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Beyond the …….
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We need to go beyond the wall, 
looking for NP.
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Is there only one wall?
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Energy
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If we observe some signals of 
a NP model,  

how can we know its 
credibility? 
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For the given NP-1 model, 

the cutoff scale can tell the next-
level BSM model.
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2. RGE effects on the CDF W boson mass measurement
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setting for the Higgs sector, considering two scenarios, the “normal” scenario where the

observed Higgs boson is the lighter CP -even scalar h and the “inverted” scenario where

the heavier CP -even scalar H is the observed one. In this general setup, we thoroughly

study the impact of the following theoretical and experimental constraints on the model:

• theoretical stabilities such as unitarity, perturbativity, and vacuum stability;

• electroweak precision measurements (through the S, T , and U parameters);

• Higgs boson signal strength measurements;

• direct searches of new scalars at the LEP, Tevatron, and LHC.

We find that in the Type-X 2HDM, the large and positive �a
obs
µ can be explained only

by huge t�(& 100) and light pseudoscalar mass MA. In this region, the decoupling of the

new CP -even neutral Higgs boson '
0 and the charged Higgs boson H

± is not consistent

with the theoretical stability. We will also show that the direct search bounds from the

LEP and LHC experiments exclude all the parameter region with MA . mhSM/2. For

future discovery, the LHC process of pp ! A'
0

! 4⌧ is to be suggested as a golden mode

to probe the entire parameter space where the observed �aµ is explained, and all the above

constraints are satisfied. These are our main results.

The paper is organized in the following way. In Sec. 2, we briefly review the Type-

X 2HDM and describe the characteristics of the normal and inverted scenarios in the

Higgs alignment limit. In Sec. 3, we discuss the new contributions of the Type-X 2HDM

to �aµ, presenting how significantly the observed �aµ a↵ects t� , MA, MH± , and m'0 .

Section 4 describes our strategies for scanning in three steps and shows the results of the

allowed parameter space at each step. Section 5 deals with the electron anomalous magnetic

moment and the LHC signatures. Conclusions are given in Sec. 6.

2 Type-X 2HDM

The 2HDM accommodates two complex SU(2)L Higgs doublet scalar fields, �1 and �2 [78]:
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2 = 246 GeV. Using the simplified notation of sx = sinx, cx =

cos x, and tx = tan x, we define t� = v2/v1. A discrete Z2 symmetry under which �1 !

�1 and �2 ! ��2 is imposed in order to prevent the tree-level flavor changing neutral

currents [79, 80]. Then the renormalizable and CP conserving scalar potential with softly
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• Basic theory setup

• Discrete Z2 symmetry to avoid tree-level FCNC

Parameter Input Value PDG 2021

mW [GeV]
80.379(12) 80.361(6) �1.47 80.357(6) �1.86 – – – – [2]

80.4335(94) – – – – 80.381(5) �5.80 80.357(6) �8.53

�↵
(5)
had

1 0.02761(11) 0.02756(11) �0.44 0.02716(38) �4.06 0.02746(10) �1.37 0.02603(36) �14.37 [? ? ? ]

mh [GeV] 125.25(17) 125.25(17) �0.02 92(21)(18) �193.26 125.24(17) �0.06 42(10)(8) �489.71 [2]

mt [GeV]2 172.76(58) 173.02(56) 0.45 176.2(20) 5.83 174.04(55) 2.19 184.2(16) 19.55 [2]

↵s(mZ) 0.1179(9) 0.1180(9) 0.14 0.1193(9) 1.53 0.1177(9) �0.26 0.1152(29) �0.22 [2]

�W [GeV] 2.085(42) 2.0905(5) 0.13 2.0905(5) 0.13 2.0919(5) 0.16 2.919(5) 0.16 [2]

�Z [GeV] 2.4952(23) 2.4942(6) �0.45 2.4940(7) �0.51 2.4946(6) �0.26 2.4945(7) �0.31 [? ]

mZ [GeV] 91.1875(21) 91.1882(20) 0.34 91.2037(90) 7.72 91.1909(20) 1.63 91.2393(77) 24.66 [? ]

A
0,b
FB 0.0992(16) 0.1031(3) 2.44 0.1033(3) 2.54 0.1036(3) 2.72 0.1037(3) 2.83 [? ]

A
0,c
FB 0.0707(35) 0.0737(3) 0.85 0.0737(3) 0.85 0.0740(3) 0.95 0.07404(25) 0.95 [? ]

A
0,`
FB 0.0171(10) 0.01623(10) �0.87 0.01622(10) �0.88 0.01637(10) �0.73 0.01636(10) �0.74 [? ]

Ab 0.923(20) 0.93462(4) 0.58 0.93462(4) 0.58 0.93464(4) 0.58 0.93464(4) 0.58 [? ]

Ac 0.670(27) 0.6679(2) �0.08 0.6679(2) �0.08 0.6682(2) �0.07 0.6682(2) �0.07 [? ]

A`(SLD) 0.1513(21) 0.1471(5) �2.00 0.1469(5) �2.10 0.1478(5) �1.70 0.1476(5) �1.78 [? ]

A`(LEP) 0.1465(33) 0.1471(5) 0.18 0.1469(5) 0.12 0.1478(5) 0.37 0.1476(5) 0.32 [? ]

R
0
b

0.21629(66) 0.21583(10) �0.69 0.21582(10) �0.71 0.21580(10) �0.74 0.21579(10) �0.76 [? ]

R
0
c

0.1721(30) 0.17222(6) 0.04 0.17222(6) 0.04 0.17223(6) 0.04 0.17223(6) 0.04 [? ]

R
0
`

20.767(25) 20.735(8) �1.28 20.732(8) �1.40 20.733(8) �1.35 20.730(8) �1.48 [? ]

�
0
h
[nb] 41.540(37) 41.491(8) �1.34 41.489(8) �1.39 41.490(8) �1.35 41.488(8) �1.39 [? ]

sin2
✓
`

e↵(QFB) 0.2324(12) 0.23151(6) �0.74 0.23151(6) �0.74 0.23143(6) �0.81 0.23143(6) �0.81 [? ]

sin2
✓
`

e↵(Teva) 0.23148(33) 0.23151(6) 0.10 0.23151(6) 0.10 0.23143(6) �0.15 0.23143(6) �0.15 [? ]

mc [GeV] 1.27(2) 1.27(2) 0.00 – – 1.27(2) 0.00 – – [2]

mb [GeV] 4.18(3)(2) 4.18(3)(2) 0.00 – – 4.18(3)(2) 0.00 – – [2]

PDG from the global fit: (1)

m
PDG
W

= 80.357± 0.006 GeV

ATLAS[2017]:

m
ATLAS
W

= 80.370± 0.019 GeV

CDF[2022]:

m
CDF
W

= 80.4335± 0.0094 GeV

m
CDF
W

= 80.4335±0.0094 GeV [1]. The total uncertainty is less than 10 MeV and the central

value is about 76.5 MeV larger than the SM prediction: mSM
W

= 80.357± 0.006 GeV [2].

�1 ! �1, �2 ! ��1

1
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is imposed in order to prevent the tree-level flavor changing neutral currents [79, 80].

Then the renormalizable and CP conserving scalar potential with softly broken Z2 sym-

metry is

V� = m
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22�
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i
,

where the m
2
12 term softly breaks the Z2 parity. There are five physical Higgs bosons, the

light CP -even scalar h, the heavy CP -even scalar H, the CP -odd pseudoscalar A, and

two charged Higgs bosons H
±. The relations of the physical Higgs bosons with the weak

eigenstates in Eq. (2.1) via two mixing angles ↵ and � are referred to Ref. [81, 82]. Note

that the SM Higgs boson is a linear combination of h and H, as

hSM = s��↵h + c��↵H. (2.3)

The Yukawa couplings to the SM fermions are written by

LYuk = �

X

f

⇣
mf

v
y

h

f
f̄fh +

mf

v
y

H

f
f̄fH � i

mf

v
y

A

f
f̄�5fA

⌘
(2.4)

�

(p
2

v
t
�
mty

A

t PL + mby
A

b
PR

�
bH

+ +

p
2m`

v
y

A

`
⌫`PR`H

+ + H.c.

)
,

where PR,L = (1 ± �
5)/2 and ` = µ, ⌧ .

In the Type-X, the observed scalar boson at a mass of 125 GeV is very like the SM

Higgs boson, especially in the large t� limit [83]. Therefore, we take the Higgs alignment

limit where one of the CP -even neutral Higgs bosons is the SM Higgs boson hSM [84–88].

There are two ways to realize the Higgs alignment limit, the “normal” and “inverted”

scenarios. In the normal scenario, the observed Higgs boson is the lighter CP -even scalar

h, i.e., s��↵ = 1. In the inverted scenario, the heavier CP -even scalar H is the observed one

while the lighter one is hidden, wherein the Higgs alignment is satisfied by s��↵ = 0 [87, 89].

Then the model has five parameters in the physical basis,
�
m'0 , MA, MH± , M

2
, t�

 
(2.5)

where M
2 = m

2
12/(s�c�) and '

0 is the new CP -even neutral Higgs boson, i.e., '
0 = H in

the normal scenario and '
0 = h in the inverted scenario. Two scenarios are summarized

as follows:

normal scenario (NS) inverted scenario (IS)

hSM = h, '
0 = H hSM = H, '

0 = h

y
hSM
f

= 1, s��↵ = 1 y
hSM
f

= 1, s��↵ = 0

y
A
t = �y

'
0

t
= 1

t�
, y

A

`
= y

'
0

`
= t� y

A
t = y

'
0

t
= 1

t�
, y

A

`
= �y

'
0

`
= t�

(2.6)
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• Basic theory setup

• Discrete Z2 symmetry to avoid tree-level FCNC

Parameter Input Value PDG 2021

mW [GeV]
80.379(12) 80.361(6) �1.47 80.357(6) �1.86 – – – – [2]

80.4335(94) – – – – 80.381(5) �5.80 80.357(6) �8.53

�↵
(5)
had

1 0.02761(11) 0.02756(11) �0.44 0.02716(38) �4.06 0.02746(10) �1.37 0.02603(36) �14.37 [? ? ? ]

mh [GeV] 125.25(17) 125.25(17) �0.02 92(21)(18) �193.26 125.24(17) �0.06 42(10)(8) �489.71 [2]

mt [GeV]2 172.76(58) 173.02(56) 0.45 176.2(20) 5.83 174.04(55) 2.19 184.2(16) 19.55 [2]

↵s(mZ) 0.1179(9) 0.1180(9) 0.14 0.1193(9) 1.53 0.1177(9) �0.26 0.1152(29) �0.22 [2]

�W [GeV] 2.085(42) 2.0905(5) 0.13 2.0905(5) 0.13 2.0919(5) 0.16 2.919(5) 0.16 [2]

�Z [GeV] 2.4952(23) 2.4942(6) �0.45 2.4940(7) �0.51 2.4946(6) �0.26 2.4945(7) �0.31 [? ]

mZ [GeV] 91.1875(21) 91.1882(20) 0.34 91.2037(90) 7.72 91.1909(20) 1.63 91.2393(77) 24.66 [? ]

A
0,b
FB 0.0992(16) 0.1031(3) 2.44 0.1033(3) 2.54 0.1036(3) 2.72 0.1037(3) 2.83 [? ]

A
0,c
FB 0.0707(35) 0.0737(3) 0.85 0.0737(3) 0.85 0.0740(3) 0.95 0.07404(25) 0.95 [? ]

A
0,`
FB 0.0171(10) 0.01623(10) �0.87 0.01622(10) �0.88 0.01637(10) �0.73 0.01636(10) �0.74 [? ]

Ab 0.923(20) 0.93462(4) 0.58 0.93462(4) 0.58 0.93464(4) 0.58 0.93464(4) 0.58 [? ]

Ac 0.670(27) 0.6679(2) �0.08 0.6679(2) �0.08 0.6682(2) �0.07 0.6682(2) �0.07 [? ]

A`(SLD) 0.1513(21) 0.1471(5) �2.00 0.1469(5) �2.10 0.1478(5) �1.70 0.1476(5) �1.78 [? ]

A`(LEP) 0.1465(33) 0.1471(5) 0.18 0.1469(5) 0.12 0.1478(5) 0.37 0.1476(5) 0.32 [? ]

R
0
b

0.21629(66) 0.21583(10) �0.69 0.21582(10) �0.71 0.21580(10) �0.74 0.21579(10) �0.76 [? ]

R
0
c

0.1721(30) 0.17222(6) 0.04 0.17222(6) 0.04 0.17223(6) 0.04 0.17223(6) 0.04 [? ]

R
0
`

20.767(25) 20.735(8) �1.28 20.732(8) �1.40 20.733(8) �1.35 20.730(8) �1.48 [? ]

�
0
h
[nb] 41.540(37) 41.491(8) �1.34 41.489(8) �1.39 41.490(8) �1.35 41.488(8) �1.39 [? ]

sin2
✓
`

e↵(QFB) 0.2324(12) 0.23151(6) �0.74 0.23151(6) �0.74 0.23143(6) �0.81 0.23143(6) �0.81 [? ]

sin2
✓
`

e↵(Teva) 0.23148(33) 0.23151(6) 0.10 0.23151(6) 0.10 0.23143(6) �0.15 0.23143(6) �0.15 [? ]

mc [GeV] 1.27(2) 1.27(2) 0.00 – – 1.27(2) 0.00 – – [2]

mb [GeV] 4.18(3)(2) 4.18(3)(2) 0.00 – – 4.18(3)(2) 0.00 – – [2]

PDG from the global fit: (1)

m
PDG
W

= 80.357± 0.006 GeV

ATLAS[2017]:

m
ATLAS
W

= 80.370± 0.019 GeV

CDF[2022]:

m
CDF
W

= 80.4335± 0.0094 GeV

m
CDF
W

= 80.4335±0.0094 GeV [1]. The total uncertainty is less than 10 MeV and the central

value is about 76.5 MeV larger than the SM prediction: mSM
W

= 80.357± 0.006 GeV [2].

�1 ! �1, �2 ! ��1

1• Scalar potential with CP-invariance
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• Four types

model (MSSM) is the THDM with a supersymmetric rela-
tion [2] among the parameters of the Higgs sector, whose
Yukawa interaction is of type II, in which only a Higgs
doublet couples to up-type quarks and the other couples to
down-type quarks and charged leptons. On the other hand,
a TeV-scale model to try to explain neutrino masses, dark
matter, and baryogenesis has been proposed in Ref. [7]. In
this model the Higgs sector is the two Higgs doublet with
extra scalar singlets, and the Yukawa interaction corre-
sponds to the type-X THDM, in which only a Higgs
doublet couples to quarks and the other couples to leptons.
Therefore, in order to select the true model from various
new physics candidates that predict THDMs (and their
variations with singlets), it is important to experimentally
determine the type of Yukawa interaction.

There have been many studies for the phenomenological
properties of the type-II THDM, often in the context of the
MSSM [2]. On the contrary, there have been fewer studies
for the other types of Yukawa interactions in the THDM.
The purpose of this paper is to clarify phenomenological
differences among these types of Yukawa interactions in
the THDM at the LHC and the International Linear
Collider (ILC) [15]. We first study the decay rates and
the decay branching ratios of the CP-even (h and H) and
CP-odd (A) neutral Higgs bosons and the charged Higgs
bosons (H!) in various types of Yukawa interactions. It is
confirmed that there are large differences in the Higgs
boson decays among these types of Yukawa interactions
in the THDM. In particular, in the case where the CP-even
Higgs boson h is approximately SM-like, H and A decay
mainly into !þ!# in the type-X scenario for the wide range
of parameter space, while they decay mainly into b !b in the
type-II scenario. We then summarize constraints on the
mass of H! from current experimental bounds in various
types of Yukawa interactions. In addition to the lower
bounds on the mass (mH!) from CERN LEP and
Tevatron direct searches [16,17], mH! can also be con-
strained by the B-meson decay data such as B ! Xs" [18–
21] and B ! !# [22,23], depending on the model of
Yukawa interaction. The B ! Xs" results give a severe
lower bound, mH! * 295 GeV, at the next-to-next-to-
leading order (NNLO) in the (nonsupersymmetric) type-
II THDM and the type-Y THDM [20,21], but provide no
effective bound in the type-I (type-X) THDM for tan$ *
2, where tan$ is the ratio of the vacuum expectation values
(VEVs) of the CP-even Higgs bosons. We also discuss the
experimental bounds on the charged Higgs sector from
purely leptonic observables ! ! % !## [24] and the muon
anomalous magnetic moment [25,26].

We finally discuss the possibility of discriminating be-
tween the types of Yukawa interactions at the LHC and
also at the ILC. We mainly study collider phenomenology
in the type-X THDM in the light extra Higgs boson sce-
nario, and see differences from the results in the MSSM
(the type-II THDM). We discuss the signal of neutral and

charged Higgs bosons at the LHC, which may be useful to
distinguish the type of Yukawa interaction. The feasibility
of the direct production processes from gluon fusion gg !
A (H) and the associated production from pp ! b !bA
(b !bH) is studied, and the difference in the signal signifi-
cance of their leptonic decay channels is evaluated in the
type-X THDM and the MSSM.We also consider the Higgs
boson pair production pp ! AH!,HH!, AH and find that
the leptonic decay modes are also useful to explore the type
of Yukawa interaction. At the ILC, the process eþe# !
AH is useful to examine the type-X THDM, because the
final states are completely different from the case of the
MSSM.
In Sec. II, we give a brief review of the types of Yukawa

interactions in the THDM. In Sec. III, the decay widths and
the branching ratios are evaluated in the four different
types of Yukawa interactions. Section IV is devoted to a
discussion of current experimental constraints on the
THDM in each type of Yukawa interaction. In Sec. V, the
possibility of discriminating the type of Yukawa interac-
tion at the LHC and the ILC is discussed. Conclusions are
given in Sec. VI. The formulas of the decay rates of the
Higgs bosons are listed in the Appendix.

