The 2nd Asian-European-Institute workshop for BSM & the 10th KIAS workshop on Particle Physics and Cosmology Jeju 2022. 11. 18.

RGE studies in the 2HDM

Jeonghyeon Song (Konkuk University, Korea)

w/ S.K. Kang, J. Kim, S. Lee, C.T. Lu, K. Cheung, P. Sanyal [2204.10338] [2205.01701] [2207.05104] [2210.00020]

The 2nd Asian-European-Institute workshop for **BSM** & the 10th KIAS workshop on Particle Physics and Cosmology

Theoretical structures of "Beyond" the SM

Beyond the

3

We need to go beyond the wall, looking for NP.

Is there only one wall?

If we observe some signals of a NP model, how can we know its credibility?

For the given NP-1 model,

the cutoff scale can tell the nextlevel BSM model.

- 1. 2HDM & RGE
- 2. RGE effects on the CDF W boson mass measurement
- 3. RGE effects on the muon g-2
- 4. How to disentangle the high- and low-cutoff scales
- 5. Conclusions

1. 2HDM & RGE

Basic theory setup

$$\Phi_i = \begin{pmatrix} w_i^+ \\ \frac{v_i + h_i + i\eta_i}{\sqrt{2}} \end{pmatrix}, \quad i = 1, 2,$$

where $v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV}.$

Basic theory setup

$$\Phi_i = \begin{pmatrix} w_i^+ \\ \frac{v_i + h_i + i\eta_i}{\sqrt{2}} \end{pmatrix}, \quad i = 1, 2,$$

where $v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV}.$

• Discrete Z₂ symmetry to avoid tree-level FCNC

$$\Phi_1 \to \Phi_1, \quad \Phi_2 \to -\Phi_1$$

Basic theory setup

$$\Phi_i = \begin{pmatrix} w_i^+ \\ \frac{v_i + h_i + i\eta_i}{\sqrt{2}} \end{pmatrix}, \quad i = 1, 2,$$

where $v = \sqrt{v_1^2 + v_2^2} = 246$ GeV.

• Discrete Z₂ symmetry to avoid tree-level FCNC

$$\Phi_1 \to \Phi_1, \quad \Phi_2 \to -\Phi_1$$

• Scalar potential with CP-invariance

$$V_{\Phi} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + \text{H.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} \lambda_{5} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{H.c.} \right],$$

• Four types

	Φ_1	Φ_2	<i>u</i> _R	d_R	ℓ_R	Q_L, L_L
Туре І	+	_	_	_	_	+
Type II	+	_	_	+	+	+
Type X	+	_	_	_	+	+
Type Y	+			+		+

$-\mathcal{L}_{\text{Yukawa}} = Y_{u2} \overline{Q}_L \tilde{\Phi}_2 u_R + Y_{d2} \overline{Q}_L \Phi_2 d_R + Y_{\ell 1} \overline{L}_L \Phi_1 e_R + \text{h.c.}$

• SM Higgs boson

$$h_{\rm SM} = s_{\beta-\alpha}h + c_{\beta-\alpha}H.$$

• 2 scenarios: normal scenario (NS) & inverted scenario (IS)

NS: $m_h = m_{125};$ IS: $M_H = m_{125},$

• Higgs alignment limits

NS:
$$s_{\beta-\alpha} = 1$$

IS: $c_{\beta-\alpha} = 1$

In the Higgs alignment limit

$$M^2 = m_{12}^2 / (s_\beta c_\beta)$$

$$\begin{split} \lambda_1 &= \frac{1}{v^2} \left[m_{125}^2 + t_\beta^2 \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_2 &= \frac{1}{v^2} \left[m_{125}^2 + \frac{1}{t_\beta^2} \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_3 &= \frac{1}{v^2} \left[m_{125}^2 - m_{\varphi^0}^2 - M^2 + 2M_{H^{\pm}}^2 \right], \\ \lambda_4 &= \frac{1}{v^2} \left[M^2 + M_A^2 - 2M_{H^{\pm}}^2 \right], \\ \lambda_5 &= \frac{1}{v^2} \left[M^2 - M_A^2 \right], \end{split}$$

