W boson mass anomaly and grand unification

Jason L Evans
Tsung-Dao Lee Institute

W-Boson Anomaly

• Best fit for the M_W (LEP-2, Tevatron, LHC, LHCb data)

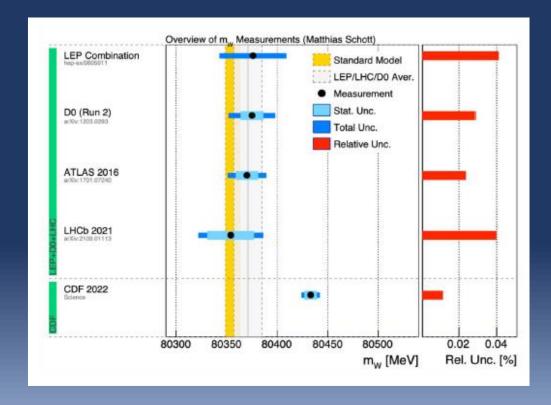
$$M_{W_{fit}} = 80.4133 \pm 0.0080 {
m GeV}$$
 2204.04204

• SM prediction for M_W (Fit all data except M_W and predict M_W)

$$M_{W_{pred}} = 80.3499 \pm 0.0056 {
m GeV}$$
 (Pull 6.5 σ) 2204.04204

Deviation of the W-boson mass

$$\delta M_W \simeq 63 \; {\rm MeV}$$



W-Boson Anomaly

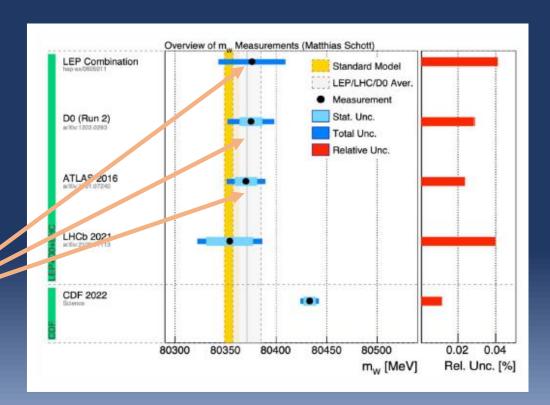
• Best fit for the M_W (LEP-2, Tevatron, LHC, LHCb data)

$$M_{W_{fit}} = 80.4133 \pm 0.0080 {
m GeV}$$
 2204.04204

• SM prediction for M_W (Fit all date except M_W and predict M_W)

$$M_{W_{pred}} = 80.3499 \pm 0.0056 {
m GeV}$$
 (Pull 6.5 σ) 2204.04204

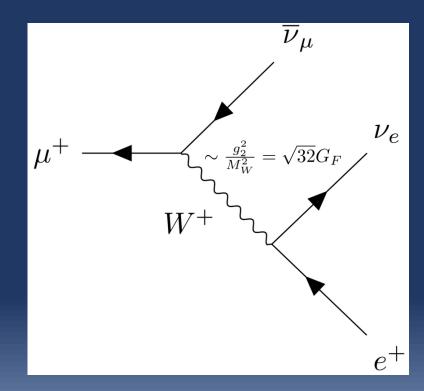
• Even with out CDF, some pull for larger M_W



- Fermi Constant determined from muon decay
 - Very precisely measured

$$\Gamma_{\mu} = \frac{G_F^2 m_{\mu}^5}{192\pi^3}$$
 $\frac{1}{\Gamma_{\mu}} = \tau_{\mu} = 2.1969811(22) \times 10^{-6} \text{ s}$

$$G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-1}$$



- Fermi Constant determined from muon decay
- Fermi constant input, M_W predicted

$$\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{2M_W^2 s_W^2} \left(1 + \Delta r\right)$$

• This defines way to changes M_W

$$\frac{\Delta M_W}{M_W} = \frac{1}{2} \frac{\delta \alpha}{\alpha} - \frac{c_W}{s_W} \delta \theta - \frac{1}{2} \frac{\delta G_F}{G_F}$$