II. TWO HIGGS DOUBLET MODELS UNDER THE
Z2 SYMMETRY

In the THDM with isospin doublet scalar fields "1 and
"2 and a hypercharge of Y ¼ 1=2, the discrete Z2 sym-
metry ("1 ! "1 and "2 ! #"2) may be imposed to
avoid FCNC at the lowest order [10]. The most general
Yukawa interaction under the Z2 symmetry can be written
as

LTHDM
yukawa ¼ # !QLYu

~"uuR # !QLYd"ddR

# !LLY‘"‘‘R þ H:c:; (1)

where "f (f ¼ u, d, or ‘) is either "1 or "2. There are
four independent Z2 charge assignments on quarks and
charged leptons, as summarized in Table I [11,12]. In the
type-I THDM, all quarks and charged leptons obtain their
masses from the VEVof"2. In the type-II THDM, masses
of up-type quarks are generated by the VEV of "2, while
those of down-type quarks and charged leptons are ac-
quired by that of "1. The Higgs sector of the MSSM is a
special THDMwhose Yukawa interaction is of type II. The
type-X Yukawa interaction (all quarks couple to "2 while

TABLE I. Variation in charge assignments of the Z2 symmetry.

"1 "2 uR dR ‘R QL, LL

Type I þ # # # # þ
Type II þ # # þ þ þ
Type X þ # # # þ þ
Type Y þ # # þ # þ

AOKI, KANEMURA, TSUMURA, AND YAGYU PHYSICAL REVIEW D 80, 015017 (2009)

015017-2

In Type-X 2HDM the Yukawa interactions can be given as

�LYukawa = Yu2QL �̃2 uR + Yd2QL�2 dR + Y`1 LL�1 eR + h.c. (2.3)

in which Q
T

L
= (uL , dL), LT

L
= (⌫L , lL), and e�1,2 = i⌧2�⇤

1,2. Yu2, Yd2 and Y`1 are the

couplings of the up, down quarks and leptons with the two doublets, family indices are

suppressed.

The factors by which the Standard Model(SM) Higgs interaction strengths need to be

scaled to obtain the neutral scalar Yukawa couplings, are

y
fi

h
= [sin(� � ↵) + cos(� � ↵)f ] ,

y
fi

H
= [cos(� � ↵)� sin(� � ↵)f ] ,

y
fi

A
= �if (for u), y

fi

A
= if (for d, `),

with ` ⌘ � tan�, u = d ⌘ 1/ tan�. (2.4)

The corresponding charged Higgs Yukawa couplings are:

LY = �

p
2

v
H

+
n
ūi [d (VCKM )ij mdjPR � umui (VCKM )ij PL] dj + ` ⌫̄m`PR`

o
+ h.c.,

(2.5)

in which i, j = 1, 2, 3.

The couplings of gauge boson pairs with the neutral scalars are given by

y
V

h
= sin(� � ↵)⇥ g

V

SM , y
V

H = cos(� � ↵)⇥ g
V

SM , (2.6)

Where V denotes W or Z and g
V

SM
is the coupling strength of the SM Higgs with a gauge

boson pair.

Furthermore, Yukawa couplings here may or may not have the same sign as in the SM

case [16],

y
fi

h
⇥ y

V

h
> 0 for SM� like coupling or right� sign(RS),

y
fi

h
⇥ y

V

h
< 0 for wrong � sign(WS). (2.7)

This can happen, for example, for down-type Yukawa couplings in Type II 2HDM [16] as

well. However, in Type-X 2HDM the wrong-sign Yukawa coupling can arise in the lepton

Yukawa sector alone, unless one allows tan� < 1. In case of the SM-like coupling, the 125-

GeV Higgs couplings are very close to those in the SM, which is the so-called alignment

limit. Now in the wrong-sign regime, the absolute values of y`
h
and y

V

h
should still be close

to unity because of the restrictions of 125-GeV Higgs signal data [17, 18]. Moreover, there

are two scenarios, a) The lightest CP-even scalar h is SM-like ie. mh = mhSM
= 125

GeV, we call this Scenario 1 and b) when the heavier CP-even scalar H is SM-like, ie.

mH = mhSM
= 125 GeV, we call this Scenario 2. Both scenario 1 and 2 can in principle

lead to right-sign or wrong-sign of Yukawa coupling depending on the conditions stated in

Equation 2.7.

– 4 –
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• 2 scenarios: normal scenario (NS) & inverted scenario (IS)

II. REVIEW OF 2HDM

In the 2HDM, there exist two complex SU(2)L Higgs scalar doublet fields, �1 and �2 [77]:

�i =

0

@
w

+
i

vi + hi + i⌘ip
2

1

A , i = 1, 2, (1)

where v1 and v2 are the nonzero vacuum expectation values of �1 and �2, respectively. The

electroweak symmetry is broken by v =
p
v
2
1 + v

2
2 = 246 GeV. We define the ratio of two

vacuum expectation values to be tan � = v2/v1. For simplicity, we use the simplified notation

of sx = sin x, cx = cosx, and tx = tan x in what follows.

We additionally impose a discrete Z2 symmetry, under which �1 ! �1 and �2 ! ��2, to

avoid the flavor-changing-neutral-current (FCNC) at tree level [78, 79]. The scalar potential

with softly broken Z2 and CP invariance is

V = m
2
11�

†
1�1 +m

2
22�

†
2�2 �m

2
12(�

†
1�2 +H.c.) (2)

+
1

2
�1(�

†
1�1)

2 +
1

2
�2(�

†
2�2)

2 + �3(�
†
1�1)(�

†
2�2) + �4(�

†
1�2)(�

†
2�1)

+
1

2
�5

h
(�†

1�2)
2 +H.c.

i
,

where the m2
12 term softly breaks the Z2 parity. The model has five physical Higgs bosons, the

lighter CP -even scalar h, the heavier CP -even scalar H, the CP -odd pseudoscalar A, and a

pair of charged Higgs bosons H±. The weak eigenstates in Eq. (1) are linear combinations of

physical Higgs bosons through two mixing angles ↵ and �, of which the expressions are referred

to Ref. [80]. An important relation is the SM Higgs boson hSM with h and H:

hSM = s��↵h+ c��↵H. (3)

In the 2HDM, the observed Higgs boson at a mass of 125 GeV can be either h or H, which

is called the normal scenario (NS) and the inverted scenario (IS) [81, 82], respectively:

NS: mh = m125; (4)

IS: MH = m125,

where m125 is the observed Higgs boson mass. For the consistency with the SM-like Higgs

boson, the Higgs alignment limit has drawn a lot of attention, where h = hSM in the NS and

H = hSM in the IS. Even though the limit simplifies the phenomenology of the new Higgs

bosons such that H ! WW/ZZ, A ! Zh, and H
± ! W

±(⇤)
h are prohibited at tree level, it

may interfere with observing new scalar bosons at the LHC. Therefore, we do not impose any

conditions on the masses and couplings in advance when performing the random scan. Only

the theoretical and experimental constraints will restrict the parameter space.

We take six free parameters in the physical basis:

�
mh, MH± , MH , MA, m

2
12, t�, s��↵

 
. (5)
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• Higgs alignment limits

• step I: �aµ+Theory

• step II: S/T

• step III: Higgs precision and direct search bounds (Collider)

• step IV: global fit to �aµ+LFU

NS: s��↵ = 1

IS: c��↵ = 1

�Mi = Mi �MH± p(SM) = 0.003 p(aligned type� X) < 0.02

3⌧ 4⌧ 4⌧ +W 4⌧ + Z 4⌧ +WW 4⌧ + ZW

Pj!⌧h
' 0.01 =) P

4
j!⌧h

' 10�8

�(pp ! 4⌧ + ZW
±) ' 0.26 ab,

�(pp ! 4⌧ +W
+
W

) ' 0.54 ab.

1

• SM Higgs boson
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• theoretical stability ➡ quartic couplings cannot be too large

as follows:

normal scenario (NS) inverted scenario (IS)

hSM = h, '
0 = H hSM = H, '

0 = h

y
hSM
f

= 1, s��↵ = 1 y
hSM
f

= 1, s��↵ = 0

y
A
t = �y

'
0

t
= 1

t�
, y

A

`
= y

'
0

`
= t� y

A
t = y

'
0

t
= 1

t�
, y

A

`
= �y

'
0

`
= t�

(2.6)

In the Higgs alignment limit, the quartic couplings in terms of the model parameters

are [90]

�1 =
1

v2

h
m

2
125 + t

2
�

⇣
m

2
'0 � M

2
⌘i

, (2.7)

�2 =
1

v2

"
m

2
125 +

1

t
2
�

⇣
m

2
'0 � M

2
⌘#

,

�3 =
1

v2

h
m

2
125 � m

2
'0 � M

2 + 2M
2
H±

i
,

�4 =
1

v2

⇥
M

2 + M
2
A � 2M

2
H±

⇤
,

�5 =
1

v2

⇥
M

2
� M

2
A

⇤
,

where m125 = 125 GeV. The second term of �1 is proportional to t
2
�

and thus dominantly

controls the theoretical constraints in the limit of large t� . Therefore, we need the condition

of m
2
'0 ⇡ M

2 to ensure an exact or almost exact cancellation in the t
2
�

term of �1. This

criteria should be satisfied more strictly in the normal scenario where m'0 > m125. Once

we demand m
2
'0 ⇡ M

2, the perturbativity of the other quartic couplings, |�2,···5| < 4⇡,

causes a chain reaction of limiting the masses as

MA ⇠ MH± ⇠ M ⇡ m'0 . (2.8)

Another smoking-gun signature especially for very light MA is the non-SM decay of

the Higgs boson, hSM ! AA. The hSM-A-A vertex is

�hSMAA =
1

v

�
�m

2
125 � 2M

2
A + 2M

2
�
. (2.9)

The condition in Eq. (2.8) makes it di�cult to have a vanishing �hSMAA. Since the Higgs

precision measurement puts a strong bound on the exotic Higgs decay as B(hSM ! XX) .
O(0.1) [91], the parameter region with MA  m125/2 is highly disfavored.

3 �aµ in the Type-X 2HDM

The Type-X 2HDM accommodates two kinds of new contributions to �aµ, one-loop con-

tributions and two-loop Barr-Zee contributions [92, 93]. The one-loop contributions are

– 6 –

is imposed in order to prevent the tree-level flavor changing neutral currents [79, 80].

Then the renormalizable and CP conserving scalar potential with softly broken Z2 sym-

metry is

V� = m
2
11�

†
1�1 + m

2
22�

†
2�2 � m

2
12(�

†
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where the m
2
12 term softly breaks the Z2 parity. There are five physical Higgs bosons, the

light CP -even scalar h, the heavy CP -even scalar H, the CP -odd pseudoscalar A, and

two charged Higgs bosons H
±. The relations of the physical Higgs bosons with the weak

eigenstates in Eq. (2.1) via two mixing angles ↵ and � are referred to Ref. [81, 82]. Note

that the SM Higgs boson is a linear combination of h and H, as

hSM = s��↵h + c��↵H. (2.3)
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where PR,L = (1 ± �
5)/2 and ` = µ, ⌧ .

�aµ =) huge t� & 100 & light MA

In the Type-X, the observed scalar boson at a mass of 125 GeV is very like the SM

Higgs boson, especially in the large t� limit [83]. Therefore, we take the Higgs alignment

limit where one of the CP -even neutral Higgs bosons is the SM Higgs boson hSM [84–88].

There are two ways to realize the Higgs alignment limit, the “normal” and “inverted”

scenarios. In the normal scenario, the observed Higgs boson is the lighter CP -even scalar

h, i.e., s��↵ = 1. In the inverted scenario, the heavier CP -even scalar H is the observed one

while the lighter one is hidden, wherein the Higgs alignment is satisfied by s��↵ = 0 [87, 89].

Then the model has five parameters in the physical basis,

�
m'0 , MA, MH± , M

2
, t�

 
(2.5)

where M
2 = m

2
12/(s�c�) and '

0 is the new CP -even neutral Higgs boson, i.e., '
0 = H in

the normal scenario and '
0 = h in the inverted scenario. Two scenarios are summarized
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In the Higgs alignment limit

Similar masses of BSM Higgs boson for large tan 𝜷 
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• theoretical stability ➡ quartic couplings cannot be too large

as follows:

normal scenario (NS) inverted scenario (IS)
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In the Higgs alignment limit, the quartic couplings in terms of the model parameters

are [90]
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where m125 = 125 GeV. The second term of �1 is proportional to t
2
�

and thus dominantly

controls the theoretical constraints in the limit of large t� . Therefore, we need the condition

of m
2
'0 ⇡ M

2 to ensure an exact or almost exact cancellation in the t
2
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term of �1. This

criteria should be satisfied more strictly in the normal scenario where m'0 > m125. Once

we demand m
2
'0 ⇡ M

2, the perturbativity of the other quartic couplings, |�2,···5| < 4⇡,

causes a chain reaction of limiting the masses as

MA ⇠ MH± ⇠ M ⇡ m'0 . (2.8)

Another smoking-gun signature especially for very light MA is the non-SM decay of
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�hSMAA =
1

v

�
�m

2
125 � 2M

2
A + 2M

2
�
. (2.9)

The condition in Eq. (2.8) makes it di�cult to have a vanishing �hSMAA. Since the Higgs

precision measurement puts a strong bound on the exotic Higgs decay as B(hSM ! XX) .
O(0.1) [91], the parameter region with MA  m125/2 is highly disfavored.

3 �aµ in the Type-X 2HDM

The Type-X 2HDM accommodates two kinds of new contributions to �aµ, one-loop con-

tributions and two-loop Barr-Zee contributions [92, 93]. The one-loop contributions are
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RGE

• Running of gauge couplings

reveal the characteristics of each type. The beta functions of gauge couplings are given by

16⇡
2
�g3 = �7g

3
3, (12)

16⇡
2
�g2 =

✓
�10

3
+

nd

6

◆
g
3
2 = �3g

3
2, (13)

16⇡
2
�g1 =

✓
20

3
+

nd

6

◆
= 7g

3
1, (14)

ng = 2 (15)

where we set the number of the fermion generation ng = 3 and the number of the scalar doublets

of the fermions and nd = 2. Note that they are the same in all four types.
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The Yukawa coupling of the top quark, bottom quark, and tau lepton (yt, yb, and y⌧ ) have

the following initial conditions at the top quark mass scale MT = 173.34 GeV [? ] in each
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• Running of Yukawa couplings has two contributions.
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Next we focus on the RGE of the Yukawa couplings in Type-X 2HDM. The corre-

sponding equations are as follows. Here g and Y in the superscripts, respectively, denote

gauge and Yukawa interactions, contributing to the running of the Yukawa couplings(taken

here as real).
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The resulting beta-function will be the sum of the gauge and Yukawa components.

�Y = �
g

Y
+ �

Y

Y (5.3)

The Yukawa and gauge contributions show similar behavior for Yt and Yb. It is clear from

Equations. 5.2 that the gauge contribution decreases with energy whereas the Yukawa part

go up at higher energy. However, the terms involving the strong coupling constant g3

dominates over the other terms and therefore the top and bottom Yukawa couplings mono-

tonically decrease with energy. The ⌧ -Yukawa coupling on the other hand, una↵ected by

the strong interaction, remains almost constant. This behavior can be seen from Figure 15.

The relevant equations for the running of quartic couplings are given below. Here, the

superscripts b and Y denote, respectively, bosonic(gauge couplings and quartic couplings)

and Yukawa interactions, contributing to the running of �0s.
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• Running of quartic couplings from bosonic contributions and 
fermonic contributions
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Like before, the actual beta-function will be the sum of the bosonic and Yukawa compo-

nents.
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(5.5)

One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.

5.2 Coupling trajectories and inference drawn from them

In this subsection, the running of various couplings will be illustrated in terms of a few

chosen benchmark points. A brief justification for choosing those will be given shortly.

Based on the discussion in the preceding subsection, we will present here the full two-

loop results for our benchmark points(BP). Our chosen benchmarks are consistent with

theoretical as well as experimental constraints.

We have seen that, in Scenario 1, the requirement of low branching fraction of SM-like

Higgs to two pseudoscalars along with other constraints leads us to mA >
mh

2 in the RS

region. However, it is possible to get allowed points in the whole range of mA in the WS

regime. Keeping this in mind, we choose three benchmarks BP1, BP2 and BP3 for scenario

1. BP1 corresponds to WS region with mA >
mh

2 . BP2 corresponds to WS region and

mA <
mh

2 . For BP3, we have taken RS with mA >
mh

2 . We present the benchmark points

chosen for Scenario 1 in Table 1.