Similar masses of BSM Higgs boson for large tan β

In the Higgs alignment limit

$$M^2 = m_{12}^2 / (s_\beta c_\beta)$$

$$\begin{split} \lambda_1 &= \frac{1}{v^2} \left[m_{125}^2 + t_\beta^2 \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_2 &= \frac{1}{v^2} \left[m_{125}^2 + \frac{1}{t_\beta^2} \left(m_{\varphi^0}^2 - M^2 \right) \right], \\ \lambda_3 &= \frac{1}{v^2} \left[m_{125}^2 - m_{\varphi^0}^2 - M^2 + 2M_{H^{\pm}}^2 \right], \\ \lambda_4 &= \frac{1}{v^2} \left[M^2 + M_A^2 - 2M_{H^{\pm}}^2 \right], \\ \lambda_5 &= \frac{1}{v^2} \left[M^2 - M_A^2 \right], \end{split}$$

Similar masses of BSM Higgs boson for large tan β

RGE

• Running of gauge couplings

$$16\pi^2 \beta_{g_3} = -7g_3^3,$$

$$16\pi^2 \beta_{g_2} = \left(-\frac{10}{3} + \frac{n_d}{6}\right)g_2^3 = -3g_2^3,$$

$$16\pi^2 \beta_{g_1} = \left(\frac{20}{3} + \frac{n_d}{6}\right) = 7g_1^3,$$

 $n_g = 2$

• Running of Yukawa couplings has two contributions.

$$\beta_Y = \beta_Y^g + \beta_Y^Y$$

$$16\pi^2 \beta_{Y_t}^g = -\left(\frac{17}{12}g_1^2 + \frac{9}{4}g_2^2 + 8g_3^2\right)Y_t,$$

$$16\pi^2 \beta_{Y_\tau}^g = -\left(\frac{15}{4}g_1^2 + \frac{9}{4}g_2^2\right)Y_\tau,$$

$$16\pi^2 \beta_{Y_t}^Y = \left(\frac{3}{2}Y_b^2 + \frac{9}{2}Y_t^2\right) Y_t$$
$$16\pi^2 \beta_{Y_\tau}^Y = \frac{5}{2}Y_\tau^3$$

Running of quartic couplings from bosonic contributions and fermonic contributions

$$\beta_{\lambda} = \beta_{\lambda}^{b} + \beta_{\lambda}^{Y}$$

• In type-X, for example,

$$\begin{split} 16\pi^2\beta_{\lambda_1}^b =& \frac{3}{4}g_1^4 + \frac{3}{2}g_1^2g_2^2 + \frac{9}{4}g_2^4\\ &- 3g_1^2\lambda_1 - 9g_2^2\lambda_1 + 12\lambda_1^2 + 4\lambda_3^2 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 2\lambda_5^2,\\ 16\pi^2\beta_{\lambda_1}^Y =& -4Y_\tau^4 + 4Y_\tau^2\lambda_1. \end{split}$$

	BP-NS	BP-IS	
M_H in GeV	153.865	93.6073	
M_A in GeV	63.0	15.7859	
$M_{H^{\pm}}$ in GeV	176.152	135.00	
λ_1	0.52616	1.0251	
λ_2	0.25773	0.25767	
λ_3	0.52559	0.58636	
λ_4	-0.56774	-0.45412	
λ_5	0.324993	0.138905	
m_{12}^2 in GeV ²	353.226215	393.28757	
$\tan \beta$	67.0	22.0	
$\sin(\beta - \alpha)$	0.999996	0.00601127	
$y_h^\ell \times \sin(\beta - \alpha)$	0.81048833	1.13220955	

BP-NS

• No dramatic changes

1000 Energy [GeV]

• Quartic couplings can be very large at high energy scale.

