Exploration of Parameter Spaces Assisted by Machine Learning

Raymundo Ramos Seoultech (based on: A. Hammad, M. Park, R.R., P. Saha, arXiv:2207.09959)

The 2nd AEI Workshop for BSM and the 10th KIAS Workshop on Particle Physics and Cosmology, The Grand Sumorum, Jeju Island November 17, 2022

The problem we want to solve

- Some high energy physics calculations (HEPC) take a very long time/too much computational power
- More parameters → exponential increase in the number of required points
- Multiple disconnected regions

How we want to solve it

- Neural networks (NN) as generic function approximations
- Training a NN could be more efficient than passing every single point through the HEPC
- Eventually, the accuracy of the NN is proportional to how much we care about the sampled regions
- Spend, relatively, more time sampling regions of interest
- Just enough time for low importance regions

Regression

likelihood from predicting the results for observables

$$\hat{Y} = \mathcal{L}(\hat{O}_{j}(\Theta); \boldsymbol{c}, \sigma)$$

$$\hat{Y} = \hat{\mathcal{L}}(\Theta)$$

with a diverse set of results

Points that need attention

- ► Few points → **bad predictions**
- ▶ Poorly sampled observable/likelihood → **bad predictions**
- Poorly distributed initial samples \rightarrow bad predictions

Classification – Allowed region...

- Or any other condition
- Classify from likelihood, χ^2 or observables

Y=1 if $\mathcal{L} < \mathcal{L}_0$ or $\chi^2 < \chi^2_0$ or $\mathcal{O}_{\mathsf{min}} < \mathcal{O} < \mathcal{O}_{\mathsf{max}}$ or .

We need to start with points in all classes

Points that need attention

 Accurate predictions require comparable amount of points inside and outside allowed region Details of the process

Before the iterative process, we need a set of random points and their results to train a NN.

1. L: large set of points prior:

$$L \to NN \to \hat{Y}(L)$$

2. Select an smaller set, K, through a selection criteria

$$(L, \hat{Y}(L))
ightarrow$$
 selection criteria $ightarrow (K, \hat{Y}(K))$

3. Get the correct results, Y(K), from the HEPC

 $K \rightarrow \mathsf{HEPC} \rightarrow Y(K)$

4. Train with set K and its results Y(K)

 $(\mathcal{K}, \mathcal{Y}(\mathcal{K}))
ightarrow$ train the NN again

Selection of points for HEPC

We want to pass a set of meaningful points to the HEPC.

- \blacktriangleright Highest predicted likelihood/lowest predicted χ^2
 - But keep diversity of observables/likelihood
- ▶ Points predicted with low likelihood/high χ^2 may be included as part of some **rectifying strategy**.
- Fraction of random points to find new regions

Selection of points for training

Training is also time consuming

Required time depends non trivially on:

- epochs
- number of hidden layers
- number of nodes

And the number of points used for training also adds time

Selection of points for training - Regression

- wrongly predicted in group above: rectify inaccurate predictions
- \blacktriangleright What about points wrongly predicted with low likelihood/high χ^2

This needs a well thought strategy

Selection of points for training - Classification

- ▶ True allowed: Good certainty. These we are interested in
- **False allowed**: Confusing. These we want to correct
- ▶ False excluded: Confusing. These we want to correct
- True excluded: Good certainty. The region we care the least

Boosting initial convergence

For the very few steps, predictions should be expected to be **mostly** wrong

Many options to improve initial convergence:

Naive/Brute force: run more points to collect usable points

- Sample more points around known points in the target region
- Sample points between known points (Synthetic Minority Oversampling Technique, SMOTE) [Chawla et al, arXiv:1106.1813]

If these techniques work they should be needed **only in the first few iterations**.

Summary of the process

Applied to toy model

We tested these two processes against a simple toy model:

$$O_{3d} = \left[2 + \cos\left(\frac{x_1}{7}\right)\cos\left(\frac{x_2}{7}\right)\cos\left(\frac{x_3}{7}\right)\right]^5$$

assuming a measured central value $c_{3d} = 100$ with a standard deviation of $\sigma_{3d} = 20$.