In terms of SMEFT this is

$$\mathcal{O}_{HWB} = H^{\dagger} \tau^{I} H W_{\mu\nu}^{I} B^{\mu\nu}$$

$$\mathcal{O}_{HD} = \left(H^{\dagger} D_{\mu} H\right) \left(H^{\dagger} D_{\mu} H\right)$$

$$\mathcal{O}_{\ell\ell} = \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right)$$

$$\mathcal{O}_{H\ell}^{(3)} = \left(H^{\dagger} \overrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{s} \tau^{I} \gamma^{\mu} \ell_{t}\right)$$

$$\frac{\Delta M_W}{M_W} = -\frac{s_{2W}}{c_{2W}} \frac{v^2}{4\Lambda^2} \left(\frac{c_W}{s_W} C_{HD} + \frac{s_W}{c_W} \left(4C_{H\ell}^{(3)} - 2C_{\ell\ell} \right) + 4C_{HWB} \right)$$

- Fermi Constant determined from muon decay
- Fermi constant input, M_W predicted

$$\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{2M_W^2 s_W^2} \left(1 + \Delta r\right)$$

• This defines way to changes M_W

$$\frac{\Delta M_W}{M_W} = \frac{1}{2} \frac{\delta \alpha}{\alpha} - \frac{c_W}{s_W} \delta \theta - \frac{1}{2} \frac{\delta G_F}{G_F}$$

• In terms of SMEFT this is

$$\mathcal{O}_{HWB} = H^{\dagger} \tau^{I} H W_{\mu\nu}^{I} B^{\mu\nu}$$

$$\mathcal{O}_{HD} = \left(H^{\dagger} D_{\mu} H\right) \left(H^{\dagger} D_{\mu} H\right)$$

$$\mathcal{O}_{\ell\ell} = \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right)$$

$$\mathcal{O}_{H\ell}^{(3)} = \left(H^{\dagger} \overrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{s} \tau^{I} \gamma^{\mu} \ell_{t}\right)$$

$$\frac{\Delta M_W}{M_W} = -\frac{s_{2W}}{c_{2W}} \frac{v^2}{4\Lambda^2} \left(\frac{c_W}{s_W} C_{HD} + \frac{s_W}{c_W} \left(4C_{H\ell}^{(3)} - 2C_{\ell\ell}\right) + 4C_{HWB}\right) \qquad \text{Give } \delta\theta_W$$
 Give $\delta\theta_W$

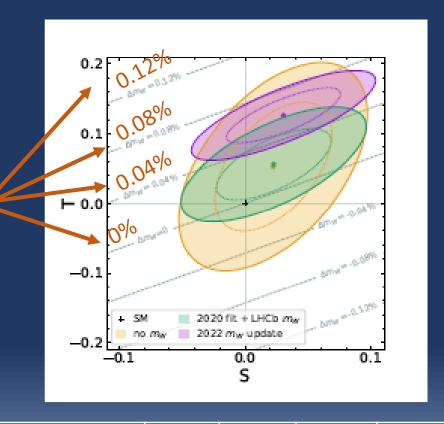
 δM_W

- Fermi Constant determined from muon decay
- Fermi constant generally taken as input
- Example: Supersymmetry
 - Correction now in term so S,T

$$M_W = (M_W)_{SM} \left(1 + \frac{1}{2} \frac{c_W^2}{c_W^2 - s_W^2} \left(-\frac{1}{2}S + c_W^2 T \right) \right)$$

Light charged Higgsino and Wino

$$T = \frac{3\alpha_2}{16\pi} \frac{M_W^2}{M_2^2} \left(\frac{1-\tan^2\beta}{1+\tan^2\beta}\right)^2 \qquad \frac{\delta M_W}{M_W} = \frac{1}{2} \frac{c_W^2}{c_W^2 - s_W^2} T$$