As long as we are in the alignment limit with large tan�, �2 is precisely determined

by SM-like Higgs with a very small value(⇡
m

2
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⇡ 0.258), which is the case for all the

benchmarks in Table 1. On the other hand, �1 and �3 depend on the the mass splitting

between two CP-even scalars. Furthermore, �1 can be controlled by m
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12, which gets

an enhancement factor in the large tan� region. As for this parameter space, we have
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with large tan�, �4 is proportional to m

2
A
� 2m2

H± +m
2
H

and takes a negative

value for our benchmarks. Similarly, �5 takes a value close to �4 with a opposite sign,

being proportional to �m
2
A
+ m

2
H
. It is clearly seen that for degenerate mH and mH± ,

�5 ⇡ ��4. The equality in magnitude is prominent in case of large mH . For BP3 this does

not apply. However, the mutual opposite sign between �4 and �5 still holds. We would
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The resulting beta-function will be the sum of the gauge and Yukawa components.
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Like before, the actual beta-function will be the sum of the bosonic and Yukawa compo-

nents.
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.

5.2 Coupling trajectories and inference drawn from them

In this subsection, the running of various couplings will be illustrated in terms of a few

chosen benchmark points. A brief justification for choosing those will be given shortly.

Based on the discussion in the preceding subsection, we will present here the full two-

loop results for our benchmark points(BP). Our chosen benchmarks are consistent with

theoretical as well as experimental constraints.

We have seen that, in Scenario 1, the requirement of low branching fraction of SM-like

Higgs to two pseudoscalars along with other constraints leads us to mA >
mh

2 in the RS

region. However, it is possible to get allowed points in the whole range of mA in the WS

regime. Keeping this in mind, we choose three benchmarks BP1, BP2 and BP3 for scenario

1. BP1 corresponds to WS region with mA >
mh

2 . BP2 corresponds to WS region and

mA <
mh

2 . For BP3, we have taken RS with mA >
mh

2 . We present the benchmark points

chosen for Scenario 1 in Table 1.

BP1 BP2 BP3

MH in GeV 449.734 324.237 153.865

MA in GeV 80.0 24.6997 63.0

MH± in GeV 453.895 331.34 176.152

�1 0.095392 1.4963 0.52616

�2 0.25788 0.25792 0.25773

�3 6.9130 3.5968 0.52559

�4 -3.3549 -1.8783 -0.56774

�5 3.23062 1.72343 0.324993

m2
12 in GeV2 2696.2389 1992.85 353.226215

tan� 75.0 52.7154 67.0

sin(� � ↵) 0.9996 0.999163 0.999996

y`

h ⇥ sin(� � ↵) -1.12095144 -1.15624366 0.81048833

Table 1. Benchmark points for Scenario 1.

As long as we are in the alignment limit with large tan�, �2 is precisely determined

by SM-like Higgs with a very small value(⇡
m

2
h

v2
⇡ 0.258), which is the case for all the

benchmarks in Table 1. On the other hand, �1 and �3 depend on the the mass splitting

between two CP-even scalars. Furthermore, �1 can be controlled by m
2
12, which gets

an enhancement factor in the large tan� region. As for this parameter space, we have

m
2
12 ⇠

m
2
H

tan�
with large tan�, �4 is proportional to m

2
A
� 2m2

H± +m
2
H

and takes a negative

value for our benchmarks. Similarly, �5 takes a value close to �4 with a opposite sign,

being proportional to �m
2
A
+ m

2
H
. It is clearly seen that for degenerate mH and mH± ,

�5 ⇡ ��4. The equality in magnitude is prominent in case of large mH . For BP3 this does
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not apply. However, the mutual opposite sign between �4 and �5 still holds. We would

like to mention here that all the benchmarks satisfy the limit on y
`

h
as well as yV

h
from the

alignment condition [17, 18].

In Figure ??, we can see the two-loop RG running of quartic couplings for BP1, BP2

and BP3. For all these benchmarks tree level unitarity decides the value of ⇤cut�off

UV
which

is denoted by the end scale in all figures, whereas stability and perturbativity can be sat-

isfied even after that cut-o↵ scale. It is clear from the running that the larger the value

for any quatic coupling at the electroweak scale, the quicker it breaks the unitarity cri-

teria. For both BP1 and BP2, �3 is becomes largest among the quartic couplings at the

breakdown scale, whereas in BP3 �1 plays this role. Also from Figure ??(c) it is clear that

starting from nearly same value, �1 can increase faster than �3 as energy increases. On the

other hand, the runnings of other �’s show a flat nature compared to �1 and �3. As we do

not allow hard Z2-breaking, �6 and �7 do not change with energy and are fixed at zero.

In explicit terms, the RG equations for �6 and �7, always carry the terms proportional to

these two �
0s and therefore the relation d�

dµ
= 0 remains valid throughout the running .

A complementary picture is noticed in Scenario 2. Here the requirement of low branch-

ing fraction of SM-like Higgs to a pair of pseudoscalars along with other constraints pushes

mA >
mH

2 in the WS region. On the other hand, in the RS case, it is possible to get a

low BR(hSM ! AA) in the entire range of mA. To examine Scenario 2 on a case by case

basis, we choose three benchmarks BP4, BP5, BP6. BP4 corresponds to RS region with

mA >
mH

2 , BP5 corresponds to RS region with mA <
mH

2 . We consider WS region with

mA >
mH

2 in BP6. The benchmarks for Scenario 2 are listed in Table 2. We mention

here that although it is possible to get a few points in the WS region, with mA
<
⇠

mH

2 , in

the resonant region with severe fine-tuning, we do not consider this region further in our

analysis.

BP4 BP5 BP6

mH in GeV 117.409 93.6073 121.448

mA in GeV 70.0 15.7859 63.0

mH± in GeV 142.529 135.00 139.871

�1 0.07121 1.0251 0.082024

�2 0.25774 0.25767 0.25774

�3 0.46960 0.58636 0.38712

�4 -0.3372 -0.45412 -0.33662

�5 0.121841 0.138905 0.177861

m2
12 in GeV 2 168.10299 393.28757 204.844987

tan� 82.0 22.0 72.00

sin(� � ↵) -0.00141421 0.00601127 -0.02828

y`

h ⇥ cos(� � ↵) 0.88403289597 1.13220955 -1.036145

Table 2. Benchmark points for Scenario 2.

Our BP4 and BP6 have negative sin(� � ↵) and large tan�, where BP5 has positive

sin(� �↵) and comparatively small tan�. Here too, in the alignment limit, �2 is governed
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Figure 15: Two-loop RG running of third generation Yukawa couplings for (a) BP3(RS Scenario 1) and (b)
BP4(RS Scenario 2) and gauge couplings for (c) BP3(RS Scenario 1) and (d) BP4(RS Scenario 2) respectively.
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.

5.2 Coupling trajectories and inference drawn from them

�1 �2 �3 �4 �5 Yt Yb Y⌧

In this subsection, the running of various couplings will be illustrated in terms of a few

chosen benchmark points. A brief justification for choosing those will be given shortly.

Based on the discussion in the preceding subsection, we will present here the full two-

loop results for our benchmark points(BP). Our chosen benchmarks are consistent with

theoretical as well as experimental constraints.

We have seen that, in Scenario 1, the requirement of low branching fraction of SM-like

Higgs to two pseudoscalars along with other constraints leads us to mA >
mh

2 in the RS

region. However, it is possible to get allowed points in the whole range of mA in the WS

regime. Keeping this in mind, we choose three benchmarks BP1, BP2 and BP3 for scenario

1. BP1 corresponds to WS region with mA >
mh

2 . BP2 corresponds to WS region and

mA <
mh

2 . For BP3, we have taken RS with mA >
mh

2 . We present the benchmark points

chosen for Scenario 1 in Table 1.
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MH in GeV 449.734 324.237 153.865

MA in GeV 80.0 24.6997 63.0

MH± in GeV 453.895 331.34 176.152
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m2
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Table 1. Benchmark points for Scenario 1.

As long as we are in the alignment limit with large tan�, �2 is precisely determined

by SM-like Higgs with a very small value(⇡
m

2
h

v2
⇡ 0.258), which is the case for all the

benchmarks in Table 1. On the other hand, �1 and �3 depend on the the mass splitting

between two CP-even scalars. Furthermore, �1 can be controlled by m
2
12, which gets

an enhancement factor in the large tan� region. As for this parameter space, we have

m
2
12 ⇠

m
2
H

tan�
with large tan�, �4 is proportional to m

2
A
� 2m2

H± +m
2
H

and takes a negative

value for our benchmarks. Similarly, �5 takes a value close to �4 with a opposite sign,
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.
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obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.

5.2 Coupling trajectories and inference drawn from them
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In this subsection, the running of various couplings will be illustrated in terms of a few

chosen benchmark points. A brief justification for choosing those will be given shortly.

Based on the discussion in the preceding subsection, we will present here the full two-

loop results for our benchmark points(BP). Our chosen benchmarks are consistent with

theoretical as well as experimental constraints.

We have seen that, in Scenario 1, the requirement of low branching fraction of SM-like

Higgs to two pseudoscalars along with other constraints leads us to mA >
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2 in the RS

region. However, it is possible to get allowed points in the whole range of mA in the WS

regime. Keeping this in mind, we choose three benchmarks BP1, BP2 and BP3 for scenario

1. BP1 corresponds to WS region with mA >
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2 . BP2 corresponds to WS region and
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2 . For BP3, we have taken RS with mA >
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Figure 12: Two-loop RG running of quartic couplings for the benchmarks (a) BP1(WS), (b) BP2(WS) and (c)
BP3(RS) from Scenario 1.
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.
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obvious that their evolution as well as those of the quartic couplings are model-dependent.
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obvious that their evolution as well as those of the quartic couplings are model-dependent.
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Figure 13: Two-loop RG running of quartic couplings for the benchmarks (a) BP4(RS), (b) BP5(RS) and (c)
BP6(WS) from Scenario 2 .
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.
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• Why is the large quartic coupling a problem?


• It can threaten the theoretical stabiities.
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Theoretical stabilities

• Scalar potential bounded from below: 
 
 

• Perturbative unitarity of scalar-scalar scattering at tree level 
 
 
 
 
 
 

• Vacuum stability 

0.00024 by the Higgs observation [31] strongly prefers that at least two masses among MH ,

MA, and MH± be degenerate [44]. The FCNC processes constrain the masses of H
±
and the

value of t�, which is quite strong in Type II, but relaxed in Type I. The updated next-to-

next-to-leading-order SM prediction of BSM(B̄ ! Xs�) [43] and the recent Bell result [45]

strongly bound MH± in the Type II: MH± > 570 (440) GeV for t� & 2 at 95% (99%) C.L. If

t� . 2, the MH± bound rises up significantly. Considering all of the above phenomenological

constraints, we take the following scenario:

s��↵ = 1, MH,A,H± � 500 GeV, 2  t�  40, Mi = Mj (i, j = H,A,H
±
). (12)

Note that the theoretical implication of the heavy scalar bosons does not critically depend

on the type of the 2HDM.

Now, we impose the following theoretical constraints.

1. The scalar potential in Eq. (2) is bounded from below, which requires [46, 47]

�1 > 0, �2 > 0, �3 > �

p
�1�2, (13)

�3 + �4 � |�5| > �

p
�1�2.

2. Perturbative unitarity demands that the following quantities are less than 8⇡ [23, 48]:

a± =
3

2
(�1 + �2) ±

r
9

4
(�1 � �2)

2 + (2�3 + �4)
2, (14)

b± =
1

2

✓
�1 + �2 ±

q
(�1 � �2)

2 + 4�
2
4

◆
,

c± =
1

2

✓
�1 + �2 ±

q
(�1 � �2)

2 + 4�
2
5

◆
,

f+ = �3 + 2�4 + 3�5, f� = �3 + �5, f1 = f2 = �3 + �4,

e1 = �3 + 2�4 � 3�5, e2 = �3 � �5, p1 = �3 � �4.

3. Perturbativity requires

|�i| < 4⇡, i = 1, · · · , 5. (15)

4. We require that the vacuum of the scalar potential be global, which happens if and

only if [49]

D = m
2
12

�
m

2
11 � k

2
m

2
22

�
(t� � k) > 0, (16)
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TABLE II: Six di↵erent cases for the required mass degeneracy with fixed MH or MA.

fixed MH fixed MA

degeneracy varying degeneracy varying

case 1 MA = MH± MA = MH± case 4 MH = MH± MH = MH±

case 2 MH = MA MH± case 5 MA = MH MH±

case 3 MH = MH± MA case 6 MA = MH± MH

where k = (�1/�2)
1/4

. In practice, the vacuum stability condition is naturally satisfied

when MH,A,H± � mh and t� � 1 because D ⇠ (m
2
12)

2
t
2
�
in this limit.

Now, we investigate how strong the theoretical constraints are when the non-SM Higgs

bosons are very heavy. With the given MH or MA, the degenerate condition in Eq. (12) for

the �⇢ constraint allows six di↵erent cases as denoted in Table II. In case 1, for example,

MH is fixed and MA varies freely while MA = MH± . In Fig. 1, we show the theoretically

allowed region of (MS,m12) for the fixed MH,A and t�. Here, MS is the other non-SM Higgs

boson mass, which varies freely. Note that m12, not m
2
12, is presented because only positive

m
2
12 is allowed by the theoretical constraints. We found that case 1, case 2, case 3, and

case 6 show very similar allowed parameter spaces, while case 4 and case 5 share almost

the same allowed region. Therefore, we present case 1 and case 4 in Figs. 1(a) and (b) as

representatives.

We find some interesting results of imposing the theoretical constraints. First, the infor-

mation on one heavy Higgs boson has significant implications on the other non-SM Higgs

boson masses. If MH is somehow measured, MA and MH± cannot remain as totally free pa-

rameters: MH = 750 GeV requires MA,H± 2 [650, 970] GeV. Secondly a strong correlation

exists between m12 and t�, especially in the large t� limit. In the fixed heavy MH case of

Fig. 1(a), large t� almost fixes the value of m12, and the dependence on MS is very weak.

Case 4 and case 5 in Fig. 1(b) also show some correlation between m12 and t�, but that

correlation is weaker than in Fig. 1(a): irrespective of MS, t� determines m12 within the

uncertainty of O(10) GeV. Thirdly, the larger t� is, the smaller m12 is. Large t� prefers soft

breaking of Z2 symmetry.

In order to show the correlation between t� and m12 more concretely, we show the theo-

retically allowed region of (t�,m12) for the given MH or MA, but varying MS in Fig. 2. For

7
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Figure 13: Two-loop RG running of quartic couplings for the benchmarks (a) BP4(RS), (b) BP5(RS) and (c)
BP6(WS) from Scenario 2 .
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One should note, since the Yukawa couplings depend on the specific kinds of 2HDM, it is

obvious that their evolution as well as those of the quartic couplings are model-dependent.

This is obvious from Equations. 5.2 and 5.4.

5.2 Coupling trajectories and inference drawn from them

�1 �2 �3 �4 �5

In this subsection, the running of various couplings will be illustrated in terms of a few

chosen benchmark points. A brief justification for choosing those will be given shortly.

Based on the discussion in the preceding subsection, we will present here the full two-

loop results for our benchmark points(BP). Our chosen benchmarks are consistent with

theoretical as well as experimental constraints.

We have seen that, in Scenario 1, the requirement of low branching fraction of SM-like

Higgs to two pseudoscalars along with other constraints leads us to mA >
mh

2 in the RS

region. However, it is possible to get allowed points in the whole range of mA in the WS

regime. Keeping this in mind, we choose three benchmarks BP1, BP2 and BP3 for scenario

1. BP1 corresponds to WS region with mA >
mh

2 . BP2 corresponds to WS region and

mA <
mh

2 . For BP3, we have taken RS with mA >
mh

2 . We present the benchmark points

chosen for Scenario 1 in Table 1.
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⇡ 0.258), which is the case for all the
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12, which gets
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• RGE analysis to calculate the cutoff scale

FIG. 6: Distributions of the cuto↵ scales of the parameter points at Step-III (left panel) and Step-IV

(right panel) in the CDF case.

the alignment is stronger. A dramatic change happens in Step-IV from the LFU data. Large

t� above ⇠ 65 is excluded. Rare parameter points with t� 2 [170, 200] and s��↵ ⇡ 1 remain

in the PDG case. Since their survival probability is of the order of 10�7, it is hard to consider

them as a meaningful di↵erence between the PDG and CDF.

IV. CUTOFF SCALES VIA THE RGE ANALYSIS

Now that the Higgs-phobic type-X is shown to simultaneously explain m
CDF
W

, �aµ, the LFU

data, and other theoretical/experimental constraints, a question arises as to what energy scale

this model is valid. To answer the question, we run each parameter point via the RGEs,

and check three conditions—unitarity, perturbativity, and vacuum stability—as increasing the

energy scale. If any condition is broken at a particular energy scale, we stop the evolution and

record the energy scale as the cuto↵ scale ⇤c. An excellent way to present the high energy

behavior of all the viable parameter points is to show the distribution of ⇤c.

We use the public code 2HDME [147, 148] to run the following parameters:

gs, g, g
0
, �1,··· ,5, ⇠

h,H,A

f
, m

2
ij
, vi, (i = 1, 2). (26)

First, we convert model parameters of Eq. (15) into those in Eq. (26). Note that we also

incorporate the RG running of v1 and v2, originated from the mixing e↵ects of two scalar doublet

fields with equal quantum numbers. The top quark pole mass scale, m
pole
t = 173.4 GeV, is used

to match the 2HDM to the SM parameters. The boundary conditions at m
pole
t are referred to

Ref. [147]. And we evolve them into higher energy scale through the one-loop RGEs.5

5 In the ⇤c distributions, the di↵erence between one-loop and two-loop RGEs are not significant. To save

13

1. Run each parameter point to the next high energy scale via 
the RGEs.


2. Check three conditions—unitarity, perturbativity, and vacuum 
stability. 


3. If any condition is broken at a particular energy scale, we 
stop the evolution and record the energy scale as the cutoff 
scale.
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FIG. 6: Distributions of the cuto↵ scales of the parameter points at Step-III (left panel) and Step-IV

(right panel) in the CDF case.
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FIG. 6: Distributions of the cuto↵ scales of the parameter points at Step-III (left panel) and Step-IV

(right panel) in the CDF case.
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FIG. 6: Distributions of the cuto↵ scales of the parameter points at Step-III (left panel) and Step-IV

(right panel) in the CDF case.
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FIG. 6: Distributions of the cuto↵ scales of the parameter points at Step-III (left panel) and Step-IV

(right panel) in the CDF case.
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• Quantify the NP effect by the Peskin-Takeuchi oblique 
parameters.


