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The problem we want to solve

▶ Some high energy physics calculations (HEPC) take a very
long time/too much computational power

▶ More parameters → exponential increase in the number of
required points

▶ Multiple disconnected regions



How we want to solve it

▶ Neural networks (NN) as generic function approximations
▶ Training a NN could be more efficient than passing every single

point through the HEPC
▶ Eventually, the accuracy of the NN is proportional to how

much we care about the sampled regions
▶ Spend, relatively, more time sampling regions of interest
▶ Just enough time for low importance regions



Regression

▶ likelihood from predicting the results for observables

Ŷ = L(Ôj(Θ); c, σ)

▶ or predict the likelihood itself

Ŷ = L̂(Θ)

▶ We need a diverse set of points

▶ with a diverse set of results

Points that need attention
▶ Few points → bad predictions
▶ Poorly sampled observable/likelihood → bad predictions
▶ Poorly distributed initial samples → bad predictions



Classification – Allowed region. . .

▶ Or any other condition
▶ Classify from likelihood, χ2 or observables

Y = 1 if L < L0 or χ2 < χ2
0 or Omin < O < Omax or . . .

▶ We need to start with points in all classes

Points that need attention
▶ Accurate predictions require comparable amount of points

inside and outside allowed region



Details of the process
Before the iterative process, we need a set of random points and
their results to train a NN.

1. L: large set of points prior:

L → NN → Ŷ (L)

2. Select an smaller set, K , through a selection criteria

(L, Ŷ (L)) → selection criteria → (K , Ŷ (K ))

3. Get the correct results, Y (K ), from the HEPC

K → HEPC → Y (K )

4. Train with set K and its results Y (K )

(K , Y (K )) → train the NN again



Selection of points for HEPC
We want to pass a set of meaningful points to the HEPC.

▶ Highest predicted likelihood/lowest predicted χ2

▶ But keep diversity of observables/likelihood
▶ Points predicted with low likelihood/high χ2 may be included

as part of some rectifying strategy.
▶ Fraction of random points to find new regions



Selection of points for training

Training is also time consuming

Required time depends non trivially on:

▶ epochs
▶ number of hidden layers
▶ number of nodes

And the number of points used for training also adds time



Selection of points for training – Regression
▶ wrongly predicted in group above: rectify inaccurate

predictions
▶ What about points wrongly predicted with low likelihood/high

χ2

▶ This needs a well thought strategy



Selection of points for training – Classification
▶ True allowed: Good certainty. These we are interested in

▶ False allowed: Confusing. These we want to correct

▶ False excluded: Confusing. These we want to correct

▶ True excluded: Good certainty. The region we care the least



Boosting initial convergence

For the very few steps, predictions should be expected to be mostly
wrong

Many options to improve initial convergence:

▶ Naive/Brute force: run more points to collect usable points
▶ Sample more points around known points in the target region
▶ Sample points between known points (Synthetic Minority

Oversampling Technique, SMOTE) [Chawla et al,
arXiv:1106.1813]

If these techniques work they should be needed only in the first
few iterations.



Summary of the process
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Applied to toy model

We tested these two processes against a simple toy model:

O3d =
[
2 + cos

(x1
7

)
cos

(x2
7

)
cos

(x3
7

)]5

assuming a measured central value c3d = 100 with a standard
deviation of σ3d = 20.

We define the likelihood for this toy model as

L = exp
[

(O3d − c3d)2

σ3d

]

and assume a region of interest where L > 0.9, and all xj in the
range [−10π, 10π]



Applied to toy model, region coverage
With this setup, there is a total of 13 disconnected regions, shaped
like hollow shells.
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4 hidden layers (ReLU), 1000 epochs, Adam, loss: (MAE, Binary
cross-entropy), output layer activation: (linear, sigmoid)



Applied to toy model
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Learning the Higgs signal strength in the 2HDM
The two Higgs doublet models (2HDM) [Lee, PRD 8, 1226] are
extensions of the standard model scalar sector
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√

2

)
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2
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√
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)
.

Avoid FCNC by assuming a softly broken global Z2 symmetry
[Glashow, Weinberg, PRD 15, 1958 (1977)] where
(ϕ1, ϕ2) → (ϕ1, −ϕ2)
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,

where m2
12 softly breaks the Z2 symmetry



Numerical scan details

Scanned parameters and ranges

0 ≤ λ1 ≤ 10, 0 ≤ λ2 ≤ 0.2, −10 ≤ λ3 ≤ 10, −10 ≤ λ4 ≤ 10,

−10 ≤ λ5 ≤ 10, 5 ≤ tan β ≤ 45, −3000 ≤ m2
12

GeV2 ≤ 0 ,

Tools used

▶ SPheno to obtain the mass spectrum
▶ HiggsBounds to obtain limits on the Higgses [Bechtle et al,

arXiv:1507.06706]
▶ HiggsSignals to obtain a χ2 for the signals and mass of the

Higgs [Bechtle et al, arXiv:1403.1582]



Numerical scan details

We assume our target region as all the points with χ2 < 95.

▶ Classification: Y = 1 for χ2 < 95
▶ Accumulated points: 20 000
▶ 4 hidden layers, 100 nodes

▶ ReLU activation function
▶ Output layer, 1 node

▶ Sigmoid activation function
▶ Train 1000 epochs per iteration
▶ Loss: Binary cross-entropy
▶ Optimizer: Adam

▶ learning rate: 0.001

In every step, the classifier suggests K = 300 points to the HEPC
from a larger set L = 100 000.



Numerical scan results



Numerical scan results



The code

Implementation using tensorflow

▶ https://github.com/AHamamd150/MLscanner

https://github.com/AHamamd150/MLscanner


What to do with this tool

This tool could be good for

▶ Adjusting complicated allowed regions
▶ Reduce the amount of calls to a time consuming calculation
▶ Compare against an ever increasing amount of experimental

tests



What to do with this tool

This tool could be great for

▶ An study where we already have a sense of the parameter space
▶ Update limits to new data
▶ Test future expectations of a model

▶ Anything where a precise and fast estimation of
observables/likelihood could be employed



What NOT to do with this tool

This tool CANNOT

▶ Precisely estimate parameter distributions (yet)
▶ Replace other tools or packages



. . .

Thanks for listening!