$M_2 \text{ GeV}$	100	150	200	250
$\delta M_W/M_W$	0.09%	0.04%	0.02%	0.01%

Possible Tree-Leve Solutions

Possible single field extensions which explain deviation

Model	Spin	SU(3)	SU(2)	U(1)	Parameters
S_1	0	1	1	1	(M_S, κ_S)
Σ	$\frac{1}{2}$	1	3	0	$(M_{\Sigma}, \lambda_{\Sigma})$
Σ_1	$\frac{1}{2}$	1	3	-1	$(M_{\Sigma_1}, \lambda_{\Sigma_1})$
N	$\frac{1}{2}$	1	1	0	(M_N, λ_N)
E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)
B	1	1	1	0	(M_B, \hat{g}_H^B)
B_1	1	1	1	1	(M_{B_1}, λ_{B_1})
Ξ	0	1	3	0	(M_{Ξ}, κ_{Ξ})
W_1	1	1	3	1	$(M_{W_1}, \hat{g}_{W_1}^{\varphi})$
W	1	1	3	0	(M_W, \hat{g}_W^H)

Bagnaschi, Ellis, Madigan, Mimasu, Sanz, You

$$\mathcal{O}_{HD} = \left(H^{\dagger}D_{\mu}H\right)\left(H^{\dagger}D_{\mu}H\right)$$

Model	Pull	Best-fit mass	$1-\sigma$ mass	2 - σ mass	$1-\sigma$ coupling ²
		(TeV)	range (TeV)	range (TeV)	range
W_1	6.4	3.0	[2.8, 3.6]	[2.6, 3.8]	[0.09, 0.13]
B	6.4	8.6	[8.0, 9.4]	[7.4, 10.6]	[0.011, 0.016]
Ξ	6.4	2.9	[2.8, 3.1]	[2.7, 3.2]	[0.011, 0.016]
N	5.1	4.4	[4.1, 5.0]	[3.8, 5.8]	[0.040, 0.060]
E	3.5	5.8	[5.1, 6.8]	[4.6, 8.5]	[0.022, 0.039]

Model	C_{HD}	C_{ll}	$C_{Hl}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		-1							
Σ			$\frac{1}{16}$	$-\frac{\frac{3}{16}}{\frac{3}{16}}$			$\frac{\frac{y_{\tau}}{4}}{\frac{y_{\tau}}{8}}$		
Σ_1			$\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$		
B_1	1					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2						$-y_{\tau}$	$-y_t$	$-y_b$
Ξ	$-2\left(\frac{1}{M_{\Xi}}\right)^2$					$\frac{1}{2} \left(\frac{1}{M_{\Xi}} \right)^2$	$y_{\tau} \left(\frac{1}{M_{\Xi}}\right)^2$	$y_t \left(\frac{1}{M_{\Xi}}\right)^2$	$y_b \left(\frac{1}{M_{\Xi}}\right)^2$
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{\tau}$	$-y_t$	$-y_b$

Electroweak Symmetry Breaking with Triplet

Triplet can contribute to Electroweak symmetry breaking

Generates Σ_3 vev

$$V(H, \Sigma_3) \supset -\mu_H^2 |H|^2 + \lambda_H |H|^4 + A_{3H} H^{\dagger} \Sigma_3 H + h.c. + 2\mu_3^2 \text{Tr}(\Sigma_3^{\dagger} \Sigma_3)$$

$$\sim \text{TeV}$$

• If Y=0, then only contributes to W mass

$$\langle H \rangle = (0, v)^T, \quad \langle \Sigma_3 \rangle = \frac{1}{2} \begin{pmatrix} v_T & 0 \\ 0 & -v_T \end{pmatrix}$$

$$[W_{\mu}, \langle \Sigma_{3} \rangle] = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -v_{T} W_{\mu}^{+} \\ v_{T} W_{\mu}^{+} & 0 \end{pmatrix} \qquad \delta M_{W}^{2} = 2g_{2}^{2} v_{T}^{2}$$

- Only contributes to the W boson
 - If we take hypercharge non-zero would also contribute to Z

Triple Higgs Boson and the Fermi Constant

This mass correction alters weak mixing angle

• This mass correction alters weak mixing angle
$$\frac{\tilde{s}_W^2}{\tilde{s}_W^2} \qquad \text{Diagonalizes A,Z}$$

$$s_W^2 = 1 - \frac{M_{W_0}^2}{M_Z^2} + \frac{2e^2v_T^2}{\tilde{s}_W^2M_Z^2} \qquad \frac{G_F}{\sqrt{2}} \simeq \frac{\alpha\pi}{M_W^2} \left(s_W^2 + \sqrt{s_W^2 + \frac{4e^2v_T^2}{M_Z^2}}\right)^{-1}$$

This leads to a correction to the measured W boson mass

$$M_W \simeq (M_W)_{SM} \left(1 + \frac{1}{2} \frac{c_W^2}{c_W^2 - s_W^2} \frac{4v_T^2}{v^2} \right)$$

$$v_T \sim 3 \text{ GeV} \rightarrow \delta M_W \sim 60 \text{GeV}$$

$$v_T = \frac{A_{3H}v^2}{2\mu_3^2}$$
 $v^2 = (\mu_H^2 + A_{3H}v_T)/(2\lambda_H)$

Is there motivation for this new field?