- Why is the large quartic coupling a problem?
- It can threaten the theoretical stabilities.

Theoretical stabilities

• Scalar potential bounded from below:

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2},$$
$$\lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}.$$

• Perturbative unitarity of scalar-scalar scattering at tree level

$$\begin{aligned} a_{\pm} &= \frac{3}{2} (\lambda_1 + \lambda_2) \pm \sqrt{\frac{9}{4} (\lambda_1 - \lambda_2)^2 + (2\lambda_3 + \lambda_4)^2}, \\ b_{\pm} &= \frac{1}{2} \left(\lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \right), \\ c_{\pm} &= \frac{1}{2} \left(\lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_5^2} \right), \\ f_{\pm} &= \lambda_3 + 2\lambda_4 + 3\lambda_5, \quad f_{\pm} = \lambda_3 + \lambda_5, \quad f_1 = f_2 = \lambda_3 + \lambda_4, \\ e_1 &= \lambda_3 + 2\lambda_4 - 3\lambda_5, \quad e_2 = \lambda_3 - \lambda_5, \quad p_1 = \lambda_3 - \lambda_4. \end{aligned}$$

• Vacuum stability

$$D = m_{12}^2 \left(m_{11}^2 - k^2 m_{22}^2 \right) \left(t_\beta - k \right) > 0,$$

$$k = (\lambda_1 / \lambda_2)^{1/4}$$

Theoretical stability is broken!

- RGE analysis to calculate the cutoff scale
 - 1. Run each parameter point to the next high energy scale via the RGEs.
 - 2. Check three conditions—unitarity, perturbativity, and vacuum stability.
 - 3. If any condition is broken at a particular energy scale, we stop the evolution and record the energy scale as the cutoff scale.

$$g_s, g, g', \lambda_{1,\dots,5}, \xi_f^{h,H,A}, m_{ij}^2, v_i, (i = 1, 2).$$

- RGE analysis to calculate the cutoff scale
 - 1. Run each parameter point to the next high energy scale via the RGEs.
 - 2. Check three conditions—unitarity, perturbativity, and vacuum stability.
 - 3. If any condition is broken at a particular energy scale, we stop the evolution and record the energy scale as the cutoff scale.

$$g_s, g, g', \lambda_{1,\dots,5}, \xi_f^{h,H,A}, m_{ij}^2, v_i, (i=1,2).$$

- RGE analysis to calculate the cutoff scale
 - Run each parameter point to the next high energy scale via the RGEs.
 - 2. Check three conditions—unitarity, perturbativity, and vacuum stability.
 - 3. If any condition is broken at a particular energy scale, we stop the evolution and record the energy scale as the cutoff scale.

$$g_s, g, g', \lambda_{1,\dots,5}, \xi_f^{h,H,A}, m_{ij}^2, v_i, (i = 1, 2).$$

- RGE analysis to calculate the cutoff scale
 - 1. Run each parameter point to the next high energy scale via the RGEs.
 - 2. Check three conditions—unitarity, perturbativity, and vacuum stability.
 - 3. If any condition is broken at a particular energy scale, we stop the evolution and record the energy scale as the cutoff scale.

$$g_s, g, g', \lambda_{1,\dots,5}, \xi_f^{h,H,A}, m_{ij}^2, v_i, (i=1,2).$$

- RGE analysis to calculate the cutoff scale
 - 1. Run each parameter point to the next high energy scale via the RGEs.
 - 2. Check three conditions—unitarity, perturbativity, and vacuum stability.
 - 3. If any condition is broken at a particular energy scale, we stop the evolution and record the energy scale as the cutoff scale.