• U from dimension-8 operator

• Setting U=0, but S and T as free parameters

• Without and with the CDF mW

3

with new CDF measured mW . Hence, the measurement
of A

0,b
FB needs special treatment in the future. On the

other hand, we also show the predictions of each observ-
able by removing its input value once a time in the EW
fits in the fourth and sixth columns in the Tab. I. As
expected, mt, mZ and �↵

(5)
had

are sensitive to the change
of mW . Moreover, if the Higgs mass mh measured by
LHC is removed, its best point from the global EW fits
is dramatically reduced. It is because the W boson mass
can be written as [35]

mW = m
0
W

� C1 ln rh + C2(r
2
t
� 1) � C3 ln rh(r2

t
� 1) + ...

(4)
where m

0
W

is the leading order value of W boson mass,
and rh ⌘ mh/(100 GeV), rt ⌘ mt/(173.4 GeV). C1,
C2 and C3 are positive coe�cients. Once the mW is in-
creased, the prediction of mh without its input values in
the EW fits will be decreased to compensate the di↵er-
ence between mW and m

0
W

. Note that without the LHC
input for mh, the CDF (2022) measurement of mW to-
gether with other EWPOs indicates an extremely light
Higgs mh ⇡ 42+10

�8 GeV, which is considerably inconsis-
tent with current measurement. If the CDF (2022) mea-
surement is confirmed by other experiments, it strongly
indicates that there is unknown correction to mW from
mh in SM or there is new physics in the scalar sector.
When both mt and mh are not used in the EW fits, the
antagonistic e↵ect between mt and mh makes the allowed
regions oblique. In order to fit the mW value and mini-
mize the total �

2, heavier mt and mh are preferred as the
best point. The above numerical results are visualized in
the Fig. S2 and S3 in supplementary materials. Besides,
we also use both values of mW in PDG (2021) and CDF
(2022) as the input parameters in the global EW fits, but
find that the best points are just slightly di↵erent from
that only using the CDF (2022).

NEW BOUNDS AND NEW PHYSICS

Table II. The values of S, T and U and the correlation matrix
allowed by the EW fit with the W boson mass from CDF
(2022) and PDG (2021), respectively. mh = 125 GeV and
mt = 172.5 GeV are used as the SM reference point.

13 dof
PDG 2021 CDF 2022

Result Correlation Result Correlation
�
2
min = 15.42 S T U �

2
min = 15.44 S T U

S 0.06 ± 0.10 1.00 0.90 �0.57 0.06 ± 0.10 1.00 0.90 �0.59
T 0.11 ± 0.12 1.00 �0.82 0.11 ± 0.12 1.00 �0.85
U �0.02 ± 0.09 1.00 0.14 ± 0.09 1.00

The EWPOs generically impose stringent constraints
on any theory of electroweak symmetry breaking. Most
of the new physics e↵ects on precision measurements can

Table III. Same as Tab. II, but for S and T with �U = 0.

U = 0
PDG 2021 CDF 2022

Result Correlation Result Correlation
14 dof �

2
min = 15.48 S T �

2
min = 17.82 S T

S 0.05 ± 0.08 1.00 0.92 0.15 ± 0.08 1.00 0.93
T 0.09 ± 0.07 1.00 0.27 ± 0.06 1.00

Figure 1. The 1- and 2-� allowed regions in S-T plane from
the electroweak fits using the PDG 2021 data set with the old
value of mW (green region) and the new CDF value of mW

(red region).

be described by the oblique parameters S, T , and U
1 [54].

In Tab. II, we give the allowed values of S, T and U and
the correlation matrix by using the EW fit with the W

mass from CDF (2022) and PDG (2021), respectively.
The main di↵erences are that the central value of U pa-
rameter predicted by CDF (2022) is much larger than
that predicted by PDG (2021), and the correlations be-
tween U and S or T are mildly strengthened as well. If
making U > S, T , one may need to introduce some new
large multiplet with su�cient low masses of the com-
ponents beyond the SM [55]. We note that the �

2
min

in Tab. I can be reduced to 15.44 from 64.45 if includ-
ing S, T and U in the fit, which demonstrate that the
oblique parameters can describe the main e↵ects caused
by newly measured W boson mass. On the other hand,
since the values of U parameter are found to be very
small in many new physics models, we also present the
results for S and T with �U = 0 in Tab. III and the
Fig. 1. Without the extra freedom of the U parameter,
one can only increase both S and T parameters to fit
mW . It can be seen that the SM value is within the 2�

allowed region by the PDG (2021), however, which is far

1
Besides, there are other equivalent constraints from the EWPOs,

such as (MW , ⇢, sin2 ✓eff ) and (✏1, ✏2, ✏3) parameters [49–53].

[2204.03796]

p=0.22
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• Four types & two scenarios = 8 cases

II. REVIEW OF 2HDM

In the 2HDM, there exist two complex SU(2)L Higgs scalar doublet fields, �1 and �2 [77]:

�i =

0

@
w

+
i

vi + hi + i⌘ip
2

1

A , i = 1, 2, (1)

where v1 and v2 are the nonzero vacuum expectation values of �1 and �2, respectively. The

electroweak symmetry is broken by v =
p
v
2
1 + v

2
2 = 246 GeV. We define the ratio of two

vacuum expectation values to be tan � = v2/v1. For simplicity, we use the simplified notation

of sx = sin x, cx = cosx, and tx = tan x in what follows.

We additionally impose a discrete Z2 symmetry, under which �1 ! �1 and �2 ! ��2, to

avoid the flavor-changing-neutral-current (FCNC) at tree level [78, 79]. The scalar potential

with softly broken Z2 and CP invariance is
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,

where the m2
12 term softly breaks the Z2 parity. The model has five physical Higgs bosons, the

lighter CP -even scalar h, the heavier CP -even scalar H, the CP -odd pseudoscalar A, and a

pair of charged Higgs bosons H±. The weak eigenstates in Eq. (1) are linear combinations of

physical Higgs bosons through two mixing angles ↵ and �, of which the expressions are referred

to Ref. [80]. An important relation is the SM Higgs boson hSM with h and H:

hSM = s��↵h+ c��↵H. (3)

In the 2HDM, the observed Higgs boson at a mass of 125 GeV can be either h or H, which

is called the normal scenario (NS) and the inverted scenario (IS) [81, 82], respectively:

NS: mh = m125; (4)

IS: MH = m125,

where m125 is the observed Higgs boson mass. For the consistency with the SM-like Higgs

boson, the Higgs alignment limit has drawn a lot of attention, where h = hSM in the NS and

H = hSM in the IS. Even though the limit simplifies the phenomenology of the new Higgs

bosons such that H ! WW/ZZ, A ! Zh, and H
± ! W

±(⇤)
h are prohibited at tree level, it

may interfere with observing new scalar bosons at the LHC. Therefore, we do not impose any

conditions on the masses and couplings in advance when performing the random scan. Only

the theoretical and experimental constraints will restrict the parameter space.

We take six free parameters in the physical basis:

�
mh, MH± , MH , MA, m

2
12, t�, s��↵

 
. (5)

4

• No assumptions on the masses and couplings: 6 parameters

• 8 cases for PDG mW and CDF mW ➨16 cases

Comprehensive study
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III. SCANNING STRATEGIES

We perform random scanning of the model parameters by imposing all the theoretical and

experimental constraints. The scanning ranges in the NS and IS are

NS: MH 2 [130, 2000] GeV, MA 2 [15, 2000] GeV, (9)

s��↵ 2 [0.8, 1.0] , m
2
12 2

⇥
0, 10002

⇤
GeV2

,

IS: mh 2 [15, 120] GeV, MA 2 [15, 2000] GeV,

c��↵ 2 [0.8, 1.0] , m
2
12 2

⇥
0, 10002

⇤
GeV2

.

The range of s��↵ is set comfortably, although the most updated results on the Higgs coupling

modifiers are Z > 0.86 and W > 0.94 with W,Z  1 at 95% C.L. [87]. The parameters in

Eq. (9) are independent of the type, but MH± and t� are not, because of the FCNC observ-

ables [75, 76]: MH± in type-II and type-Y is tightly constrained to be MH± & 580 GeV; MH±

in type-I and type-X can be as light as about 100 GeV. Therefore, we take the following ranges

for MH± and t�:

type-I & type-X: MH± 2 [80, 2000] GeV, t� 2 [1, 50] , (10)

type-II & type-Y: MH± 2 [580, 2000] GeV, t� 2 [0.5, 50] .

With the prepared random parameter points, we cumulatively impose the following steps

for the theoretical and experimental constraints:

Step-(i) Theory+FCNC: We require a parameter point to satisfy the theoretical stabilities

and the FCNC results, by using the public code 2HDMC-v1.8.0 [83].

1. Higgs potential being bounded from below [88];

2. Perturbative unitarity of the amplitudes of scalar-scalar, scalar-vector, and vector-

vector scatterings at high energies [89, 90];

3. Perturbativity of the quartic couplings [77, 81];

4. Vacuum stability [91].

5. FCNC observables: In type-I and type-X, the viable space of (MH± , t�) is determined

practically by b ! s� [75, 76]. In type-II and type-Y, on the other hand, �MBs [92]

is more important for MH± & 650 GeV.

Step-(ii) EWPD: We calculate the Peskin-Takeuchi oblique parameters in the 2HDM [93–

95], and compare them with the oblique parameters from the PDG and CDF results in

Eq. (8). Since we perform two parameter (S and T ) fitting under the assumption of

U = 0, we require �
2
< 5.99.

Step-(iii) RGEs for ⇤c > 1 TeV: We demand that the model should be valid at least up

to 1 TeV. Using the RGE’s [77, 86, 96–98], we run the dimensionless parameters in
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• Scanning steps

III. SCANNING STRATEGIES
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the 2HDM, including the gauge couplings, the quartic couplings in the scalar potential,

and the Yukawa couplings of the top quark, bottom quark, and tau lepton. The initial

conditions of the gauge couplings and the Yukawa couplings are set at the top quark

mass scale mt = 173.34 GeV [99]. As increasing the energy scale, we check the unitarity

and stability conditions. If any condition is broken at the energy scale below 1 TeV, we

exclude the parameter point. In other words, the cuto↵ scale ⇤c of the model should be

higher than 1 TeV. We use the public code 2HDME-v1.2 [99] at one-loop level.

Step-(iv) Collider: The collider constraints consist of two categories, the Higgs precision data

and the direct search bounds at the LEP, Tevatron, and LHC. To check the consistency

with the Higgs precision, we use HiggsSignals-v2.6.2 [84], which yields the �
2 output

for 111 Higgs observables [100–107]. Since there are six model parameters, the number

of degrees of freedom is 105. We demand that the p-value be larger than 0.05. For the

consistency with the direct searches at high energy collider, we use the public code Hig-

gsBounds-v5.10.2 [85]. For each process at the LEP, Tevatron, and LHC, we calculate

the cross section in the model, and compare it with the upper bound on the cross sec-

tion at the 95% C.L. When the model prediction is above the observed upper bound, we

exclude the parameter point.

We perform the random scan over the entire six-dimensional parameter space. For each

type in the NS and IS, we obtained 107 parameter points that satisfy Step-(i), which is to be

the reference when computing the survival probabilities. Before proceeding to the subsequent

steps, we investigate the implications of Step-(i) on the masses of new Higgs bosons. In Fig. 2,

we present the parameter points in (MH ,MA) that pass Step-(i), where the color codes denote

MH± . The results in the NS (IS) are in the upper (lower) panels and those at type-I/X (type-

II/Y) are in the left (right) panels.

The theoretical stabilities and the FCNC observables significantly restrict the masses of new

Higgs bosons. In the NS, the low mass regions with MA,MH ,MH± . 750 GeV are uniformly

permitted, without a correlation among the masses. For the high mass above 750 GeV, however,

Step-(i) demands a considerable correlation, preferring small mass gaps including the mass

degeneracy. The higher the mass scales are, the smaller the mass gaps will be. In the IS,

Step-(i) already puts the upper bounds on MA and MH± , below about 750 GeV.

Now we cumulatively impose the constraints of Step-(ii), Step-(iii), and Step-(iv). In Table

II, we present the survival probabilities1 of the random scanning in Eqs. (9) and (10) at each

step in the NS and IS for all the four types, with respect to the parameter points that pass

Step-(i). One of the most important features is that the combination of all the theoretical

and experimental constraints restricts the model more severely for the CDF result than for the

PDG.

Let us compare the overall di↵erences between the NS and IS. In the NS, all the types survive

1 The survival probabilities depend on the scanning ranges. For smaller ranges, the probabilities increase.

8
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III. SCANNING STRATEGIES
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for the theoretical and experimental constraints:

Step-(i) Theory+FCNC: We require a parameter point to satisfy the theoretical stabilities

and the FCNC results, by using the public code 2HDMC-v1.8.0 [? ].

1. Higgs potential being bounded from below;

2. Perturbative unitarity of the scattering amplitudes;

3. Perturbativity of the quartic couplings;

4. Vacuum stability;

5. FCNC observables.

Step-(ii) EWPD: We calculate the Peskin-Takeuchi oblique parameters in the 2HDM [? ?

? ], and compare them with the oblique parameters from the PDG and CDF results in

Eq. (??). Since we perform two parameter (S and T ) fitting under the assumption of

U = 0, we require �2 < 5.99.

Step-(iii) RGEs for ⇤c > 1 TeV: We demand that the model should be valid at least up

to 1 TeV. Using the RGE’s [? ? ? ? ? ], we run the dimensionless parameters in

the 2HDM, including the gauge couplings, the quartic couplings in the scalar potential,

and the Yukawa couplings of the top quark, bottom quark, and tau lepton. The initial

conditions of the gauge couplings and the Yukawa couplings are set at the top quark

mass scale mt = 173.34 GeV [? ]. As increasing the energy scale, we check the unitarity

and stability conditions. If any condition is broken at the energy scale below 1 TeV, we

exclude the parameter point. In other words, the cuto↵ scale ⇤c of the model should be

higher than 1 TeV. We use the public code 2HDME-v1.2 [? ] at one-loop level.

Step-(iv) Collider: The collider constraints consist of two categories, the Higgs precision data

and the direct search bounds at the LEP, Tevatron, and LHC. To check the consistency

with the Higgs precision, we use HiggsSignals-v2.6.2 [? ], which yields the �2
output

for 111 Higgs observables [? ? ? ? ? ? ? ? ]. Since there are six model parameters, the

number of degrees of freedom is 105. We demand that the p-value be larger than 0.05.

For the consistency with the direct searches at high energy collider, we use the public

code HiggsBounds-v5.10.2 [? ]. For each process at the LEP, Tevatron, and LHC, we

calculate the cross section in the model, and compare it with the upper bound on the

cross section at the 95% C.L. When the model prediction is above the observed upper

bound, we exclude the parameter point.
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Figure 2: Allowed regions of (MH ,MA) in the NS (upper panels) and (mh,MA) in the IS (lower

panels) by the theoretical stabilities and the b ! s� constraint. The results in type-I and type-X are

in the left panels, while those in type-II and type-Y are in the right panels. The color codes indicate

MH± .

the final Step-(iv), even though the survival probabilities are very small, of the order of 0.1%

(0.01%) for the PDG (CDF) result. We find that type-I has the largest survival probabilities

while type-II and type-Y have the smallest probabilities. In the IS, type-II and type-Y are

totally excluded.2 The decisive factor is the combination of MH± > 580 GeV from b ! s� and

the requirement of ⇤c > 1 TeV. The constraint from b ! s� demands heavy charged Higgs

boson mass, which brings out too fast running of the quartic couplings. Type-I and type-X are

still allowed in the IS.

Now we study the di↵erences between the PDG and CDF results. As shown in Table II, the

survival probabilities are very di↵erent, which are much smaller for the CDF result in all the

eight cases. The probability gap between the PDG and CDF results widens sharply at Step-(ii).

2 To confirm this finding, we increased the number of points in random scanning. But no parameter point

survived for type-II and type-Y in the IS.

9

Allowed regions after Step-(i)
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masses for heavy BSM 
scalars


• IS: light mh brings down 
the other new scalars
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EWPD ⇤c > 1 TeV Collider EWPD ⇤c > 1 TeV Collider

Normal scenario Inverted scenario

type-I
PDG 12.98% 5.13% 0.60% 7.20% 5.08% 0.85%

CDF 4.42% 1.31% 0.14% 1.30% 0.72% 0.19%

type-II
PDG 10.76% 0.43% 0.20% 2.14% 0 0

CDF 3.36% 0.03% 0.01% 0.69% 0 0

type-X
PDG 12.98% 5.13% 0.18% 7.20% 5.08% 0.03%

CDF 4.42% 1.31% 0.03% 1.30% 0.72% 0.01%

type-Y
PDG 10.76% 0.43% 0.20% 2.14% 0 0

CDF 3.36% 0.03% 0.01% 0.69% 0 0

Table II: Survival probabilities at each step in the NS and IS for all the four types, with respect to the

parameter points that pass Step (i). For the EWPD, we adopt two di↵erent schemes of the oblique

parameters, before and after the CDF-updated mW measurement, denoted by “PDG” and “CDF”.