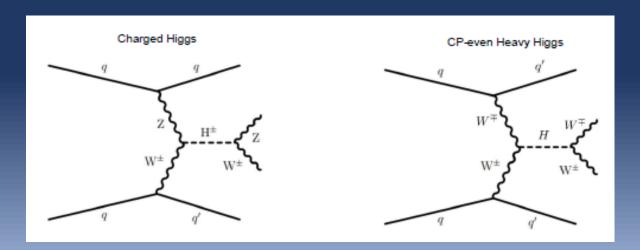
$$\mu_3 \sim \text{TeV}, A_{3H} \sim 200 \text{ GeV}$$

Triple Higgs Boson Signatures

- The neutral Higgs bosons small mix
- Couplings to SM fermions quite suppressed

$$\theta_{H,H^{\pm}} \simeq \frac{A_{3H}v}{\mu_3^2} \simeq 0.03$$

Dominant signature from decays to SM massive bosons



Couplings $\propto v_T$ so suppressed

"Who Order That"(Issac Rabi)

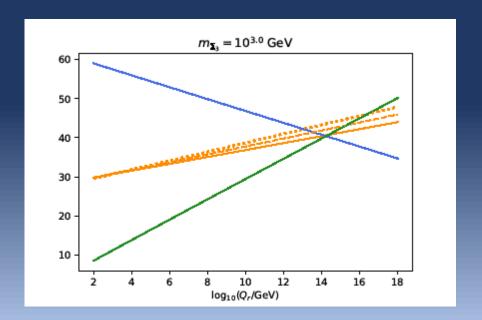
- Like the discovery of the muon, why would nature have a triplet?
 - At face value it does nothing but give mass to W^\pm

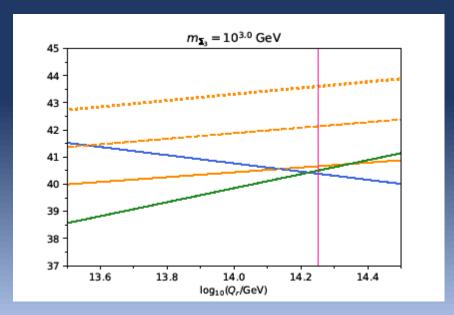
"Who Order That"(Issac Rabi)

- Like the discovery of the muon, Who order a triplet?
- SU(5) Grand unification?