We define the likelihood for this toy model as

$$\mathcal{L} = exp\left[rac{(O_{3d} - c_{3d})^2}{\sigma_{3d}}
ight]$$

and assume a region of interest where $\mathcal{L}>0.9$, and all x_j in the range $[-10\pi,10\pi]$

Applied to toy model, region coverage

With this setup, there is a total of 13 disconnected regions, shaped like hollow shells.

4 hidden layers (ReLU), 1000 epochs, Adam, loss: (MAE, Binary cross-entropy), output layer activation: (linear, sigmoid)

Applied to toy model

Learning the Higgs signal strength in the 2HDM

The two Higgs doublet models (2HDM) [Lee, PRD $\mathbf{8}$, 1226] are extensions of the standard model scalar sector

$$\phi_1 = \begin{pmatrix} \eta_1^+ \\ (v_1 + h_1 + ih_3)/\sqrt{2} \end{pmatrix}, \qquad \phi_2 = \begin{pmatrix} \eta_2^+ \\ (v_2 + h_2 + ih_4)/\sqrt{2} \end{pmatrix}$$

Avoid FCNC by assuming a softly broken global Z_2 symmetry [Glashow, Weinberg, PRD **15**, 1958 (1977)] where $(\phi_1, \phi_2) \rightarrow (\phi_1, -\phi_2)$

$$\begin{split} V_{\phi} = & m_{11}^2 (\phi_1^{\dagger} \phi_1) + m_{22}^2 (\phi_2^{\dagger} \phi_2) - \left[m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + \lambda_1 (\phi_1^{\dagger} \phi_1)^2 \\ & + \lambda_2 (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) \\ & + \frac{1}{2} \left[\lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{H.c.} \right] \,, \end{split}$$

where m_{12}^2 softly breaks the Z_2 symmetry

Numerical scan details

Scanned parameters and ranges

$$\begin{split} 0 &\leq \lambda_1 \leq 10, \quad 0 \leq \lambda_2 \leq 0.2, \quad -10 \leq \lambda_3 \leq 10, \quad -10 \leq \lambda_4 \leq 10, \\ -10 &\leq \lambda_5 \leq 10, \quad 5 \leq \tan\beta \leq 45, \quad -3000 \leq \frac{m_{12}^2}{\text{GeV}^2} \leq 0\,, \end{split}$$

Tools used

- SPheno to obtain the mass spectrum
- HiggsBounds to obtain limits on the Higgses [Bechtle et al, arXiv:1507.06706]
- HiggsSignals to obtain a \(\chi^2\) for the signals and mass of the Higgs [Bechtle et al, arXiv:1403.1582]

Numerical scan details

We assume our target region as all the points with $\chi^2 <$ 95.

- Classification: Y = 1 for $\chi^2 < 95$
- Accumulated points: 20 000
- 4 hidden layers, 100 nodes
 - ReLU activation function
- Output layer, 1 node
 - Sigmoid activation function
- Train 1000 epochs per iteration
- Loss: Binary cross-entropy
- Optimizer: Adam
 - learning rate: 0.001

In every step, the classifier suggests K = 300 points to the HEPC from a larger set $L = 100\ 000$.

Numerical scan results

Numerical scan results

The code

Implementation using tensorflow

https://github.com/AHamamd150/MLscanner

This tool could be good for

- Adjusting complicated allowed regions
- Reduce the amount of calls to a time consuming calculation
- Compare against an ever increasing amount of experimental tests

What to do with this tool

This tool could be great for

- An study where we already have a sense of the parameter space
 - Update limits to new data
 - Test future expectations of a model
- Anything where a precise and fast estimation of observables/likelihood could be employed

What NOT to do with this tool

This tool CANNOT

- Precisely estimate parameter distributions (yet)
- Replace other tools or packages

A 14 A 14

Thanks for listening!