It is coming from the tension that the EWPD prefer sizable �MA and �Mh,H but ⇤c > 1 TeV

favors the mass degeneracy [86]. Step-(iv) including the Higgs precision data and the direct

search bounds also reduces the parameter space substantially, in both cases with the PDG and

CDF results.

To demonstrate the origin of the di↵erences between the PDG and CDF in more detail, we

present the parameter points of (MH ,MA) that survive each step. In Fig. 3, we consider type-I

in the NS. At Step-(ii), both the PDG and CDF cases yield similar funnel shapes, stretching

to the heavy mass regions. But the size is di↵erent: the CDF result generates a slimmer area

with substantial mass gaps; the PDG case allows a broader area, including MH = MA = MH± .

When imposing ⇤c > 1 TeV, whether to save the heavy mass region depends on the presence

or absence of the total mass degeneracy, as shown in Fig. 1. Therefore, the combination of the

S/T constraint with ⇤c > 1 TeV puts the upper bounds on the masses of new Higgs bosons in

the CDF case. The constraints from the Higgs precision data and the direct collider searches

at Step-(iv) reduce the viable parameter points, but the upper bounds on new Higgs bosons

remain intact.

Figure 4 presents the same results for type-II, where MH± > 580 GeV due to the constraints

from FCNC. As in type-I, the EWPD before and after the CDF mW measurement yield similar

shapes in MA versus MH . Sizable mass gaps are also required in the CDF case. A dramatic

di↵erence occurs when we further impose ⇤c > 1 TeV, which puts the upper bounds on the

masses of new Higgs bosons and the lower bounds on MH and MA. At the final Step-(iv), a

large portion of the parameter space is further excluded, but the mass bounds of new Higgs

bosons remain almost intact.

10
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the 2HDM, including the gauge couplings, the quartic couplings in the scalar potential,

and the Yukawa couplings of the top quark, bottom quark, and tau lepton. The initial

conditions of the gauge couplings and the Yukawa couplings are set at the top quark

mass scale mt = 173.34 GeV [99]. As increasing the energy scale, we check the unitarity

and stability conditions. If any condition is broken at the energy scale below 1 TeV, we

exclude the parameter point. In other words, the cuto↵ scale ⇤c of the model should be

higher than 1 TeV. We use the public code 2HDME-v1.2 [99] at one-loop level.

Step-(iv) Collider: The collider constraints consist of two categories, the Higgs precision data

and the direct search bounds at the LEP, Tevatron, and LHC. To check the consistency

with the Higgs precision, we use HiggsSignals-v2.6.2 [84], which yields the �
2 output

for 111 Higgs observables [100–107]. Since there are six model parameters, the number

of degrees of freedom is 105. We demand that the p-value be larger than 0.05. For the

consistency with the direct searches at high energy collider, we use the public code Hig-

gsBounds-v5.10.2 [85]. For each process at the LEP, Tevatron, and LHC, we calculate

the cross section in the model, and compare it with the upper bound on the cross sec-

tion at the 95% C.L. When the model prediction is above the observed upper bound, we

exclude the parameter point.

We perform the random scan over the entire six-dimensional parameter space. For each

type in the NS and IS, we obtained 107 parameter points that satisfy Step-(i), which is to be

the reference when computing the survival probabilities. Before proceeding to the subsequent

steps, we investigate the implications of Step-(i) on the masses of new Higgs bosons. In Fig. 2,

we present the parameter points in (MH ,MA) that pass Step-(i), where the color codes denote

MH± . The results in the NS (IS) are in the upper (lower) panels and those at type-I/X (type-

II/Y) are in the left (right) panels.

The theoretical stabilities and the FCNC observables significantly restrict the masses of new

Higgs bosons. In the NS, the low mass regions with MA,MH ,MH± . 750 GeV are uniformly

permitted, without a correlation among the masses. For the high mass above 750 GeV, however,

Step-(i) demands a considerable correlation, preferring small mass gaps including the mass

degeneracy. The higher the mass scales are, the smaller the mass gaps will be. In the IS,

Step-(i) already puts the upper bounds on MA and MH± , below about 750 GeV.

Now we cumulatively impose the constraints of Step-(ii), Step-(iii), and Step-(iv). In Table

II, we present the survival probabilities1 of the random scanning in Eqs. (9) and (10) at each

step in the NS and IS for all the four types, with respect to the parameter points that pass

Step-(i). One of the most important features is that the combination of all the theoretical

and experimental constraints restricts the model more severely for the CDF result than for the

PDG.

Let us compare the overall di↵erences between the NS and IS. In the NS, all the types survive

1 The survival probabilities depend on the scanning ranges. For smaller ranges, the probabilities increase.
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for the theoretical and experimental constraints:

Step-(i) Theory+FCNC: We require a parameter point to satisfy the theoretical stabilities

and the FCNC results, by using the public code 2HDMC-v1.8.0 [? ].

1. Higgs potential being bounded from below;

2. Perturbative unitarity of the scattering amplitudes;

3. Perturbativity of the quartic couplings;

4. Vacuum stability;

5. FCNC observables.

Step-(ii) EWPD: We calculate the Peskin-Takeuchi oblique parameters in the 2HDM [? ?

? ], and compare them with the oblique parameters from the PDG and CDF results in

Eq. (??). Since we perform two parameter (S and T ) fitting under the assumption of

U = 0, we require �2 < 5.99.

Step-(iii) RGEs for ⇤c > 1 TeV: We demand that the model should be valid at least up

to 1 TeV. Using the RGE’s [? ? ? ? ? ], we run the dimensionless parameters in

the 2HDM, including the gauge couplings, the quartic couplings in the scalar potential,

and the Yukawa couplings of the top quark, bottom quark, and tau lepton. The initial

conditions of the gauge couplings and the Yukawa couplings are set at the top quark

mass scale mt = 173.34 GeV [? ]. As increasing the energy scale, we check the unitarity

and stability conditions. If any condition is broken at the energy scale below 1 TeV, we

exclude the parameter point. In other words, the cuto↵ scale ⇤c of the model should be

higher than 1 TeV. We use the public code 2HDME-v1.2 [? ] at one-loop level.

Step-(iv) Collider: x

1. Higgs precision data via HiggsSignals;

2. direct searches at high energy collider via HiggsBounds.

2



46

EWPD ⇤c > 1 TeV Collider EWPD ⇤c > 1 TeV Collider

Normal scenario Inverted scenario

type-I
PDG 12.98% 5.13% 0.60% 7.20% 5.08% 0.85%

CDF 4.42% 1.31% 0.14% 1.30% 0.72% 0.19%

type-II
PDG 10.76% 0.43% 0.20% 2.14% 0 0

CDF 3.36% 0.03% 0.01% 0.69% 0 0

type-X
PDG 12.98% 5.13% 0.18% 7.20% 5.08% 0.03%

CDF 4.42% 1.31% 0.03% 1.30% 0.72% 0.01%

type-Y
PDG 10.76% 0.43% 0.20% 2.14% 0 0

CDF 3.36% 0.03% 0.01% 0.69% 0 0

Table II: Survival probabilities at each step in the NS and IS for all the four types, with respect to the

parameter points that pass Step (i). For the EWPD, we adopt two di↵erent schemes of the oblique

parameters, before and after the CDF-updated mW measurement, denoted by “PDG” and “CDF”.

It is coming from the tension that the EWPD prefer sizable �MA and �Mh,H but ⇤c > 1 TeV

favors the mass degeneracy [86]. Step-(iv) including the Higgs precision data and the direct

search bounds also reduces the parameter space substantially, in both cases with the PDG and

CDF results.

To demonstrate the origin of the di↵erences between the PDG and CDF in more detail, we

present the parameter points of (MH ,MA) that survive each step. In Fig. 3, we consider type-I

in the NS. At Step-(ii), both the PDG and CDF cases yield similar funnel shapes, stretching

to the heavy mass regions. But the size is di↵erent: the CDF result generates a slimmer area

with substantial mass gaps; the PDG case allows a broader area, including MH = MA = MH± .

When imposing ⇤c > 1 TeV, whether to save the heavy mass region depends on the presence

or absence of the total mass degeneracy, as shown in Fig. 1. Therefore, the combination of the

S/T constraint with ⇤c > 1 TeV puts the upper bounds on the masses of new Higgs bosons in

the CDF case. The constraints from the Higgs precision data and the direct collider searches

at Step-(iv) reduce the viable parameter points, but the upper bounds on new Higgs bosons

remain intact.

Figure 4 presents the same results for type-II, where MH± > 580 GeV due to the constraints

from FCNC. As in type-I, the EWPD before and after the CDF mW measurement yield similar

shapes in MA versus MH . Sizable mass gaps are also required in the CDF case. A dramatic

di↵erence occurs when we further impose ⇤c > 1 TeV, which puts the upper bounds on the

masses of new Higgs bosons and the lower bounds on MH and MA. At the final Step-(iv), a

large portion of the parameter space is further excluded, but the mass bounds of new Higgs

bosons remain almost intact.

10
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EWPD ⇤c > 1 TeV Collider EWPD ⇤c > 1 TeV Collider

Normal scenario Inverted scenario

type-I
PDG 12.98% 5.13% 0.60% 7.20% 5.08% 0.85%

CDF 4.42% 1.31% 0.14% 1.30% 0.72% 0.19%

type-II
PDG 10.76% 0.43% 0.20% 2.14% 0 0

CDF 3.36% 0.03% 0.01% 0.69% 0 0

type-X
PDG 12.98% 5.13% 0.18% 7.20% 5.08% 0.03%

CDF 4.42% 1.31% 0.03% 1.30% 0.72% 0.01%

type-Y
PDG 10.76% 0.43% 0.20% 2.14% 0 0

CDF 3.36% 0.03% 0.01% 0.69% 0 0

Table II: Survival probabilities at each step in the NS and IS for all the four types, with respect to the

parameter points that pass Step (i). For the EWPD, we adopt two di↵erent schemes of the oblique

parameters, before and after the CDF-updated mW measurement, denoted by “PDG” and “CDF”.

It is coming from the tension that the EWPD prefer sizable �MA and �Mh,H but ⇤c > 1 TeV

favors the mass degeneracy [86]. Step-(iv) including the Higgs precision data and the direct

search bounds also reduces the parameter space substantially, in both cases with the PDG and

CDF results.

To demonstrate the origin of the di↵erences between the PDG and CDF in more detail, we

present the parameter points of (MH ,MA) that survive each step. In Fig. 3, we consider type-I

in the NS. At Step-(ii), both the PDG and CDF cases yield similar funnel shapes, stretching

to the heavy mass regions. But the size is di↵erent: the CDF result generates a slimmer area

with substantial mass gaps; the PDG case allows a broader area, including MH = MA = MH± .

When imposing ⇤c > 1 TeV, whether to save the heavy mass region depends on the presence

or absence of the total mass degeneracy, as shown in Fig. 1. Therefore, the combination of the

S/T constraint with ⇤c > 1 TeV puts the upper bounds on the masses of new Higgs bosons in

the CDF case. The constraints from the Higgs precision data and the direct collider searches

at Step-(iv) reduce the viable parameter points, but the upper bounds on new Higgs bosons

remain intact.

Figure 4 presents the same results for type-II, where MH± > 580 GeV due to the constraints

from FCNC. As in type-I, the EWPD before and after the CDF mW measurement yield similar

shapes in MA versus MH . Sizable mass gaps are also required in the CDF case. A dramatic

di↵erence occurs when we further impose ⇤c > 1 TeV, which puts the upper bounds on the

masses of new Higgs bosons and the lower bounds on MH and MA. At the final Step-(iv), a

large portion of the parameter space is further excluded, but the mass bounds of new Higgs

bosons remain almost intact.
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Figure 4: In type-II of the normal scenario, the allowed parameter space of (MH ,MA) after Step-(ii),

Step-(iii), and Step-(iv), with the color code indicating MH± . The upper panels are for PDG while

the lower panels for CDF.

A. type-I and type-X

Figure 5: MA versus MH with color code of MH± in type-I (left panel) and type-X (right panel) in

the CDF case. We adopt the normal scenario.

First, we take a closer look at the allowed masses at the final Step-(iv). In Fig 5, we present

MA versus MH with color code of MH± in type-I (left panel) and type-X (right panel). In

12

• type-II in NS
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Figure 4: In type-II of the normal scenario, the allowed parameter space of (MH ,MA) after Step-(ii),

Step-(iii), and Step-(iv), with the color code indicating MH± . The upper panels are for PDG while

the lower panels for CDF.

A. type-I and type-X

Figure 5: MA versus MH with color code of MH± in type-I (left panel) and type-X (right panel) in

the CDF case. We adopt the normal scenario.

First, we take a closer look at the allowed masses at the final Step-(iv). In Fig 5, we present

MA versus MH with color code of MH± in type-I (left panel) and type-X (right panel). In

12

• type-II in NS

• RGE excludes sizable mass gaps among BSM Higgs masses below 500 GeV. 
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Figure 4: In type-II of the normal scenario, the allowed parameter space of (MH ,MA) after Step-(ii),

Step-(iii), and Step-(iv), with the color code indicating MH± . The upper panels are for PDG while

the lower panels for CDF.

A. type-I and type-X

Figure 5: MA versus MH with color code of MH± in type-I (left panel) and type-X (right panel) in

the CDF case. We adopt the normal scenario.

First, we take a closer look at the allowed masses at the final Step-(iv). In Fig 5, we present

MA versus MH with color code of MH± in type-I (left panel) and type-X (right panel). In

12

• type-II in NS

• In the CDF, there are upper bounds on BSM Higgs masses. 
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59] and the Brookhaven National Laboratory experiment [60] has shown a clear deviation from

the SM prediction [61–81] by 4.2�, which is reported to be

�aµ = a
exp
µ

� a
SM
µ

= 251(59) ⇥ 10�11
. (2)

Two anomalies of CDF W mass and muon g � 2 hint toward new physics. Several works

have been done to simultaneously explain the two anomalies in the context of U(1) gauge

extended models with vectorlike leptons [82–84], vector leptoquark model [85], scalar leptoquark

model [86, 87], Zee model [88], vectorlike lepton models [89, 90], a flavor conserving two-Higgs-

doublet model (2HDM) [91], and next-to-minimal supersymmetric model [92].

In this paper, we study type-X (lepton-specific) 2HDM in light of the CDF W boson mass

and muon g � 2 anomalies. Type-X has drawn a lot of interest as an explanation of the muon

g�2 anomaly [93–104]. One of its most important characteristics is the enhanced coupling of the

non-SM Higgs bosons (neutral CP -even H, CP -odd A, and charged Higgs H
±) to the leptons

by tan �, the ratio of the vacuum expectation values of two Higgs doublet fields. Through this

enhanced leptonic coupling, type-X can explain muon g � 2 anomaly via two loop Barr-Zee

diagram with ⌧ -loop [105, 106]. Sizable positive contribution to �aµ is obtained with large

tan � and small MA. However, a light pseudoscalar with MA < m
SM
h

/2 opens up hSM ! AA

which is severely constrained by hSM ! AA ! 4⌧/2µ2⌧ channels [107]. Kinematical solution

of MA > m
SM
h

/2 demands very large tan � & 100 for the explanation of �aµ. Then the lepton

flavor universality (LFU) data in the ⌧ and Z decays, which does not avoid the loop e↵ects of

BSM scalars, invalidates the model [103]. This motivates us to consider the pseudoscalar to be

Higgs-phobic.

An essential question is how the changes of S and T due to the CDF W boson mass a↵ect the

parameter space compatible with the muon g�2 as well as all the other theoretical/experimental

constraints including the LFU data. To answer the question, we do a complete parameter scan

in four cumulative steps, considering both the old and new sets of S and T . In Step-I, we

impose the theoretical bounds (vacuum stability of the potential, unitarity, perturbativity) and

the muon g � 2 constraint. In Step-II, we compare the S and T parameters in the model with

the best fit results before and after the CDF mW measurement. In Step-III, we impose the

Higgs precision data and the direct search bounds from LEP, Tevatron, and LHC. In Step-IV,

we further restrict the parameter space through the global �
2 fit to the LFU data in the ⌧

and Z decays. Over the viable parameters obtained through the scan, we further study the

RGE evolutions to check the stability of the potential. Demanding the cuto↵ scale above 10

TeV will be shown to limit the model severely. We will also study how to search for the light

Higgs-phobic pseudoscalar at the LHC. In our case, 4⌧ states associated with two gauge bosons

would be the golden discovery modes at the HL-LHC. These are our main results.

The paper is organized in the following way. In Sec. II, we give a brief review of type-

X 2HDM and the characteristics of the Higgs-phobic pseudoscalar. In Sec. III, we do the

parameter scanning for both old and new sets of S and T values. In Sec. IV, we discuss the

RGE evolutions and the cuto↵ scales. Section V deals with the golden discovery channels of

the Higgs-phobic type-X at HL-LHC. Finally we conclude in Sec. VI.

