Quantum Simulations of

Dark Sector Showers

Masahito Yamazaki

AEI/KIAS workshop, Nov. 15 @ Jeju

Based on collaboration with So Chigusa (UC Berkeley) arXiv: 2204.12500 [hep-ph]

cf. in progress with So Chigusa and Christian Bauer (UC Berkeley)

Beyond Dark Matter?

Let's assume we have Dark Matter in the dark sector

Beyond Dark Matter?

Let's assume we have Dark Matter in the dark sector

Q: Dark sector beyond dark matter ??

Beyond Dark Matter?

Let's assume we have Dark Matter in the dark sector

Q: Dark sector beyond dark matter ??

motivation:

self-interaction of DM (SIDM) via dark mediators

```
galaxy core cusp problem

PAMELA, AMS

positron excess in cosmic ray PAMELA, AMS

Fermi-LAT

galatic center GeV excess Fermi-LAT
```

Today

dork fermion $\chi_{i=1}$ Nf (Nf flavors)

dork photon $U(1)_D$ T'

$$2_{dovk} = \sum_{i} \overline{\chi}_{i} (i\partial - m_{\chi_{i}}) \chi_{i}$$

$$+ \sum_{i} i g_{ij} \overline{\chi}_{i} A' \chi_{j}$$

$$- \frac{1}{4} F_{in} F'^{in} - \frac{1}{2} m_{\chi}^{2} A_{ii} A'^{in}$$

Dork sector jets (N_f=1)

dramatic effects, e.g. @ H-L LHC?.
[many papers]

standard: classical parton shower

cf. Krauss's talk] L Prthia, Hermig Sherpa ... emission probability density E (1-x)E

 $R(t) = \int \frac{x_{max}}{x_{min}} dx = \begin{cases} \frac{1}{t} & \text{energy} \\ \frac{1}{t} & \text{Praction} \end{cases} x = \begin{cases} x_{min} & \text{the partial properties of } \\ \frac{1}{t} & \text{Praction} \end{cases}$

 $P_{x \to x} = \frac{1+x^2}{1-x} - \frac{2(m_x^2 + m_y^2)}{t}$ Virtuality tPt

[cf. Chen-ko-Li²-Yokoya 18]

We can do MC for each t-step

However, <u>quantum</u> entanglement among different flavors (N_f>1)

NOT in classical porton shower (except e.g. in lorge Nc approximation)

If the problem in quantum, why not use quantum computer?

quantum algorithm for guantum PS

[See also Bouer, de Jong, Nachman, Provasoli (19) Bepori, Malik, Spannowsky, Williams (20)]

loday! Simplifying assumptions 1. E~E'~E"~ E" $m_{A'} < 2 m_{\chi}$ otherwise 3. running of d'ignored (e.g. $E_0 = 500 \text{ GeV}$, $m_{\chi} = m_{A'} = 0.4 \text{ GeV}$) Sonly # (dark photons)

votate the state into v gonge-diagonal basis

$$\begin{pmatrix} 311 & 312 \\ 321 & 322 \end{pmatrix} = R_{\Upsilon}(\theta)^{\dagger} \begin{pmatrix} 9_1^{\dagger} & 0 \\ 0 & 9_2^{\prime} \end{pmatrix} R_{\Upsilon}(\theta)$$

$$R_{\gamma}(\theta)$$

$$| 1$$

$$(\cos \frac{\theta}{2} - \sin \frac{\theta}{2})$$

$$| \sin \frac{\theta}{2} - \cos \frac{\theta}{2})$$

Nf = 2, Nstep = 9

depending on the go We emit particles with different probabilities

$$\tan \frac{di}{2} = \sqrt{\frac{1 - \Delta i}{\Delta i}}$$

$$\Delta i = \exp[-14f \int R(t)]$$

Nf = 2, Nstep = 9

Results

 $(\alpha_1',\alpha_2')\simeq(0.35,0)$

Results

huge enhancements for pn with n longe!!

(but (n) the same for cases above)

· Quantum Interference among flavors Studied by quantum algorithm quantum simulator

> enhoncement for many-7 events (:)

Outlook

- · Incorporate Kinematics
- · More detaile de model building
- · Simulations and error mitigations on real quantum devices