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Q-balls: Non-Topological Solitons

Extended (scalar) field configuration

Carries conserved charge

(Quasi-)stable if total energy is less than Qm, mass energy of Q free
scalar quanta

Condition for global Coleman (thin wall) Q-balls to exist:√
V (φ)/φ2 is minimized at finite nonzero φ0

Energy per unit charge ω =
√

2V (φ0)/φ20 is less than m =
√

2V ′′

Typically, to minimize
√

V (φ)/φ2 at nonzero φ0 requires an attractive
interaction (e.g., φ3)...but is this necessary?
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The Motivation...

Renormalizable theory with a φ→ −φ symmetry:
No Q-balls at zero temperature

Theory has bosons whose mass is proportional to the VEV, m ∼ gφ

At finite temperature, one-loop corrections to scalar potential:

V1−loop ⊃
∑

bosons

niT
4

2π2
JB

(
m2

i

T 2

)
At high temperatures:

JB(x) ≈ −π
4

45
+
π2

12
x − π

6
x3/2

induces a term ∼ −AT |φ|3.

Potential issues: Finite temperature corrections also affect the mass;
High T not valid unless T � φ0
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SM(-ish) Higgs as a Playground

Complications with the SM Higgs:

Due to running quartic coupling, V (h) < 0 at large scales, which
leads to solitosynthesis (phase transition to true vacuum)

Solution: Adjust top pole mass to ensure V (h) > 0 to h & 1018GeV

Q-balls made of Higgs quanta carry gauge charge- repulsive
interactions mediated by gauge bosons increases energy

First consider “global” Higgs model: gauge bosons have masses
∼ g 〈h〉, but ignore repulsive gauge boson interactions inside Q-ball

Then consider gauged SM Higgs model; extra energy from the gauge
interactions prevents thermal Higgs balls from existing

What about extensions of SM?
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“Global” Higgs Model

Treat the Higgs ball as if it carries global, not gauge charge: ignore
gauge-boson-mediated interactions between charge inside the Q-ball

Include in the Higgs potential: Zero-temperature one-loop effects,
finite-temperature one-loop effects, and ring (daisy) finite
temperature effects

Do not make the high temperature expansion
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Gauge Effects

Gauged U(1) Q-balls studied in Heeck et. al., Phys. Rev. D 103
(2021)

Generalized their approach to generic SU(N) and then SU(2)×U(1),
but still making the static charge approximation:

φ(x , t) =
φ0√

2
F (r)e iωt ,

Aa
0(x , t) = Ar

0(t), Aa
i (x , t) = 0

Removes SU(2) self-interactions between the gauge fields in the
Q-ball

Breakdown of static charge approximation ↔ confining nature of
SU(N) gauge interactions

Use static charge approximation only if Q-ball radius is much less
than SU(2) confinement scale
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Gauge Effects

Results:

Energy per unit charge ω:

ω =
1

2
Rh0ω0

√
g2
W + g2

Y coth

(
1

2
Rh0

√
g2
W + g2

Y

)
where ω0 is the “global” Q-ball energy per unit charge, h0 is the
global Q-ball VEV, and R is the radius.

Charge:

QY = −QW =
8πRω0

(
Rh0

√
g2
W + g2

Y coth
(
1
2Rh0

√
g2
W + g2

Y

)
− 2
)

g2
W + g2

Y

(Numerically invert to find radius for a given charge.)

VEV: Step function with h = h0 (global value) inside.
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Thermal Higgs Balls in the SM

No thermal Higgs balls in the Standard Model: Extra energy from gauge
boson repulsion between charges makes the energy per unit charge ω
greater than the mass of a free Higgs quanta:

Q=10 Q=100

Q=104 Q=106
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BSM?

Does this hold for all extensions of the SM? (Or in non-SM sectors?)
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Idea: Modify the running of the gauge couplings gW and gY (e.g.,
extra fermions)

Why this might work: Decreases the energy contribution from
repulsive gauge interactions

Why this doesn’t work: The gauge boson masses ∼ gh0, so it also
decreases the cubic term that makes the thermal balls

Need to decouple these two things
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BSM?

Does this hold for all extensions of the SM? (Or in non-SM sectors?)

Also introduce a scalar field:

V (H,S) = −µ2H†H + λH(H†H)2 +
m2

S

2
S2 + λSS

4 + λHSH
†HS2

which has mass:

mS ,eff =
√

m2
S + λHSh2 ≈

√
λHSh

Coefficient of −AT |h|3 term in potential controlled by λHS , not
gauge couplings
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BSM Example

λHS = 0.9, and gY , gW running to one-tenth their SM values:
(not fine-tuned since at one loop level, contributions to the β function ∝ g 3)
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Stable thermal Higgs balls up to charges ∼ 106

Quasi-stable because Higgs quanta can decay into fermions
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λHS = 0.9, and gY , gW running to one-tenth their SM values:
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Conclusions

Thermal Q-balls: Non-topological solitons that exist due to finite
temperature corrections in the potential.

Does your model have a charged scalar field (either global or gauge
charge) whose VEV gives masses to other bosons? Then you might
have thermal Q-balls!

Standard Model Higgs does not have thermal Q-balls due to repulsive
force between charge due to gauge interactions

But BSM scenarios may have thermal Higgs balls (especially with an
extended scalar sector)...

Future work: Can these be produced in the early universe? Are there
cosmological implications?

Thank you! Any questions?
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