3

• 2HDM: two kinds of contributions

1-loop Barr-Zee 2-loop

• Persistent anomaly with 4.2σ which has been around for some time
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constraints including the LFU data. To answer the question, we do a complete parameter scan

in four cumulative steps, considering both the old and new sets of S and T . In Step-I, we

impose the theoretical bounds (vacuum stability of the potential, unitarity, perturbativity) and

the muon g � 2 constraint. In Step-II, we compare the S and T parameters in the model with

the best fit results before and after the CDF mW measurement. In Step-III, we impose the

Higgs precision data and the direct search bounds from LEP, Tevatron, and LHC. In Step-IV,

we further restrict the parameter space through the global �
2 fit to the LFU data in the ⌧

and Z decays. Over the viable parameters obtained through the scan, we further study the

RGE evolutions to check the stability of the potential. Demanding the cuto↵ scale above 10

TeV will be shown to limit the model severely. We will also study how to search for the light

Higgs-phobic pseudoscalar at the LHC. In our case, 4⌧ states associated with two gauge bosons

would be the golden discovery modes at the HL-LHC. These are our main results.

The paper is organized in the following way. In Sec. II, we give a brief review of type-

X 2HDM and the characteristics of the Higgs-phobic pseudoscalar. In Sec. III, we do the

parameter scanning for both old and new sets of S and T values. In Sec. IV, we discuss the

RGE evolutions and the cuto↵ scales. Section V deals with the golden discovery channels of
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• Enhance the 𝜏 Yukawa coupling 


• Suppress the b quark Yukawa coupling of the BSM 
Higgs bosons.


• Light psedoscalar A


• Type-X with large tan𝜷 and Higgs-phobic A
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• Lepton Flavor Universality (LFU) data in danger

1. For the ⌧ decay,

g⌧

gµ
,

g⌧

ge
,

gµ

ge
,

✓
g⌧

gµ

◆

⇡

,

✓
g⌧

gµ

◆

K

.

2. Michel parameters, based on the energy and angular distribution of `� in the decay of

⌧
� ! `

�
⌫⌫⌧ :

⇢e, (⇠�)
e
, ⇠e, ⌘µ, ⇢µ, (⇠�)

µ
, ⇠µ, ⇠⇡, ⇠⇢, ⇠a1 .

3. Leptonic Z decays:

�(Z ! µ
+
µ
�)

�(Z ! e+e�)
,

�(Z ! ⌧
+
⌧
�)

�(Z ! e+e�)
.

The theoretical calculations of the LFU observable in type-X are summarized in Appendix

??. For the experimental data, we refer to Ref. [82]. Including �aµ, we have 17 independent

observables in the global fit. Since the model parameters have already been restricted through

three steps (Step-I, II, and III), we take the number of degrees of freedom to be Ndof = 17 and

demand the p-value larger than 0.01.

B. type-II and type-Y

The results in this subsection are common for type-II and type-Y: they are almost indistin-

guishable from the eyes. In type-II and type-Y, the biggest impact comes from the condition of

⇤c > 1 TeV. Figure ?? shows the allowed parameter points of (�MH ,�MA) at the Step-(ii) in

the left panel, at the Step-(iii) in the middle panel, and at the Step-(iv) in the right panel. The

EWPD after the CDF mW measurement allow the hyperbola-shape with a su�ciently large

mass gaps of �MH and �MA: see Fig. ??.2 Imposing ⇤c > 1 TeV (middle panel) drastically

curtails the parameter space, which excludes the mass gaps above ⇠ 200 GeV. In addition,

the positive �MH,A case is more severely restricted by ⇤c > 1 TeV, leaving a much smaller al-

lowed region. It is because the heavy Higgs bosons invoke fast running of the quartic couplings,

and thus failure of the unitarity and vacuum stability at the energy scale below 1 TeV. The

constraints from the collider data do not change �MA versus �MH much.

Finally, a brief discussion on the constraint from b ! s� is in order here. We took a

conservative bound on the charged Higgs boson mass as MH± > 580 GeV. But the lower mass

bound considerably increases to about 800 GeV if we adopt the calculation of the NNLO QCD

corrections to B(B̄ ! Xs�) in the SM without the interpolation in the charm quark mass [113].

There still exist certain parameter points like 800 GeV . MH± . 1100 GeV. But the survival

2 The di↵erence in the negative �MH,A region from Fig. ?? is attributed to the assumption of the Higgs

alignment limit for Fig. ??. Our main results do not depend on any prerequisites for the model parameters.
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• Higgs-phobic A in type-X

boson becomes Higgs-phobic. So we consider type-X with the Higgs-phobic pseudoscalar boson

A, simply called the Higgs-phobic type-X in what follows.

The trilinear coupling for the h-A-A vertex is

�̂hAA =
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Since s��↵ and c��↵ are useful parameters for the Higgs precision data, we use the identities of
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Note that the exact Higgs alignment cannot coexist with the Higgs-phobic A limit. Since s��↵

is determined by t�, M
2, and MA, the model has five parameters of

{t�, MA, MH , MH± , m
2
12} (15)

An interesting consequence of the Higgs-phobic A is that the Higgs alignment naturally

arises, although not exact. In Fig. 1, we show s��↵ as a function of M satisfying Eq. (14).

For t� = 100, two cases are considered, MA = 70 GeV (left panel) and MA = 300 GeV (right

panel). In both cases, we have |s��↵| ⇡ 1 over the whole range of M , except for extremely

narrow region of M . If we restrict ourselves to M ⇠ MA, as shown by the colored regions

corresponding to M 2 [0.5MA, 2MA], the preference for the alignment is greater.

III. SCANNING STRATEGIES AND THE RESULTS

Focusing on the Higgs-phobic type-X, we study the implication of the CDF mW and muon

g � 2 anomalies as well as other theoretical and experimental constraints. Over the randomly

generated parameters in the ranges of

t� 2 [1, 200] , m
2
12 2 [0, 15000] GeV2

, (16)

MH 2 [130, 1000] GeV, MA 2 [10, 200] GeV, MH± 2 [80, 1000] GeV,
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• Higgs-phobic A cannot coexist with 100% alignment. BUT

Chun et al 1507.08067
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• Allowed parameter points
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• Difference-1: PDG island
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• Difference-1: How can the PDG-island evade the LFU? 

• Cancellation!

In the CDF case, however, the parameter points in Eq. (26) are excluded from step II. To

understand the origin, let us present the oblique parameter T in the limit of MA ' MH ' MH± :

T '
�MA�MH

12⇡2↵ v2
, if MH± ' MA ' MH , (27)

where �Mi = Mi�MH± . The TCDF in Eq. (20) requires �MA,H & 80 GeV that the PDG-island

cannot satisfy. On the contrary, TPDG permits the mass degeneracy among BSM Higgs bosons,

which the PDG-island requires.

FIG. 5: MH± versus t� at step IV, with the color code indicating �
2
LFU. We focus on the PDG case.

An important question about the PDG-island is how it can evade the most profound con-

straints from the LFU data. As discussed before, the key parameter �tree in Eq. (25) requires

small t� and thus light MA. But there exists an alternative way to evade the LFU constraints

through another key parameter of

✏
⌧

tree = �tree


�tree

8
�

mµ

m⌧

g (⇢µ

⌧
)

f (⇢µ

⌧ )

�
, (28)

where g(x), f(x), and ⇢
i

j
are referred to Appendix B. If the first and second terms in Eq. (28)

are exquisitely cancelled, the value of �
2
LFU can be substantially reduced. The cancellation

demands a relation of MH± to t�. In Fig. 5, we show MH± versus t� with the color code of

�
2
LFU, after the final step IV in the PDG case. Here we only show the parameter points with

�
2
LFU < 33.41, i.e., p > 0.01 with 17 degrees of freedom. It is clearly seen that the minimum

of �
2
LFU occurs in the mainland region with MH± & 250 GeV and t� ' 35. Almost all the

parameter points outside the mainland have p-value below 0.01. Exceptional is the band-shape

PDG-island with MH± 2 [96.5, 127.9] GeV and t� > 154.9, which yields the cancellation in

Eq. (28).

The second di↵erence between the PDG and CDF cases is the lower bound on MH± for

MA . 38 GeV: MH± & 250 GeV in the PDG case while MH± & 300 GeV in the CDF case.
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5. Higgs-phobic for muon g-2
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• PDG vs CDF in the RGE analysis

• The maximum cutoff scale is in the PDG-island, which is about 107 GeV. 
FIG. 9: Cuto↵ scales via the color code in the finally allowed (MA,MH±). The left (right) panel

shows the results in the PDG (CDF) case.

is clear. The PDG case can accommodate a larger cuto↵ scale. In the mainland region with

MA . 38 GeV, ⇤c can go up to 106 GeV, which is about ten times higher than ⇤c in the CDF

case. In the PDG-island, the cuto↵ scale is much higher up to about 107 GeV. In terms of the

high energy scale stability, the PDG-island is the most attractive.

V. GOLDEN DISCOVERY CHANNELS AT THE LHC

For the LHC phenomenology of the Higgs-phobic type-X, we first study the branching ratios

of the BSM Higgs bosons. The pseudoscalar boson decays only into the fermionic sector:

neither light MA (. 38 GeV) nor approximately degenerate MA with MH,H± in the PDG-island

can accommodate the bosonic decays of A ! H
±
W

±(⇤)
/HZ

(⇤). Furthermore, the suppressed

couplings of A to the quark sector by large t� make A ! ⌧
+
⌧

� dominant [109, 162]: its

branching ratio is almost 100%. Another interesting decay channel is A ! µ
+
µ

�. Although

it has a small branching ratio of about 0.3%, the absence of neutrinos helps reconstruct the

pseudoscalar mass. On the other hand, H
± and H can have the bosonic decay modes of

H
±

! W
±
A and H ! ZA for light MA. Since their partial decay widths are enhanced by

a factor of (M2
H±/m

2
W

)2 and (M2
H

/m
2
Z
)2, H

±
! W

±
A and H ! ZA are dominant in the

mainland regions with MA . 38 GeV.

In Fig. 10, we present the branching ratios of H
± (left panels) and H (right panels) in the

PDG (upper panels) and CDF cases (lower panels) over the parameter points at step IV. The

results of the PDG-island correspond to separate groups of the points for the light MH±/MH in

the upper panels. In the PDG-island, H
±

! ⌧⌫ and H ! ⌧
+
⌧

� have almost 100% branching

ratios. The muon modes, H
±

! µ⌫ and H ! µ
+
µ

�, have about 0.3% branching ratios, which

are omitted to avoid congestion. In the PDG-island, the bosonic decay modes are extremely

16



4. How to distinguish the 
high- and low-cutoff scales? 

S.K. Kang, J. Kim, S. Lee, JS [2210.00020]
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Can a measurement distinguish?
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Can a measurement distinguish?

Yes, if we can measure the cutoff 
scale of a NP model.
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Higgs alignment limit in the inverted scenario

With the CP invariance, the scalar potential is written as

V� = m
2

11
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1
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22
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2 + H.c.
i
,

where the m
2

12
term softly breaks the Z2 symmetry. The scalar potential V� yields five physical

Higgs bosons, the lighter CP -even scalar h, the heavier CP -even scalar H, the CP -odd pseu-

doscalar A, and a pair of charged Higgs bosons H
±. Relations of mass eigenstates with weak

eigenstates in terms of two mixing angles of ↵ and � are referred to Ref. [49]. The SM Higgs

boson is a linear combination of h and H, given by

hSM = s��↵ h + c��↵ H. (3)

The observed Higgs boson at a mass of 125 GeV at the LHC [2–16] has so far agreed with

the predictions for the SM Higgs boson. The SM-like Higgs boson strongly motivates the Higgs

alignment limit in the 2HDM. Two scenarios exist for the limit, the normal scenario where

hSM = h (i.e., s��↵ = 1) and the inverted scenario where hSM = H (i.e., c��↵ = 1). In this

paper, we concentrate on the inverted scenario in the Higgs alignment limit:

MH = 125 GeV, c��↵ = 1. (4)

Then we have the following five parameters:

{mh, MA, MH± , t�, m
2

12
}, (5)

which defines one parameter point. Then, the quartic coupling constants in V� are written

as [50]
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where m125 = 125 GeV and M
2 = m

2

12
/(s�c�).

The Yukawa couplings to the SM fermions are parametrized as

L Yuk = �
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5

Yukawa couplings to the SM fermions
which are di↵erent according to the 2HDM type. In this work, we focus on type-I. To facilitate

the discussion below, we will call the type-I with the conditions of Eq. (4) the inverted type-I.

Then the Higgs coupling modifiers are

⇠
H

f
= 1, ⇠

h

t,b,⌧
=

1

t�
, ⇠

A

t
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A

b,⌧
=

1

t�
. (8)

The trilinear Higgs couplings as dimensionless parameters are defined by

Ltri =
X

'0=h,H

v
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1

3!
�̂'0'0'0'
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2
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2
.

In the inverted type-I, the couplings are

�̂HHH = �
3m2

125

v2
, �̂hHH = 0, (10)

�̂hhh = 3�̂hAA = 3�̂hH+H� = �
3(M2

� m
2

h
)(t2
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� 1)

t�v2
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125
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.

The trilinear coupling of the observed Higgs boson H is the same as in the SM, �̂HHH ' 0.77,

because we adopt the Higgs alignment limit. Another remarkable feature is that �̂hhh, �̂hAA,

and �̂hH+H� are dependent on each other, with the common factor proportional to t�(M2
�m

2

h
)

in the large t� limit.

III. SCANNING AND RGE ANALYSIS

Before studying the high energy behavior of the model via RGE, the preparation of the

still-allowed parameter points at the electroweak scale is an essential prerequisite. Therefore,

we randomly scan five model parameters in the range of

t� 2 [1, 50], MA 2 [10, 3000] GeV, m
2

12
2 [�30002

, 30002] GeV2
, (11)

MH± 2 [80, 3000] GeV, mh 2 [10, 120] GeV,

and cumulatively impose the following constraints:

• Theoretical requirements

We demand the Higgs potential to be bounded from below [51], tree-level unitarity

of scalar-scalar scatterings [45, 52], perturbativity [34], and the stability of the CP -

conserving vacuum with v = 246 GeV [53–55].

6

Yukawa couplings of the BSM Higgs bosons 
are suppressed by tan β 
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Higgs alignment limit in the inverted scenario
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of scalar-scalar scatterings [45, 52], perturbativity [34], and the stability of the CP -

conserving vacuum with v = 246 GeV [53–55].

6

Yukawa couplings of the BSM Higgs bosons 
are suppressed by tan β 
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Trilinear Higgs couplings

which are di↵erent according to the 2HDM type. In this work, we focus on type-I. To facilitate

the discussion below, we will call the type-I with the conditions of Eq. (4) the inverted type-I.

Then the Higgs coupling modifiers are

⇠
H

f
= 1, ⇠

h

t,b,⌧
=

1

t�
, ⇠

A

t
= �⇠

A

b,⌧
=

1

t�
. (8)

The trilinear Higgs couplings as dimensionless parameters are defined by

Ltri =
X

'0=h,H

v

⇢
1

3!
�̂'0'0'0'

3

0
+

1

2
�̂'0AA '0A

2 + �'0H+H� '0H
+
H

�
�

(9)

+
1

2
�̂Hhh vHh

2 +
1

2
�̂hHH vhH

2
.

In the inverted type-I, the couplings are

�̂HHH = �
3m2

125

v2
, �̂hHH = 0, (10)

�̂hhh = 3�̂hAA = 3�̂hH+H� = �
3(M2

� m
2

h
)(t2

�
� 1)

t�v2
,

�̂Hhh = �
m

2

125
+ 2m2

h
� 2M2

v2
,

�̂HAA = �
m

2

125
+ 2M2

A
� 2M2

v2
,

�̂HH+H� = �
m

2

125
+ 2M2

H± � 2M2

v2
.

The trilinear coupling of the observed Higgs boson H is the same as in the SM, �̂HHH ' 0.77,

because we adopt the Higgs alignment limit. Another remarkable feature is that �̂hhh, �̂hAA,

and �̂hH+H� are dependent on each other, with the common factor proportional to t�(M2
�m

2

h
)

in the large t� limit.

III. SCANNING AND RGE ANALYSIS

Before studying the high energy behavior of the model via RGE, the preparation of the

still-allowed parameter points at the electroweak scale is an essential prerequisite. Therefore,

we randomly scan five model parameters in the range of

t� 2 [1, 50], MA 2 [10, 3000] GeV, m
2

12
2 [�30002

, 30002] GeV2
, (11)

MH± 2 [80, 3000] GeV, mh 2 [10, 120] GeV,

and cumulatively impose the following constraints:

• Theoretical requirements

We demand the Higgs potential to be bounded from below [51], tree-level unitarity

of scalar-scalar scatterings [45, 52], perturbativity [34], and the stability of the CP -

conserving vacuum with v = 246 GeV [53–55].

6
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Trilinear Higgs couplings

which are di↵erent according to the 2HDM type. In this work, we focus on type-I. To facilitate

the discussion below, we will call the type-I with the conditions of Eq. (4) the inverted type-I.

Then the Higgs coupling modifiers are

⇠
H

f
= 1, ⇠

h

t,b,⌧
=

1

t�
, ⇠

A

t
= �⇠

A

b,⌧
=

1

t�
. (8)

The trilinear Higgs couplings as dimensionless parameters are defined by

Ltri =
X

'0=h,H

v

⇢
1

3!
�̂'0'0'0'

3

0
+

1

2
�̂'0AA '0A

2 + �'0H+H� '0H
+
H

�
�

(9)

+
1

2
�̂Hhh vHh

2 +
1

2
�̂hHH vhH

2
.