$$\Sigma_{24} \supset \Sigma_3 = (1,3,0) [SU(3), SU(2), U(1)]$$

Gauge coupling unification





Dotted: SM

$$\Delta b_2 = 0$$

Dashed: Real triplet

$$\Delta b_2 = \frac{1}{3}$$

Solid: Complex Triplet

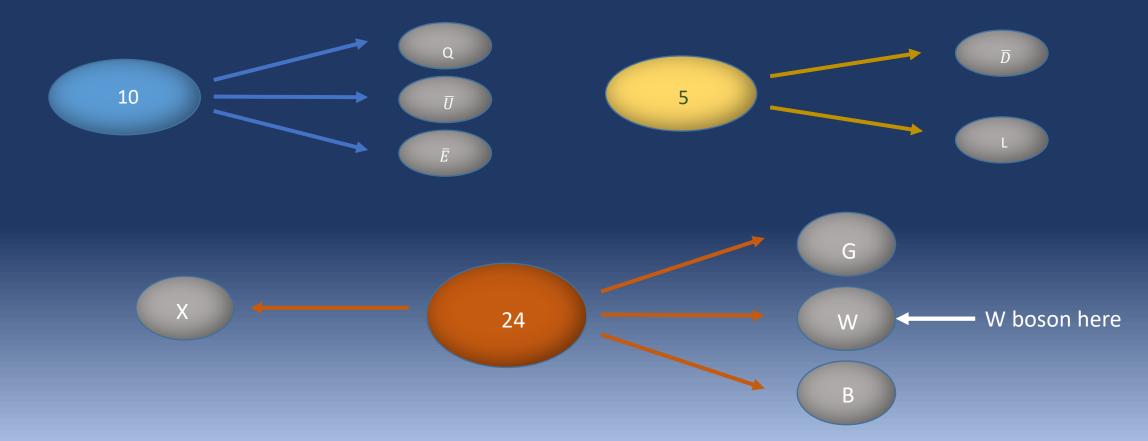
$$\Delta b_2 = \frac{2}{3}$$

 $\overline{M_{GUT} \sim 10^{14}} \, \mathrm{GeV}$

Proton Decay?

SU(5) Grand Unification

- Matter fields embedded into larger representation
 - Leads to charge quantization
 - Simplest group which fits the SM, SU(5)



Grand Unification

- Matter fields embedded into larger representation
- SU(5) Breaking with single real 24 Rep
 Can we use this Y=0 Triplet?

$$24_H = \begin{pmatrix} \Sigma_3 & X/\sqrt{2} \\ X^{\dagger}/\sqrt{2} & \Sigma_8 \end{pmatrix} + \text{Singlet}$$

• For a generic renormalizable interactions

$$\frac{m_{\Sigma_3}^2}{m_{\Sigma_8}^2} = 4$$

So light triplet alone from SU(5) breaking is impossible

Grand Unification

- Matter fields embedded into larger representation
- SU(5) Breaking with single real 24 Rep
- If we include an additional 24, can get a light triplet
 - Lots of freedom from many couplings

$$V \ni 2\mu_{24}^{2}\operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24}) + 2A_{1}\operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24}) + 2A_{2}\operatorname{Tr}(\Sigma_{24H}^{\dagger}\Sigma_{24H}\Sigma_{24}) + \lambda_{1}\operatorname{Tr}(\Sigma_{24H}^{2})\operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24}) + 2\lambda_{2}\operatorname{Tr}(\Sigma_{24H}^{2}\Sigma_{24}^{\dagger}\Sigma_{24}) + 2\lambda_{3}\operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24H}\Sigma_{24})$$

Relevant masses

$$m_{\Sigma_8}^2 = \mu_{24}^2 + 2A_1 v_{\text{GUT}} + 4(\lambda_2 + \lambda_3) v_{\text{GUT}}^2 \simeq 5A_1 v_{\text{GUt}},$$
 $\lambda_3 \simeq \lambda_2$
 $m_{\Sigma_3}^2 = \mu_{24}^2 - 3A_1 v_{\text{GUT}} + 9(\lambda_2 + \lambda_3) v_{\text{GUT}}^2 \simeq 0$ $A_1 v_{\text{GUT}} \simeq \mu_{24}^2$

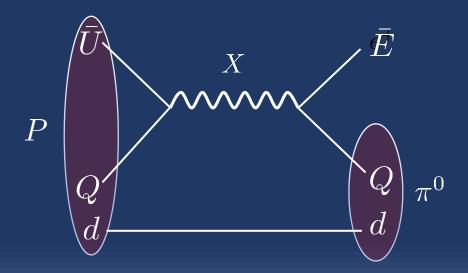
$$\lambda_3 \simeq \lambda_2 \ A_1 v_{\rm GUT} \simeq \mu_{24}^2$$

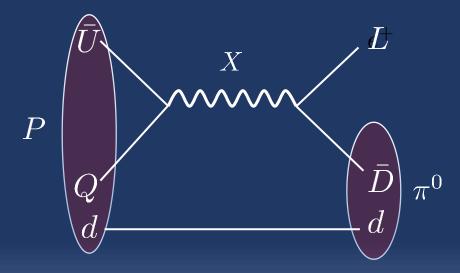
- Dimension-6 proton decay
 - Expected lifetime over 5 orders of magnitude too small

$$au_p \simeq 2.4 \times 10^{34} \text{ yrs } \left(\frac{M_X}{5.3 \times 10^{15} \text{ GeV}}\right)^4$$