$$g_s, g, g', \lambda_{1,\dots,5}, \xi_f^{h,H,A}, m_{ij}^2, v_i, (i = 1, 2).$$

Minimal requirement

Cutoff scale > 1 TeV

4. RGE for the CDF mW

Lee, Cheung, Kim, Lu, JS [2204.10338]

CDF W boson mass

Science 376 (2022)
- Quantify the NP effect by the Peskin-Takeuchi oblique parameters.
- U from dimension-8 operator
- Setting U=0, but S and T as free parameters
- Without and with the CDF mW

5=0.22

Comprehensive study

- Four types & two scenarios = 8 cases
- 8 cases for PDG mW and CDF mW ➡16 cases
- No assumptions on the masses and couplings: 6 parameters

$$\{m_h, M_{H^{\pm}}, M_H, M_A, M_A, m_{12}^2, t_{\beta}, s_{\beta-\alpha}\}.$$

• Scanning ranges

NS:
$$M_H \in [130, 2000] \text{ GeV}, M_A \in [15, 2000] \text{ GeV},$$

 $s_{\beta-\alpha} \in [0.8, 1.0], m_{12}^2 \in [0, 1000^2] \text{ GeV}^2,$
IS: $m_h \in [15, 120] \text{ GeV}, M_A \in [15, 2000] \text{ GeV},$
 $c_{\beta-\alpha} \in [0.8, 1.0], m_{12}^2 \in [0, 1000^2] \text{ GeV}^2.$

type-I & type-X: $M_{H^{\pm}} \in [80, 2000] \text{ GeV}, \quad t_{\beta} \in [1, 50],$ type-II & type-Y: $M_{H^{\pm}} \in [580, 2000] \text{ GeV}, \quad t_{\beta} \in [0.5, 50].$ • Scanning steps

Step-(i) Theory+FCNC: Step-(ii) EWPD: S&T Step-(iii) RGEs for $\Lambda_c > 1$ TeV: Step-(iv) Collider:

Step-(i) Theory+FCNC:

- 1. Higgs potential being bounded from below;
- 2. Perturbative unitarity of the scattering amplitudes;
- 3. Perturbativity of the quartic couplings;
- 4. Vacuum stability;
- 5. FCNC observables.

Allowed regions after Step-(i)

42

- NS: almost degenerate masses for heavy BSM scalars
- IS: light m_h brings down the other new scalars

• Survival percentages w.r.t. ten million points that pass Step-(i)

		EWPD	$\Lambda_{\rm c} > 1 { m ~TeV}$	Collider	EWPD	$\Lambda_{\rm c} > 1 { m ~TeV}$	Collider
		Normal scenario			Inverted scenario		
type-I	PDG	12.98%	5.13%	0.60%	7.20%	5.08%	0.85%
	CDF	4.42%	1.31%	0.14%	1.30%	0.72%	0.19%
type-II	PDG	10.76%	0.43%	0.20%	2.14%	0	0
	CDF	3.36%	0.03%	0.01%	0.69%	0	0
type-X	PDG	12.98%	5.13%	0.18%	7.20%	5.08%	0.03%
	CDF	4.42%	1.31%	0.03%	1.30%	0.72%	0.01%
type-Y	PDG	10.76%	0.43%	0.20%	2.14%	0	0
	CDF	3.36%	0.03%	0.01%	0.69%	0	0

Step-(iv) Collider:

- 1. Higgs precision data via HIGGSSIGNALS;
- 2. direct searches at high energy collider via HIGGSBOUNDS.