In the inverted type-I, the couplings are

�̂HHH = �
3m2

125

v2
, �̂hHH = 0, (10)

�̂hhh = 3�̂hAA = 3�̂hH+H� = �
3(M2

� m
2

h
)(t2

�
� 1)

t�v2
,

�̂Hhh = �
m

2

125
+ 2m2

h
� 2M2

v2
,

�̂HAA = �
m

2

125
+ 2M2

A
� 2M2

v2
,

�̂HH+H� = �
m

2

125
+ 2M2

H± � 2M2

v2
.

The trilinear coupling of the observed Higgs boson H is the same as in the SM, �̂HHH ' 0.77,

because we adopt the Higgs alignment limit. Another remarkable feature is that �̂hhh, �̂hAA,

and �̂hH+H� are dependent on each other, with the common factor proportional to t�(M2
�m

2

h
)

in the large t� limit.

III. SCANNING AND RGE ANALYSIS

Before studying the high energy behavior of the model via RGE, the preparation of the

still-allowed parameter points at the electroweak scale is an essential prerequisite. Therefore,

we randomly scan five model parameters in the range of

t� 2 [1, 50], MA 2 [10, 3000] GeV, m
2

12
2 [�30002

, 30002] GeV2
, (11)

MH± 2 [80, 3000] GeV, mh 2 [10, 120] GeV,

and cumulatively impose the following constraints:

• Theoretical requirements

We demand the Higgs potential to be bounded from below [51], tree-level unitarity

of scalar-scalar scatterings [45, 52], perturbativity [34], and the stability of the CP -

conserving vacuum with v = 246 GeV [53–55].

6

Same as in the SM← alignment
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Trilinear Higgs couplings

which are di↵erent according to the 2HDM type. In this work, we focus on type-I. To facilitate

the discussion below, we will call the type-I with the conditions of Eq. (4) the inverted type-I.

Then the Higgs coupling modifiers are

⇠
H

f
= 1, ⇠

h

t,b,⌧
=

1

t�
, ⇠

A

t
= �⇠

A

b,⌧
=

1

t�
. (8)

The trilinear Higgs couplings as dimensionless parameters are defined by

Ltri =
X

'0=h,H

v

⇢
1

3!
�̂'0'0'0'

3

0
+

1

2
�̂'0AA '0A

2 + �'0H+H� '0H
+
H

�
�

(9)

+
1

2
�̂Hhh vHh

2 +
1

2
�̂hHH vhH

2
.

In the inverted type-I, the couplings are

�̂HHH = �
3m2

125

v2
, �̂hHH = 0, (10)

�̂hhh = 3�̂hAA = 3�̂hH+H� = �
3(M2

� m
2

h
)(t2

�
� 1)

t�v2
,

�̂Hhh = �
m

2

125
+ 2m2

h
� 2M2

v2
,

�̂HAA = �
m

2

125
+ 2M2

A
� 2M2

v2
,

�̂HH+H� = �
m

2

125
+ 2M2

H± � 2M2

v2
.

The trilinear coupling of the observed Higgs boson H is the same as in the SM, �̂HHH ' 0.77,

because we adopt the Higgs alignment limit. Another remarkable feature is that �̂hhh, �̂hAA,

and �̂hH+H� are dependent on each other, with the common factor proportional to t�(M2
�m

2

h
)

in the large t� limit.

III. SCANNING AND RGE ANALYSIS

Before studying the high energy behavior of the model via RGE, the preparation of the

still-allowed parameter points at the electroweak scale is an essential prerequisite. Therefore,

we randomly scan five model parameters in the range of

t� 2 [1, 50], MA 2 [10, 3000] GeV, m
2

12
2 [�30002

, 30002] GeV2
, (11)

MH± 2 [80, 3000] GeV, mh 2 [10, 120] GeV,

and cumulatively impose the following constraints:

• Theoretical requirements

We demand the Higgs potential to be bounded from below [51], tree-level unitarity

of scalar-scalar scatterings [45, 52], perturbativity [34], and the stability of the CP -

conserving vacuum with v = 246 GeV [53–55].

6

Proportional to tan β 
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FIG. 2: MH± versus MA in the left panel and t� versus mh in the right panel. The color code denotes

the cuto↵ scale ⇤cut.

Now let us describe how we obtained the cuto↵ scale ⇤cut. For each viable parameter point,

we perform the RGE evolution into the next high energy scale1 and check three conditions,

tree-level unitarity, perturbativity, and vacuum stability. If all three are satisfied, we increase

the energy scale into the next step. If any condition is violated, we stop the running and record

the energy scale as ⇤cut. We additionally require that the cuto↵ scale should be larger than

1 TeV. From now on, the “viable parameter points” denote the parameter points that satisfy

the aforementioned constraints and ⇤cut > 1 TeV.

Strong correlations exist between the cuto↵ scale and the model parameters. In Fig. 2, we

present the viable parameter points over the plane of (MA, MH±) in the left panel and over

(mh, t�) in the right panel. The color code denotes the cuto↵ scale ⇤cut. We sorted the viable

parameter points according to ⇤cut, and stacked them in order of ⇤cut, the points with low

⇤cut underneath and those with high ⇤cut on top. The overlap is due to the projection of

five-dimensional parameter space in Eq. (5) on a two-dimensional subspace.

Several remarkable features are shown in Fig. 2. First, the viable parameter points is quite

limited even with the weak condition of ⇤cut > 1 TeV. The upper bounds on MA and MH± exist

as MA, MH± . 430 GeV, to which the condition of ⇤cut > 1 TeV plays a critical role. For the

intermediate mass range of MA, MH± . 200 GeV, there is no particular correlation between

MA and MH± . However, a meaningful correlation exists in the range of MA & 200 GeV or

MH± & 200 GeV. If MH± & 200 GeV, MH± ' MA. If MH± . 200 GeV and MA & 200 GeV,

MH± ⇠ 100 GeV. The lighter CP -even Higgs boson mass mh (right panel of Fig. 2) should be

heavier than half the observed Higgs boson mass due to the constraint from the exotic Higgs

boson decay of H ! hh. For t�, most values in the scanning are permitted. Although the

1 To cover from the electroweak scale to the Planck scale, we take a uniform step in log(Q).

8

Happy that the model can retain the 
stability all the way up to the 

Planck-cutoff scale?
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phase transition in the 2HDM [21–25]. However, the model cannot address all the fundamental

questions, which makes it a suitable candidate for the first-stage NP model.

Then the next question is how to calculate the energy scale at which the second-stage

NP model appears. A good way is to calculate the cuto↵ scale of the 2HDM. Even though a

parameter point retains the theoretical stability (unitarity, perturbativity, and vacuum stability)

at the electroweak scale, a stability condition can be broken at a higher energy scale ⇤cut

because the parameters evolve under renormalization group equations (RGE) [26–32]. The

broken validity of the first-stage model implies the advent of the second-stage model. Thus we

call ⇤cut the cuto↵ scale of the model. In this paper, we focus on the type-I in the inverted

scenario where the heavier CP -even scalar H is the observed one [33–35]. In the inverted

scenario, type-I can accommodate the cuto↵ scale all the way up to the Planck scale [36].

FIG. 5: Trilinear Higgs couplings of �̂
hhh (left panel), �̂

Hhh (middle panel), and �̂
HH+

H� (right panel)

against the cuto↵ scale ⇤
cut. The color code denotes t� . We take BP-2 where m

h = M
A = 100 GeV,

M
H± = 140 GeV, and t� > 10.

FIG. 6: Trilinear Higgs couplings of �̂
HAA versus the cuto↵ scale ⇤

cut for the BP-1, BP-2, and BP-3

(left panel) and �̂
HAA around the focus cuto↵ scale for BP-2 (right panel). The color code denotes t� .

We include all the viable parameter points with t� > 10.
within 10% ⇠ 20% for �̂

Hhh and �̂
HH+

H�.

M
A [GeV] M

A [GeV] ⇤
cut [GeV]

On the other hand, the trilinear coupling �̂
HAA is quite di↵erent according to the benchmark

point. In Fig. 6, we present �̂
HAA versus ⇤

cut for the three benchmark points. �̂
HAA depends

on M
A and M 2, not on t� : see Eq. (10). Since the value of

p

M 2 is limited in the small range

of [40, 120] GeV for t� > 10, the e↵ect of M 2 on �̂
HAA is not large. So, the heavier M

A is, the

larger �̂
HAA, which is clearly shown in Fig. 6. The BP-1 with the heaviest M

A has the largest

�̂
HAA, which is about 25 times larger than �̂

HAA for BP-3 in the high cuto↵ scale limit.

The presence of the special ⇤
cut in Fig. 5 and the right panel of Fig. 6 catches our attention.

Around ⇤
cut ' 1017 GeV, all the trilinear couplings are almost fixed. It corresponds to the12
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FIG. 5: Trilinear Higgs couplings of �̂hhh (left panel), �̂Hhh (middle panel), and �̂HH+H� (right panel)

against the cuto↵ scale ⇤cut. The color code denotes t� . We take BP-2 where mh = MA = 100 GeV,

MH± = 140 GeV, and t� > 10.

FIG. 6: Trilinear Higgs couplings of �̂HAA versus the cuto↵ scale ⇤cut for the BP-1, BP-2, and BP-3

(left panel) and �̂HAA around the focus cuto↵ scale for BP-2 (right panel). The color code denotes t� .

We include all the viable parameter points with t� > 10.

within 10% ⇠ 20% for �̂Hhh and �̂HH+H� .

MA [GeV] MH± [GeV] ⇤cut [GeV]

On the other hand, the trilinear coupling �̂HAA is quite di↵erent according to the benchmark

point. In Fig. 6, we present �̂HAA versus ⇤cut for the three benchmark points. �̂HAA depends

on MA and M
2, not on t�: see Eq. (10). Since the value of

p
M2 is limited in the small range

of [40, 120] GeV for t� > 10, the e↵ect of M
2 on �̂HAA is not large. So, the heavier MA is, the

larger �̂HAA, which is clearly shown in Fig. 6. The BP-1 with the heaviest MA has the largest

�̂HAA, which is about 25 times larger than �̂HAA for BP-3 in the high cuto↵ scale limit.

The presence of the special ⇤cut in Fig. 5 and the right panel of Fig. 6 catches our attention.

Around ⇤cut ' 1017 GeV, all the trilinear couplings are almost fixed. It corresponds to the
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On the other hand, the trilinear coupling �̂HAA is quite di↵erent according to the benchmark

point. In Fig. 6, we present �̂HAA versus ⇤cut for the three benchmark points. �̂HAA depends

on MA and M
2, not on t�: see Eq. (10). Since the value of

p
M2 is limited in the small range

of [40, 120] GeV for t� > 10, the e↵ect of M
2 on �̂HAA is not large. So, the heavier MA is, the

larger �̂HAA, which is clearly shown in Fig. 6. The BP-1 with the heaviest MA has the largest

�̂HAA, which is about 25 times larger than �̂HAA for BP-3 in the high cuto↵ scale limit.

The presence of the special ⇤cut in Fig. 5 and the right panel of Fig. 6 catches our attention.

Around ⇤cut ' 1017 GeV, all the trilinear couplings are almost fixed. It corresponds to the

12FIG. 1: Allowed (MA, MH±) with the cuto↵ scales of ⇤cut = 10 TeV (gray points) and ⇤cut �

1018 GeV (red points) in the inverted type-I 2HDM, over the viable parameter points that satisfy the

theoretical requirements and the experimental constraints. Two points in cyan yield the same MA

and MH± .

In the literature, the high-energy scale behavior of the 2HDM has been extensively studied,

mostly on the possibility of high ⇤cut and the high scale impact on the extra Higgs boson

masses [30, 36–44]. However, observing the scalar mass spectrum that the high ⇤cut predicts

does not indicate that ⇤cut is high. As illustrated in Fig. 1, the allowed points of (MA, MH±) for

⇤cut = 10 TeV (gray points) are overlapped with those for ⇤cut = 1018 GeV (red points). Two

points in cyan have the same MA and MH± , which both ⇤cut = 10 TeV and ⇤cut = 1018 GeV

accommodate. We need an alternative observable to disentangle the high and low cuto↵ scales.

The measurement of tan �, the ratio of two vacuum expectation values of two Higgs doublet

fields, is tricky in type-I when tan � � 1, if we consider only the dominant observables such as

3

Light masses cannot tell whether 𝛬 is high or low.
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In type-I, large tan β cannot be measured 
which are di↵erent according to the 2HDM type. In this work, we focus on type-I. To facilitate

the discussion below, we will call the type-I with the conditions of Eq. (4) the inverted type-I.

Then the Higgs coupling modifiers are
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In the inverted type-I, the couplings are

�̂HHH = �
3m2

125

v2
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The trilinear coupling of the observed Higgs boson H is the same as in the SM, �̂HHH ' 0.77,

because we adopt the Higgs alignment limit. Another remarkable feature is that �̂hhh, �̂hAA,

and �̂hH+H� are dependent on each other, with the common factor proportional to t�(M2
�m

2

h
)

in the large t� limit.

III. SCANNING AND RGE ANALYSIS

Before studying the high energy behavior of the model via RGE, the preparation of the

still-allowed parameter points at the electroweak scale is an essential prerequisite. Therefore,

we randomly scan five model parameters in the range of

t� 2 [1, 50], MA 2 [10, 3000] GeV, m
2

12
2 [�30002

, 30002] GeV2
, (11)

MH± 2 [80, 3000] GeV, mh 2 [10, 120] GeV,

and cumulatively impose the following constraints:

• Theoretical requirements

We demand the Higgs potential to be bounded from below [51], tree-level unitarity

of scalar-scalar scatterings [45, 52], perturbativity [34], and the stability of the CP -

conserving vacuum with v = 246 GeV [53–55].
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In type-I, large tan β cannot be measured. 

• The tan β-dependent production, the gluon 
fusion, is suppressed if tan β is large.   

• The decay branching ratios are insensitive to 
tan β in type I.
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discriminator of the cuto↵ scale. However, measuring large t� is very challenging at the LHC.

The value of t� governs the fermionic productions (from the top quark decay or gluon fusion via

quark loops) and fermionic decays of the extra Higgs bosons because all the Yukawa couplings

are inversely proportional to t� in type-I. This is where the di�culty arises. If t� is large, like

& 10, the fermionic production of the extra Higgs bosons is highly suppressed. Even though

the production of the extra Higgs bosons is feasible through the mediation of gauge bosons like

qq̄ ! Z
⇤

! Ah and qq̄ ! W
⇤

! H
±
h/A [44, 89–99], the production cross sections do not give

information about t�. Moreover, the fermionic decay parts are insensitive to t� because of the

same dependence of all the Yukawa couplings on t�. If we cannot measure the exact value of

large t�, it is reasonable to include all the viable parameter points with t� > 10 when pursuing

a way to discriminate the high and low ⇤cut.

IV. TRILINEAR HIGGS COUPLINGS AND THE LHC PHENOMENOLOGY

In this section, we study the trilinear Higgs couplings to measure ⇤cut. We consider the

following three benchmark points:

BP-1: mh = 70 GeV, MA = 110 GeV, MH± = 110 GeV, (14)

BP-2: mh = 100 GeV, MA = 100 GeV, MH± = 140 GeV,

BP-3: mh = 110 GeV, MA = 70 GeV, MH± = 140 GeV.

All three accommodate the cuto↵ scale from ⇤cut = 1 TeV to 1019 GeV. As discussed in the

previous section, we focus on the large t� limit as

Large t� case: t� > 10. (15)

For m
2

12
, we incorporate all the values that satisfy the constraints in Sec. III.

First, we present the branching ratios of h (left panels), A (middle panels), and H
± (right

panels) as a function of ⇤cut in Fig. 4. The results of BP-1, BP-2, and BP-3 are in the upper,

middle, and lower panels, respectively. We include all the viable parameter points. The first

noteworthy feature in Fig. 4 is that the dominant decay mode of the extra Higgs boson with

the given mass spectra is insensitive to the cuto↵ scale, even though the two parameters of

t�(> 10) and m
2

12
are not fixed. The decay of h depends on the hierarchy between mh and MA.

When mh  MA as in BP-1 and BP-2, the leading (next-to-leading) decay mode is h ! bb

(h ! ⌧
+
⌧
�). However, if mh > MA as in BP-3, the dominant decay mode is h ! AZ

⇤. The

suppressed Yukawa couplings of h by large t� enhance the bosonic decays modes if kinematically

open. The decay of A is primarily determined by the hierarchy between MA and mh. For BP-

1 and BP-2 with MA  mh, the pseudoscalar A dominantly decays into a pair of b quarks

with Br(A ! bb̄) & 0.73. The next-to-leading decay mode of A is into gg. The substantial

Br(A ! gg) is attributed to the larger loop amplitudes of a pseudoscalar than those of a scalar

for the spin-1/2 particle contributions [100]. The third one is A ! ⌧
+
⌧
�. If MA > mh, however,

10
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Dominant decay modes of the BSM Higgs bosons are 
insensitive to 𝛬. 
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FIG. 5: Trilinear Higgs couplings of �̂hhh (left panel), �̂Hhh (middle panel), and �̂HH+H� (right panel)

against the cuto↵ scale ⇤cut. The color code denotes t� . We take BP-2 where mh = MA = 100 GeV,

MH± = 140 GeV, and t� > 10.

leading fermionic decay mode depends delicately on the charged Higgs bosons mass. For BP-1

where MH± is considerably lighter than mt, H
±

! ⌧⌫ has the largest branching ratio among

the fermionic decay modes, followed by H
±

! cs. In BP-2 where MH± is near to mt, H
±

! t
⇤
b

becomes the leading fermionic mode, followed by H
±

! ⌧⌫.

