? — P2)> + A(P? + P
j r 2 for each "assignment” ?!

* [his problem now becomes well-known...



Minimization using Ising model

1+s
If we replace x; — 5 with s; € {+1, — 1}

H=(P?-P3)" > H+.(P?+ P2
ij i j
« To maintain the importance of original H,
min (C})
max (Sl)

we take A =



"Classic" minimization method
(for ising hamiltonian)

A
local minimum

:
Simulated annealing global minimum

« GO to the next spin state s, — 5,14
HItE, > E ., :gotothe lower energy

_ Epy1 —En

2)ItE, < E, . {,go with a probability of e *T to jump out

(A "temperate T — 0. With large T, SA can jump out local minimum)



But our "'mindless’
=minimally assumed Collider example
'S not soO easy
for a classical SM



Combinatorial complexity arises
(for a random Ising model)

Landscape of energy distribution
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SA cannot jump this random potential!



Any solution
we can have”



The Quantum thing...

* |n the class of undergraduate QM, we learned

U(x) 4

Uy

v,

=

e Transmission coefficient T o e

~2L\/U,— E

-

0 L

1) The effect of energy difference becomes mild

2) Effective for shallow barrier !



* |f there is a machine which can realize Quantum tunneling,

our problem is a simple and good example to demonstrate
an advantage from Quantum tunneling



Quantum Computer

e Gate type : IBM just announced 433 qubit QPU.
(An application of this type: Yamazaki's talk)

e Quantum annealer: over 5000 qubits (Here)

currently 433 Qubits (IBM Eagle)

Scaling IBM Quantum technology

IBM Q System One (Released) (In development ) Next family of IBM Quantum systems

2019 2022 2023 and beyond

27 qubits 127 qubits 433 qubits
e Iumminohird Fagle Osprey

Path to 1 million qubits
and beyond

=bejuenp®

Temperature: below1.5 X 107K
dimension: 3m X 2.1m X 3m
Weight: 3800kg

Power: (max) 25kW




Quantum Annealing method

* With adiabatic theorem, we can find the ground state of a
complicate hamiltonian Hyypgpstarting from simple H,.

(T. Kadowaki and H. Nishimori, Quantum annealing in the transverse ising model, 1998)
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0 ‘ ‘ ‘ Quantum Tunnelling Adiabatic evolution




(small) Quantum advantage

* QA v.s. Brute-force scanning:
The required time (mostly preparation time TQUBO)

of QA machine: Tpo = O(n?)
The complete scanning with 7 input takes O(2")

time

__ complexity




(big) Quantum advantage

« QA v.s. SA
pp — tt pp — 00
Process 2—6) 2 - 12)
Quantum annealing | 100% 74.3%
Simulated annealing| 36.7% 1%

Percentage to get a global minimum energy state
(does not guarantee a true combinatorial assignment)



results
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* a to c: brute force scanning for H 0 to check the fidelity of our algorithm
d is from D-Wave computer (expensive...)




results
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(As we give a priority to hardest jets,

effect of hard ISR is emerging for hard scale,
here 2m; = 1.2TeV)




Effect of additional constraints
H=(P}-P3) = H+(P}+F3)

o For different mother particle cases: pp — HZ
H= (P> - P2) H — H+1(P;+ P;)




Effect of additional constraints
H=(P}-P3) = H+(P}+F3)

 For smearing effects : pp — 00 — ftttt
H= (P> - P2) H — H+1(P;+ P;)

e
-
i L1075




Sequential algorithm

HSOso = Z T s s0 +tha o« o For 12 hard-jets production,
ij=1 i=1 it would be worthy If we can
H)po = 3 J0s0s" +Zh/5 s check whether this is four-tops

ii=1 events or not !



Arbitrary Unit S

Arbitrary Unit
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« We can "guess' that A. = #(f) as their mass and number
of children are identical to the case of a top-quark.



Bench mark”?

* There are not many studies on identitying event-topology.
(as far as | have searched... if | missed, plz let me know)

* Hemisphere method: seed-based algorithm
(our algorithm is seedless one)

pp — tt \pp — HZ |pp — 006"

Process Eq. (7a)| Eq. (7b) | Eq. (7¢)
Aloorithm QUBO 47.3% 89.5% 15.1%
5 Hemisphere| 33.6% | 86.2% | 5.84%

(Parton-level analysis with detector cuts)
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Current limits for QA

 Number of couplers is limited
- spin-chain method to encode a hamiltonian (connections)

Fig 1: Abstract graph Fig 2: Intermediate representation of the graph = Fig 3: Embed graph onto QPU

 Number of required qubits for our problem




Conclusion@QC

* | presented a simple quantum annealing method for clustering
reconstructed particles.

e Gate-based QC can be used via a variational algorithm.

| am very interested in this new possibility (Now ongoing)

| 5
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* Hybrid Quantum Classifier: Variational Quantum Approaches

R
0) — Unnlx) 5 UB) HAF I (Z)
Update 6 _a | Evaluate cost
parameters function

* Supervised Machine Learning with a

label y and expectation (Z) from QC.

Update learnable parameters 6
by a classical computer

 Mapping input data to an exponentially large Quantum Hilbert Space.

classical ML Kernel Method

Input Space

Quantum kernel function

Feature Space




Conclusion

Credit to KC. Kong
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As a desperate seeker, we have tried to take advantages
of new computing methods, ML, QC, QML.

In this talk, | presented a bottom-up collider algorithm
to identity a new physics from a signal (if we can have)

There could be many examples to demonstrate
Quantum Advantage in the field of HEP.

Stay tuned...