• Survival percentages w.r.t. ten million points that pass Step-(i)

		EWPD	$\Lambda_{\rm c} > 1 { m TeV}$	Collider	
		Normal scenario			
type-I	PDG	12.98%	5.13%	0.60%	
	CDF	4.42%	1.31%	0.14%	
type-II	PDG	10.76%	0.43%	0.20%	
	CDF	3.36%	0.03%	0.01%	
type-X	PDG	12.98%	5.13%	0.18%	
	CDF	4.42%	1.31%	0.03%	
type-Y	PDG	10.76%	0.43%	0.20%	
	CDF	3.36%	0.03%	0.01%	

		EWPD	$\Lambda_{\rm c} > 1 { m TeV}$	Collider	
		Inverted scenario			
type-I	PDG	7.20%	5.08%	0.85%	
	CDF	1.30%	0.72%	0.19%	
type-II	PDG	2.14%	0	0	
	CDF	0.69%	0	0	
type-X	PDG	7.20%	5.08%	0.03%	
	CDF	1.30%	0.72%	0.01%	
	PDG	2.14%	0	0	
l type-1	CDF	0.69%	0	0	

• type-II in NS

• type-II in NS

RGE excludes sizable mass gaps among BSM Higgs masses below 500 GeV.

• type-II in NS

In the CDF, there are upper bounds on BSM Higgs masses.

5. RGE effects on the muon g-2

Kim, Lee, Sanyal, Song [2205.01701]

• Persistent anomaly with 4.2σ which has been around for some time

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-11}.$$

• 2HDM: two kinds of contributions

1-loop

Barr-Zee 2-loop

Persistent anomaly with 4.2σ which has been around for some time

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-11}.$$

• 2HDM: two kinds of contributions

1-loop Barr-Zee 2-loop

- We need
 - Enhance the τ Yukawa coupling
 - Suppress the b quark Yukawa coupling of the BSM Higgs bosons.
 - Light psedoscalar A
- Type-X with large $tan\beta$ and Higgs-phobic A

- Lepton Flavor Universality (LFU) data in danger
- 1. For the τ decay,

$$\frac{g_{\tau}}{g_{\mu}}, \quad \frac{g_{\tau}}{g_{e}}, \quad \frac{g_{\mu}}{g_{e}}, \quad \left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi}, \quad \left(\frac{g_{\tau}}{g_{\mu}}\right)_{K}.$$

2. Michel parameters, based on the energy and angular distribution of ℓ^- in the decay of $\tau^- \rightarrow \ell^- \nu \nu_{\tau}$:

$$\rho_e, \quad (\xi\delta)_e, \quad \xi_e, \quad \eta_\mu, \quad \rho_\mu, \quad (\xi\delta)_\mu, \quad \xi_\mu, \quad \xi_\pi, \quad \xi_\rho, \quad \xi_{a_1}.$$

3. Leptonic Z decays:

$$\frac{\Gamma(Z \to \mu^+ \mu^-)}{\Gamma(Z \to e^+ e^-)}, \quad \frac{\Gamma(Z \to \tau^+ \tau^-)}{\Gamma(Z \to e^+ e^-)}.$$

2104.10175 [hep-ph]

• Higgs-phobic A in type-X

$$\hat{\lambda}_{hAA} = \left(2M^2 - 2M_A^2 - m_h^2\right)s_{\beta-\alpha} + \left(m_h^2 - M^2\right)\left(t_\beta - \frac{1}{t_\beta}\right)c_{\beta-\alpha}.$$

Higgs-phobic A:
$$\frac{s_{\beta-\alpha}}{c_{\beta-\alpha}} = -\left(t_{\beta} - \frac{1}{t_{\beta}}\right)\frac{m_h^2 - M^2}{2M^2 - 2M_A^2 - m_h^2}.$$

• Higgs-phobic A cannot coexist with 100% alignment. BUT

Allowed parameter points

• Difference-1: PDG island

5. Higgs-phobic for muon g-2

- Difference-1: How can the PDG-island evade the LFU?
- Cancellation!

PDG vs CDF in the RGE analysis

• The maximum cutoff scale is in the PDG-island, which is about 10⁷ GeV.

4. How to distinguish the high- and low-cutoff scales?

S.K. Kang, J. Kim, S. Lee, JS [2210.00020]

Can a measurement distinguish?

NP

Can a measurement distinguish?