Let us turn into the trilinear Higgs couplings versus ⇤cut. In Fig. 5, we present �̂hhh (left

panel), �̂Hhh (middle panel), and �̂HH+H� (right panel) as a function of ⇤cut. Note that �̂hAA =

�̂hH+H� = �̂hhh/3. The value of t� is shown via the color code. Here only the BP-2 results

are shown because they are similar to the results of BP-1 and BP-3: the di↵erence is within

O(10)%. It is impressive that the values of �̂hhh, �̂Hhh, and �̂HH+H� with ⇤cut = 1 TeV,

although they are spread by the unfixed t� and m
2

12
, are di↵erent from those corresponding to

⇤cut ' 1018 GeV. The most sensitive dependence on ⇤cut is shown in �̂hhh, which ranges in

[�0.09, 1.1]. Since �̂hhh = 0 is included, the change of �̂hhh according to ⇤cut is huge. On the

other hand, the variations of �̂Hhh and �̂HH+H� are small within 10% ⇠ 20%.

Unlike �̂hhh, �̂Hhh, and �̂HH+H� , the value of �̂HAA is sensitive to the benchmark point. In

the left panel of Fig. 6, we present �̂HAA versus ⇤cut for the three benchmark points. The large

variation of �̂HAA according to the benchmark point is clearly shown: |�̂HAA| of BP-1 is about

25 times larger than that of BP-3 in the high cuto↵ scale limit. �̂HAA depends on MA and M
2,

not on t�. Let us limit the discussion to the high ⇤cut case. Since M
2

⇡ mh as shown in Fig. 3

and the M
2 contribution nearly cancels the m125 contribution, the e↵ect of MA on �̂HAA is

crucial so that the heavier MA enhances �̂HAA. So, BP-1 with the heaviest MA has the largest

|�̂HAA|.

We observe a special ⇤cut in Fig. 5 and the right panel of Fig. 6. Around ⇤cut ' 1017 GeV,

all the trilinear couplings are almost fixed. Even though we present only the results of BP-2,

the same behavior is found in BP-1 and BP-3. The spread trilinear Higgs couplings are focused

on a single point which we call ⇤focus

cut
. It corresponds to the parameter points with M

2 = m
2

h
,

which removes the t� dependence of the trilinear couplings in Eq. (10). Since the variation of

�̂��0�00 is originated mainly from the undetermined t�, the simple condition of M
2 = m

2

h
nearly

12
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FIG. 5: Trilinear Higgs couplings of �̂hhh (left panel), �̂Hhh (middle panel), and �̂HH+H� (right panel)

against the cuto↵ scale ⇤cut. The color code denotes t� . We take BP-2 where mh = MA = 100 GeV,

MH± = 140 GeV, and t� > 10.
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12

Not overlapped, at least, for 𝛬=1 TeV and 𝛬=1018 GeV. 
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FIG. 6: Trilinear Higgs couplings of �̂HAA versus the cuto↵ scale ⇤cut for BP-1, BP-2, and BP-3 (left

panel) and �̂HAA around the focus cuto↵ scale for BP-2 (right panel). The color code denotes t� . We

include all the viable parameter points with t� > 10.

FIG. 7: Feynman diagrams of gg ! hh/AA (left panel) and qq̄
0
! W

⇤
! H

±
hh (right panel).

fixes the values of �̂��0�00 . In particular, �̂hhh vanishes when ⇤cut = ⇤focus

cut
.

To probe the trilinear Higgs couplings at the LHC, we need to consider multi-Higgs boson

production mediated by Higgs bosons. The first important is the loop-induced process of

gg ! H/h ! hh/AA. The corresponding Feynman diagram is in the left panel of Fig. 7. We

omit the box diagrams from the top quark loop because two factors of 1/t� suppress them. The

contribution of H destructively interferes with that of h because the sign of �̂Hhh and �̂hhh are

opposite to each other: see Fig. 5.

In Fig. 8, we present as a function of ⇤cut the parton-level production cross sections for

gg ! hh (left panel) and gg ! AA (right panel) at the 14 TeV LHC over the viable pa-

rameter points. All the three benchmark points in Eq. (14) are considered. The color code

denotes t�. To calculate the parton-level cross sections, we first obtained the Universal Feyn-

Rules Output (UFO) [101] by using FeynRules [102]. Then we interfered the UFO file with

MadGraph5-aMC@NLO [103] and calculated the cross sections at the 14 TeV LHC with

the NNPDF31 lo as 0118 parton distribution function set [104].

For the production cross sections of gg ! hh, the most crucial factor is mh. The lighter mh

is, the larger �(gg ! hh) is. So, BP-1 yields the largest cross section. On the contrary, the

production cross section of gg ! AA is larger for heavier MA. The BP-1, which has the heaviest

MA among the three benchmark points, has the largest cross section. It seems contradictory

13

Di-Higgs and Tri-Higgs productions 
to probe the trilinear Higgs couplings 
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Various channels for the tri-Higgs productions

FIG. 8: Cross sections of gg ! hh (left panel) and gg ! AA (right panel) at the 14 TeV LHC, as a

function of ⇤cut. The color code denotes t� . The description of the benchmarks are in the main text.

to the kinematic loss by the heavy MA. The main reason is that the dominant contribution to

gg ! AA is from H and thus �̂HAA governs the process. As shown in Fig. 6, �̂HAA is much

larger for a heavy MA.

The dependence of �(gg ! hh/AA) on ⇤cut is not large enough to distinct the high and low

cuto↵ scales. Even the optimistic case, the process of gg ! hh in BP-1 with t� = 10, makes a

few fb di↵erence in the cross sections between ⇤cut = 1 TeV and ⇤cut = 1018 GeV. It is too small

to probe at the HL-LHC with the expected total luminosity of 3 ab�1. For larger t�, the di-Higgs

production cross sections become more insensitive to ⇤cut. The weak dependence of �(gg ! hh)

on ⇤cut is due to the dominant contribution from H and the destructive interference between

the H and h contributions. Let us consider BP-1 with t� = 10 and ⇤cut = 1 TeV. The cross

section from H alone is �(gg ! H ! hh) ' 36.5 fb, from h alone is �(gg ! h ! hh) ' 1.1 fb,

and from the interference alone �(gg ! hh)intf ' �12.1 fb. The �̂Hhh controls the cross section,

but its variation about ⇤cut is small.

To single out only one trilinear Higgs coupling, we consider triple Higgs production at the

LHC. Since the gluon fusion production of the tri-Higgs process through the top quark loop is

suppressed by large t�, the e�cient tri-Higgs productions are the ones mediated by the gauge

bosons. Through the Z boson, we have
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FIG. 8: Cross sections of gg ! hh (left panel) and gg ! AA (right panel) at the 14 TeV LHC, as a

function of ⇤cut. The color code denotes t� . The description of the benchmarks are in the main text.
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FIG. 8: Cross sections of gg ! hh (left panel) and gg ! AA (right panel) at the 14 TeV LHC, as a

function of ⇤cut. The color code denotes t� . The description of the benchmarks are in the main text.
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Di-Higgs processes are NOT efficient as a discriminator. 
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FIG. 8: Cross sections of gg ! hh (left panel) and gg ! AA (right panel) at the 14 TeV LHC, as a

function of ⇤cut. The color code denotes t� . The description of the benchmarks are in the main text.
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Because Hhh and hhh contributions are mixed.
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FIG. 8: Cross sections of gg ! hh (left panel) and gg ! AA (right panel) at the 14 TeV LHC, as a

function of ⇤cut. The color code denotes t� . The description of the benchmarks are in the main text.
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Discriminating the high and low cutoff scales 
requires the precision measurement on the 

cross section within 1 fb.
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Tri-Higgs processes are sensitive to 𝛬.

FIG. 9: Cross sections of qq̄
0
! H

±
hh at the 14 TeV LHC as a function of ⇤cut, for BP-1 (left), BP-2

(middle), and BP-3 (right). The color codes indicate t� .

As a representative, we present the Feynman diagram of qq̄
0
! H

±
hh in the right panel of

Fig. 7. Since all the above processes have the same topology of the Feynman diagram, the

production cross sections as a function of ⇤cut show almost the same behavior. For example,

�(pp ! Ahh)/�(pp ! H
±
hh) ' 0.9 holds for all ⇤cut in BP-2.

In Fig. 9, we present the parton-level production cross sections of qq̄
0
! H

±
hh at the 14

TeV LHC for BP-1 (left panel), BP-2 (middle panel), and BP-3 (right panel). The color code

denotes t�. The most significant result in Fig. 9 is that the di↵erence of the cross section

according to ⇤cut is big enough to distinguish the high and low cuto↵ scales of the inverted

type-I. The ratio of the cross section for ⇤cut = 1 TeV to that for ⇤cut = 1018 GeV is more than

about 103. This is the most remarkable result of our study. Measuring the signal rate of the

triple Higgs production tells whether the cuto↵ scale is high or low.

Finally, we discuss the discovery potential at the HL-LHC. Discriminating the high and low

cuto↵ scales through gg ! hh/AA requires the precision measurement on the cross section

within ⇠ 1 fb. Let us roughly estimate the feasibility. The processes of gg ! hh and gg !

AA mainly yield 4b final states because A/h ! bb is leading or next-to-leading. Resembling

the di-Higgs process in the SM, they are challenging to observe for two reasons. First, the

cross sections are too small. The maximum of the cross section, which happens for ⇤cut =

1 TeV, reaches O(10) fb. It is to be compared with the SM leading order result of �(gg !

hSM hSM)LO ' 17 fb at
p

s = 14 TeV [105]. The projected signal significance at the HL-LHC

with the total luminosity of 3 ab�1 is 3.0 �, when the bbbb, bb⌧
+
⌧
�, and bb�� decay channels are

all combined [106]. The second di�culty comes from the softer b jets than in the SM di-Higgs

process, which reduces the b tagging e�ciency. For gg ! hh ! 4b, the lighter mh than 125 GeV

always yields soft b quarks. For gg ! AA ! 4b, most of the viable parameter points in Fig. 3

have MA < 125 GeV, which generate soft b quarks. In summary, the di-Higgs process is not

e�cient to probe the cuto↵ scale.

The triple Higgs production of H
±
hh, H

±
AA, and H

±
Ah in Eqs. (18)–(20), mediated by

15
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FIG. 9: Cross sections of qq̄
0
! H

±
hh at the 14 TeV LHC as a function of ⇤cut, for BP-1 (left), BP-2

(middle), and BP-3 (right). The color codes indicate t� .
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denotes t�. The most significant result in Fig. 9 is that the di↵erence of the cross section

according to ⇤cut is big enough to distinguish the high and low cuto↵ scales of the inverted

type-I. The ratio of the cross section for ⇤cut = 1 TeV to that for ⇤cut = 1018 GeV is more than

about 103. This is the most remarkable result of our study. Measuring the signal rate of the

triple Higgs production tells whether the cuto↵ scale is high or low.

Finally, we discuss the discovery potential at the HL-LHC. Discriminating the high and low

cuto↵ scales through gg ! hh/AA requires the precision measurement on the cross section

within ⇠ 1 fb. Let us roughly estimate the feasibility. The processes of gg ! hh and gg !

AA mainly yield 4b final states because A/h ! bb is leading or next-to-leading. Resembling

the di-Higgs process in the SM, they are challenging to observe for two reasons. First, the

cross sections are too small. The maximum of the cross section, which happens for ⇤cut =

1 TeV, reaches O(10) fb. It is to be compared with the SM leading order result of �(gg !

hSM hSM)LO ' 17 fb at
p

s = 14 TeV [105]. The projected signal significance at the HL-LHC

with the total luminosity of 3 ab�1 is 3.0 �, when the bbbb, bb⌧
+
⌧
�, and bb�� decay channels are

all combined [106]. The second di�culty comes from the softer b jets than in the SM di-Higgs
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• Final states of H+ h h?   6b + lepton + MET
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process, which reduces the b tagging e�ciency. For gg ! hh ! 4b, the lighter mh than 125 GeV

always yields soft b quarks. For gg ! AA ! 4b, most of the viable parameter points in Fig. 3

have MA < 125 GeV, which generate soft b quarks. In summary, the di-Higgs process is not

e�cient to probe the cuto↵ scale.

The triple Higgs production of H
±
hh, H

±
AA, and H

±
Ah in Eqs. (18)–(20), mediated by

the W boson, has higher discovery potential. If the charged Higgs boson mainly decays into

W
±⇤

A/h as in the three benchmark points, followed by h/A ! bb, the final state is 6b + `⌫.

This attractive channel has not been studied in the literature.3 The main backgrounds are

t + t̄ + `⌫ ! bj
mis

b
j
mis

b
+ bj

mis

b
j
mis

b
+ `⌫, (21)

t + t̄ + jj ! b`⌫ + bj
mis

b
j
mis

b
+ j

mis

b
j
mis

b
,

where j
mis

b
is the light jet (from u, d, s, c, and g) mistagged as a b quark jet. We calculated the

parton-level cross sections of tt̄ + `⌫ and tt̄ + bb, with the b tagging and mistagging e�ciencies

of Pb!b = 0.7, Pc!b = 0.05, and Pj!b = 0.01. We imposed the selection cuts of p
b

T
> 20 GeV,

p
`

T
> 10 GeV, |⌘

`,j
| < 2.5, E

miss

T
> 20 GeV, and the separation �Rii0 > 0.4. After the basic

selection, the background cross section from tt̄ + bb is about 8.7 ab and that from tt̄ + `⌫ is

3.8⇥10�4 ab. If we impose additional cuts on the invariant mass of two b jets like |mbb �mh| <

15 GeV, the backgrounds are negligible. Despite the almost background-free environment, the

high ⇤cut yields too small signal rate of pp ! H
±
hh at the 14 TeV LHC.

Exploring the cuto↵ scale in the inverted type-I via the 6b+`⌫ final state has a better chance

in future high-energy colliders such as the Future hadron-hadron Circular Collider (FCC-hh)

at CERN [109], the CEPC [110, 111], and the muon collider [112–114]. We have particular

expectations for the muon collider with benchmark energies in the range of
p

s = 3 � 30 TeV

and the integrated luminosity of L = 10 (
p

s/10 TeV)2 ab�1. The triple Higgs processes in

Eq. (16) and Eq. (17) with qq̄ replaced by µ
+
µ
� will be very helpful to disentangle the high

and low cuto↵ scales of the inverted type-I.

V. CONCLUSION

Beyond the studies on how high the cuto↵ scale of a new physics model can go up, we have

pursued an e�cient observable to distinguish the high and low cuto↵ scales. The type-I in the

2HDM has been considered for the inverted scenario where the observed Higgs boson at a mass

of 125 GeV is the heavier CP -even Higgs boson H. We have first obtained the still-available

parameter points that satisfy the theoretical requirements, the experimental constraints, and

the cuto↵ scale above 1 TeV. The viable parameter space at the electroweak scale is already

limited such that MA, MH± . 430 GeV and mh & 62.5 GeV. Through the calculation of the

3 The final state of 4j + `⌫ was studied for the vector boson scattering of WW ! WW [107], and the SM Higgs

boson decaying into a fat jet consisting of 4b/6b/8b was studied [108].

16

After basic selection, the background cross 
sections are below 1 ab.
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FIG. 9: Cross sections of qq̄
0
! H

±
hh at the 14 TeV LHC as a function of ⇤cut, for BP-1 (left), BP-2

(middle), and BP-3 (right). The color codes indicate t� .
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Fig. 7. Since all the above processes have the same topology of the Feynman diagram, the

production cross sections as a function of ⇤cut show almost the same behavior. For example,

�(pp ! Ahh)/�(pp ! H
±
hh) ' 0.9 holds for all ⇤cut in BP-2.

In Fig. 9, we present the parton-level production cross sections of qq̄
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±
hh at the 14

TeV LHC for BP-1 (left panel), BP-2 (middle panel), and BP-3 (right panel). The color code
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about 103. This is the most remarkable result of our study. Measuring the signal rate of the

triple Higgs production tells whether the cuto↵ scale is high or low.

Finally, we discuss the discovery potential at the HL-LHC. Discriminating the high and low

cuto↵ scales through gg ! hh/AA requires the precision measurement on the cross section

within ⇠ 1 fb. Let us roughly estimate the feasibility. The processes of gg ! hh and gg !

AA mainly yield 4b final states because A/h ! bb is leading or next-to-leading. Resembling

the di-Higgs process in the SM, they are challenging to observe for two reasons. First, the

cross sections are too small. The maximum of the cross section, which happens for ⇤cut =

1 TeV, reaches O(10) fb. It is to be compared with the SM leading order result of �(gg !

hSM hSM)LO ' 17 fb at
p

s = 14 TeV [105]. The projected signal significance at the HL-LHC

with the total luminosity of 3 ab�1 is 3.0 �, when the bbbb, bb⌧
+
⌧
�, and bb�� decay channels are

all combined [106]. The second di�culty comes from the softer b jets than in the SM di-Higgs
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5. Conclusions

• As one of the simplest extension of the SM, 2HDM is a 
good candidate for the first-stage NP model.


• Distinguishing the high- and low-cutoff scales is feasible 
through the measurement of the trilinear Higgs couplings.


• Tri-Higgs production is sensitive to the cutoff scale of the 
type-I 2HDM in the inverted scenario. 
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