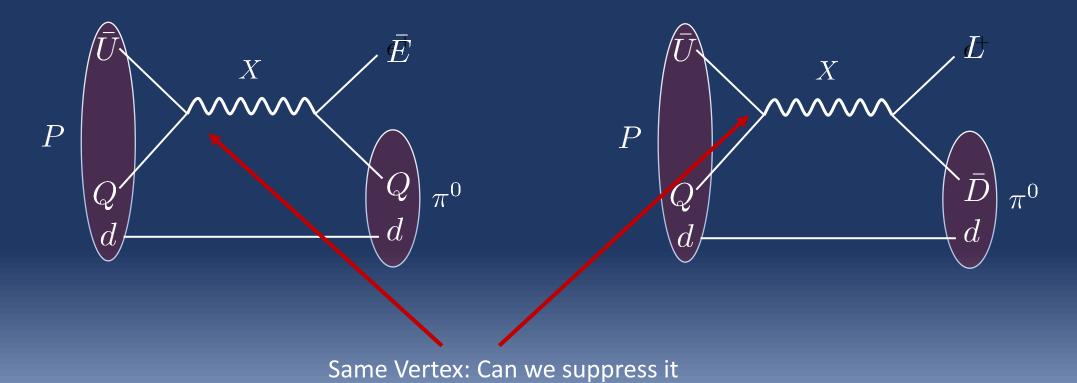
Decay Mode	Current (90% CL)	Future (Discovery)	Future (90% CL)
$p \to K^+ \bar{\nu}$	6.6 [6]	JUNO: 12 (20) [3]	JUNO: 19 (40) [1]
		DUNE: 30 (50) [3]	DUNE: 33 (65) [2]
		Hyper-K: 20 (30) [3]	Hyper-K: 32 (50) [3]
$p o \pi^+ \bar{\nu}$	0.39 [29]		
$p \rightarrow e^+ \pi^0$	16 [40]	DUNE: 15 (25) [3]	DUNE: 20 (40) [3]
		Hyper-K: 63 (100) [3]	Hyper-K: 78 (130) [3]
$p \rightarrow \mu^+ \pi^0$	7.7 [40]	Hyper-K: 69 [3]	Hyper-K: 77 [3]
$n \to K_S^0 \bar{\nu}$	0.26 [25]		
$n o \pi^0 \bar{\nu}$	1.1 [29]		
$n \rightarrow e^+\pi^-$	5.3 [48]	Hyper-K: 13 [3]	Hyper-K: 20 [3]
$n \to \mu^+ \pi^-$	3.5 [48]	Hyper-K: 11 [3]	Hyper-K: 18 [3]

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson





- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson



- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing and suppression of proton decay

$$\mathcal{L} \supset (M_{10} \mathbf{10} + M_{\psi} \psi_{\mathbf{10}}) \, \bar{\psi}_{\mathbf{10}}$$

This linear combination massless: SM field

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay

SM field interaction combination of these

$$10_{SM}$$
 , ψ_{10}' \bar{U} X $\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right) \left(\begin{array}{c} 10 \\ \psi_{10} \end{array}\right) = \left(\begin{array}{c} 10_{\mathrm{SM}} \\ \psi_{10}' \end{array}\right)$

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay

SM field interaction combination of these

10 ,
$$\psi_{10}$$
 \bar{U} X $\left(\cos\theta \sin\theta\right) \left(10\right) = \left(10_{\mathrm{SM}}\right)$ ψ_{10} ψ_{10}