Yes, if we can measure the cutoff scale of a NP model.

Higgs alignment limit in the inverted scenario

$$M_H = 125 \text{ GeV}, \quad c_{\beta-\alpha} = 1.$$

Yukawa couplings to the SM fermions

$$\xi_{f}^{H} = 1, \quad \xi_{t,b,\tau}^{h} = \frac{1}{t_{\beta}}, \quad \xi_{t}^{A} = -\xi_{b,\tau}^{A} = \frac{1}{t_{\beta}}.$$

Yukawa couplings of the BSM Higgs bosons are suppressed by tan β Higgs alignment limit in the inverted scenario

$$M_H = 125 \text{ GeV}, \quad c_{\beta-\alpha} = 1.$$

Yukawa couplings to the SM fermions

$$\xi_f^H = 1, \quad \xi_{t,b,\tau}^h = \frac{1}{t_\beta}, \quad \xi_t^A = -\xi_{b,\tau}^A = \frac{1}{t_\beta}.$$

Yukawa couplings of the BSM Higgs bosons are suppressed by tan β

Trilinear Higgs couplings

$$\begin{split} \hat{\lambda}_{HHH} &= -\frac{3m_{125}^2}{v^2}, \qquad \hat{\lambda}_{hHH} = 0, \\ \hat{\lambda}_{hhh} &= 3\hat{\lambda}_{hAA} = 3\hat{\lambda}_{hH^+H^-} = -\frac{3(M^2 - m_h^2)(t_\beta^2 - 1)}{t_\beta v^2}, \\ \hat{\lambda}_{Hhh} &= -\frac{m_{125}^2 + 2m_h^2 - 2M^2}{v^2}, \\ \hat{\lambda}_{HAA} &= -\frac{m_{125}^2 + 2M_A^2 - 2M^2}{v^2}, \\ \hat{\lambda}_{HH^+H^-} &= -\frac{m_{125}^2 + 2M_{H^\pm}^2 - 2M^2}{v^2}. \end{split}$$

Trilinear Higgs couplings

$$\hat{\lambda}_{HHH} = -\frac{3m_{125}^2}{v^2}, \quad \begin{array}{l} \text{Same as in the SM} \leftarrow \text{alignmen}\\ \hat{\lambda}_{hHH} = 0, \\ \hat{\lambda}_{hhh} = 3\hat{\lambda}_{hAA} = 3\hat{\lambda}_{hH^+H^-} = -\frac{3(M^2 - m_h^2)(t_\beta^2 - 1)}{t_\beta v^2}, \end{array}$$

$$\hat{\lambda}_{Hhh} = -\frac{m_{125}^2 + 2m_h^2 - 2M^2}{v^2},$$

$$\hat{\lambda}_{HAA} = -\frac{m_{125}^2 + 2M_A^2 - 2M^2}{v^2},$$

$$\hat{\lambda}_{HH^+H^-} = -\frac{m_{125}^2 + 2M_{H^\pm}^2 - 2M^2}{v^2}$$

Trilinear Higgs couplings

$$\begin{split} \hat{\lambda}_{HHH} &= -\frac{3m_{125}^2}{v^2}, \qquad \hat{\lambda}_{hHH} = 0, \\ \hat{\lambda}_{hhh} &= 3\hat{\lambda}_{hAA} = 3\hat{\lambda}_{hH^+H^-} = -\frac{3(M^2 - m_h^2)(t_\beta^2 - 1)}{t_\beta v^2}, \\ \hat{\lambda}_{Hhh} &= -\frac{m_{125}^2 + 2m_h^2 - 2M^2}{v^2}, \quad \text{Proportional to tan } \beta \\ \hat{\lambda}_{HAA} &= -\frac{m_{125}^2 + 2M_A^2 - 2M^2}{v^2}, \\ \hat{\lambda}_{HH^+H^-} &= -\frac{m_{125}^2 + 2M_{H^\pm}^2 - 2M^2}{v^2}. \end{split}$$

Happy that the model can retain the stability all the way up to the Planck-cutoff scale?

Light masses cannot tell whether Λ is high or low.

Measuring $tan\beta$ can help?

In type-I, large tan β cannot be measured

$$\xi_{f}^{H} = 1, \quad \xi_{t,b,\tau}^{h} = \frac{1}{t_{\beta}}, \quad \xi_{t}^{A} = -\xi_{b,\tau}^{A} = \frac{1}{t_{\beta}}.$$
In type-I, large tan β cannot be measured.

- The tan β-dependent production, the gluon fusion, is suppressed if tan β is large.
- The decay branching ratios are insensitive to tan β in type I.

BP - 1:	$m_h = 70 \text{ GeV},$	$M_A = 110 \text{ GeV},$	$M_{H^{\pm}} = 110 \text{ GeV},$
BP-2:	$m_h = 100 \text{ GeV},$	$M_A = 100 \text{ GeV},$	$M_{H^{\pm}} = 140 \text{ GeV},$
BP-3:	$m_h = 110 \text{ GeV},$	$M_A = 70 \text{ GeV},$	$M_{H^{\pm}} = 140 \text{ GeV}.$

All accommodate Λ =1 TeV and Λ =10¹⁸ GeV.

Large t_{β} case: $t_{\beta} > 10$.

Dominant decay modes of the BSM Higgs bosons are insensitive to Λ **.**

Not overlapped, at least, for $\Lambda = 1$ TeV and $\Lambda = 10^{18}$ GeV.

Di-Higgs and Tri-Higgs productions to probe the trilinear Higgs couplings

Various channels for the tri-Higgs productions

$$q\bar{q} \to Z^* \to Ah^* \to Ahh, \quad q\bar{q} \to Z^* \to A^*h \to Ahh,$$
$$q\bar{q} \to Z^* \to Ah^* \to AAA,$$

$$q\bar{q}' \to W^* \to H^{\pm}h^* \to H^{\pm}hh,$$

$$q\bar{q}' \to W^* \to H^{\pm}h^* \to H^{\pm}AA,$$

$$q\bar{q}' \to W^* \to H^{\pm}A^* \to H^{\pm}Ah.$$

Di-Higgs processes are NOT efficient as a discriminator.

Because Hhh and hhh contributions are mixed.

BP-1 with
$$t_{\beta} = 10$$
 and $\Lambda_{\text{cut}} = 1$ TeV

$$\sigma(gg \to H \to hh) \simeq 36.5 \text{ fb},$$

$$\sigma(gg \to h \to hh) \simeq 1.1 \text{ fb},$$

$$\sigma(gg \to hh)_{\text{intf}} \simeq -12.1 \text{ fb}$$

Discriminating the high and low cutoff scales requires the precision measurement on the cross section within 1 fb.

Tri-Higgs processes are sensitive to Λ .

Backgrounds?

NOT studied yet!!!

• Final states of H+ h h? 6b + lepton + MET

Backgrounds

$$\begin{split} t &+ \bar{t} + \ell \nu \to b j_b^{\text{mis}} j_b^{\text{mis}} + b j_b^{\text{mis}} j_b^{\text{mis}} + \ell \nu, \\ t &+ \bar{t} + j j \to b \ell \nu + b j_b^{\text{mis}} j_b^{\text{mis}} + j_b^{\text{mis}} j_b^{\text{mis}}, \end{split}$$

After basic selection, the background cross sections are below 1 ab.

5. Conclusions

- As one of the simplest extension of the SM, 2HDM is a good candidate for the first-stage NP model.
- Distinguishing the high- and low-cutoff scales is feasible through the measurement of the trilinear Higgs couplings.
- Tri-Higgs production is sensitive to the cutoff scale of the type-I 2HDM in the inverted scenario.