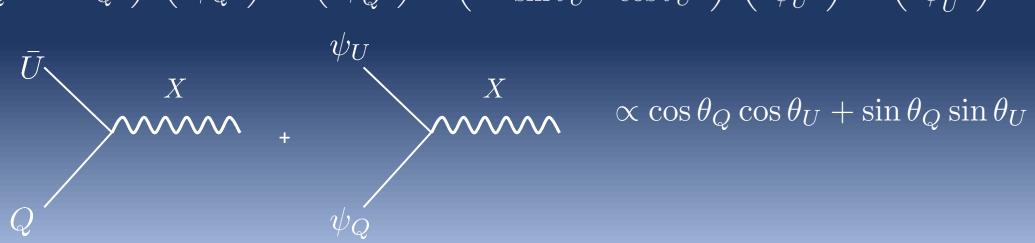
- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay
- Mixing incomplete SU(5) reps to suppress proton decay

$$\mathcal{L} \supset \bar{\psi}_{\mathbf{10}} \mathbf{10} \left(M_{10} + \lambda_{\psi} \langle \Sigma_{24H} \rangle \right) + \bar{\psi}_{\mathbf{10}} \mathbf{10} \left(M + \lambda \langle \Sigma_{24H} \rangle \right)$$

Creates independent mass matrices for EACH SM rep

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay
- Mixing incomplete SU(5) reps to suppress proton decay
 - Each SM rep has a different mixing angle

$$\begin{pmatrix} \cos \theta_Q & \sin \theta_Q \\ -\sin \theta_Q & \cos \theta_Q \end{pmatrix} \begin{pmatrix} Q \\ \psi_Q \end{pmatrix} = \begin{pmatrix} Q' \\ \psi_Q' \end{pmatrix} \quad \begin{pmatrix} \cos \theta_U & \sin \theta_U \\ -\sin \theta_U & \cos \theta_U \end{pmatrix} \begin{pmatrix} \bar{U} \\ \psi_{\bar{U}} \end{pmatrix} = \begin{pmatrix} \bar{U}' \\ \psi_{\bar{U}} \end{pmatrix}$$



- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay
- Mixing incomplete SU(5) reps to suppress proton decay
 - Each SM rep has a different mixing angle
 - With a proton lifetime of

$$\tau(p \to e^+ \pi^0) \approx 3.3 \times 10^{27} \text{yrs} A_{\text{mix}}^{-1} (i = 1) \left(\frac{M_X}{10^{14} \text{GeV}}\right)^4 \left(\frac{g_5}{0.55}\right)^{-4}$$

$$A_{\text{mix}}(i) \simeq (\cos \theta_Q \cos \theta_U + \sin \theta_Q \sin \theta_U)^2$$

Lifetime constraints requirements

$$(a)\sin\theta_U \sim 10^{-4}$$
 and $\cos\theta_Q \sim 10^{-4}$

$$(b)\sin\theta_Q \sim 10^{-4}$$
 and $\cos\theta_U \sim 10^{-4}$

Proton Decay: Colored Higgs

SM Yukawa Couplings

$$-\mathcal{L} \quad \ni \quad \frac{1}{4}Y_{10,i}\delta_{ij}\mathbf{10}_{i}\mathbf{10}_{j}H_{5} + h.c.$$

$$(Y_{10})_1 \sin \theta_Q \sin \theta_U Q_i \cdot H\bar{U}_i = y_u Q_i \cdot H\bar{U}_i$$

$$(Y_{10})_1 = \frac{y_u}{\sin \theta_U \sin \theta_Q}$$

Colored Higgs Yukawa couplings

$$-\mathcal{L} \ni \frac{1}{2} (Y_{10})_1 H_C (Q_1 \cdot Q_1) = \frac{1}{2} \frac{y_u}{\sin \theta_U \sin \theta_Q} H_C (Q_1 \cdot Q_1)$$

Proton Decay greatly enhanced since

$$\sin \theta_Q \sim 1$$
, $\sin \theta_U \sim 10^{-4}$ Or $\sin \theta_Q \sim 10^{-4}$, $\sin \theta_U \sim 1$

Proton Decay: Colored Higgs

SM Yukawa Couplings

$$(Y_{10})_1 = \frac{y_u}{\sin \theta_U}$$

Colored Higgs Yukawa couplings

$$-\mathcal{L} \quad \ni \quad \frac{1}{2} (Y_{10})_1 H_C (Q_1 \cdot Q_1) = \frac{1}{2} \frac{y_u}{\sin \theta_u} H_C (Q_1 \cdot Q_1)$$

• Proton Decay greatly enhanced since $\sin\theta_Q\sim 1,~\sin\theta_U\sim 10^{-4}$

$$\int_{Q} \frac{H_C}{\Gamma_p - \Gamma_p} = \frac{1}{\Gamma_{p \to K^+ \overline{\nu}_\tau}} = 9.4 \times 10^{33} \text{yrs} \left(\frac{m_{H_C}}{2 \times 10^{13} \text{GeV}}\right)^4 \left(\frac{10^{-4}}{\sin \theta_U \sin \theta_Q}\right)^2$$

Threshold Corrections: Colored Higgs Mass

The breaking of SU(5) splits some masses

$$\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$$

- These masses are constrained by gauge coupling unification
 - Three question, 6 unknown leads to continuum of solutions

$$\tilde{\alpha}_{1}^{-1}(M_{X}) = \alpha_{1}^{-1}(M_{X}) - \frac{b_{1,H_{C}}}{2\pi} \ln \frac{M_{X}}{m_{H_{C}}} - \frac{b_{1,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{1,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}},$$

$$\tilde{\alpha}_{2}^{-1}(M_{X}) = \alpha_{2}^{-1}(M_{X}) - \frac{b_{2,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{2,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}} - \frac{b_{2,\Sigma_{3H}}}{2\pi} \ln \frac{M_{X}}{2m_{\Sigma_{8H}}},$$

$$\tilde{\alpha}_{3}^{-1}(M_{X}) = \alpha_{3}^{-1}(M_{X}) - \frac{b_{3,H_{C}}}{2\pi} \ln \frac{M_{X}}{m_{H_{C}}} - \frac{b_{3,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{3,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}},$$

$$- \frac{b_{3,\Sigma_{8H}}}{2\pi} \ln \frac{M_{X}}{m_{\Sigma_{8H}}} - \frac{b_{3,\Sigma_{8}}}{2\pi} \ln \frac{M_{X}}{m_{\Sigma_{8}}}$$

$$M_X \sim 10^{14} \; \mathrm{GeV}$$

Threshold Corrections: Colored Higgs Mass

• The breaking of SU(5) splits some masses

$$\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$$

- These masses are determined by gauge coupling unification
 - Three question, 6 unknown leads to continuum of solutions
- Equations afford a solution

$$m_{H_C} \sim 10 M_X$$
 others $\sim \pm 10 M_X$

Lifetime well beyond experimental limit (maybe short not an exhaustive study)

$$\tau_p = \frac{1}{\Gamma_{p \to K^+ \overline{\nu}_{\tau}}} = 9.4 \times 10^{41} \text{yrs} \left(\frac{m_{H_C}}{2 \times 10^{15} \text{GeV}}\right)^4 \left(\frac{10^{-4}}{\sin \theta_U \sin \theta_Q}\right)^2$$

SM Yukawa Couplings: The Low Scale

• Minimal SU(5): Yukawa couplings explained by M_P suppressed operator

$$-\mathcal{L} \ni \sqrt{2} rac{c_{ij}}{M_*} \mathbf{\bar{5}}_i \Sigma_{24H} \mathbf{10}_j' H_5^*$$

Because GUT scale suppressed contribution too small

$$y_b(M_X) - y_\tau(M_X) \sim \frac{M_X}{M_P} \sim 10^{-4}$$

Theory

$$y_b(M_X) - y_\tau(M_X) = \frac{m_b(M_X) - m_\tau(M_X)}{v} \simeq 4 \times 10^{-3}$$
 Experiment

- ullet Yukawa can be accommodated by vector $5+ar{5}$
 - Mixing can split the Yukawa Couplings

Conclusions

- W boson mass anomaly dominated by CDF measurement
 - Put is present in a lesser degree in other experiments
- W boson constrained by Fermi Constant
 - Shifts in $lpha,\; heta_W,\; G_F$ can lead to deviation in M_W
- Loop level explanations are tightly constrained by experiment
 - Requires $\sim 100~{\rm GeV}$ electroweak interacting particle
- Fits to SMEFT show only a few possibilities
 - Triplet Higgs being one of them
 - Some others seem difficult to realize
- Triplet Higgs can be motivated by Grand unification
 - Unification scale suppressed
 - Dimension-6 proton decay suppressed by mixing
 - Colored Higgs mediated proton decay enhanced, but still ok
 - Yukawa couplings also explained by mixing