Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion

Revisiting Generalized Two Higgs Doublet Model in the Light of Muon Anomaly and Lepton Flavor Violating Decays at HL-LHC

Nivedita Ghosh RECAPP, HRI, A CI of Homi Bhabha National Institute, India

Presented in KIAS September 22, 2022

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
•						

Outline

Based on the work:

Revisiting Generalized Two Higgs Doublet Model in the Light of Muon Anomaly and Lepton Flavor Violating Decays at HL-LHC (Phys.Rev.D 103 (2021) 5, 05500), NG, Jayita Lahiri

- Motivation
- 2 Model
- 3 Muon Anomaly
- **4** Constraints
 - Low Energy Experiments Theoretical constraints Constraints From B-Physics Electroweak constraints Constraints from collider
- **5** Collider Searches

Cut-Based Analysis Improved analysis with Artificial Neural Network (ANN)

6 Conclusion

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
	•					

 Anomalous magnetic moment of muon is a crucial observation which calls for new physics.

¹1501.06858, MUON G-2 Collaboration ²J. Phys. Conf. Ser. 295 (2011) 012032, EDM collaboration ³Phys. Rept. 731 (2018) 1–82, Lindler et al.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
	•					

- Anomalous magnetic moment of muon is a crucial observation which calls for new physics.
- Ongoing E989 experiment at Fermilab¹ and future E34 experiment at J-PARC² are expected to shed new light on this tension between the theory and data.

²J. Phys. Conf. Ser. 295 (2011) 012032, EDM collaboration

¹1501.06858, MUON G-2 Collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
	•					

- Anomalous magnetic moment of muon is a crucial observation which calls for new physics.
- Ongoing E989 experiment at Fermilab¹ and future E34 experiment at J-PARC² are expected to shed new light on this tension between the theory and data.
- Lepton Flavor violation (LFV) has not yet been observed in the charged lepton sector.

²J. Phys. Conf. Ser. 295 (2011) 012032, EDM collaboration

¹1501.06858, MUON G-2 Collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
	•					

- Anomalous magnetic moment of muon is a crucial observation which calls for new physics.
- Ongoing E989 experiment at Fermilab¹ and future E34 experiment at J-PARC² are expected to shed new light on this tension between the theory and data.
- Lepton Flavor violation (LFV) has not yet been observed in the charged lepton sector.
- Various low energy experiments have put strong bounds on branching ratios of flavor changing neutral current(FCNC) decays and correspondingly on the associated couplings.

²J. Phys. Conf. Ser. 295 (2011) 012032, EDM collaboration

¹1501.06858, MUON G-2 Collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
	•					

- Anomalous magnetic moment of muon is a crucial observation which calls for new physics.
- Ongoing E989 experiment at Fermilab¹ and future E34 experiment at J-PARC² are expected to shed new light on this tension between the theory and data.
- Lepton Flavor violation (LFV) has not yet been observed in the charged lepton sector.
- Various low energy experiments have put strong bounds on branching ratios of flavor changing neutral current(FCNC) decays and correspondingly on the associated couplings.
- Experimental observation of muon anomaly and non-observation of lepton flavor violation will definitely create a tension in terms of the allowed parameter space for various candidate models ³ which satisfy these two results individually.

¹1501.06858, MUON G-2 Collaboration

²J. Phys. Conf. Ser. 295 (2011) 012032, EDM collaboration

³Phys. Rept. 731 (2018) 1–82, Lindler et al.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
	•					

- Anomalous magnetic moment of muon is a crucial observation which calls for new physics.
- Ongoing E989 experiment at Fermilab¹ and future E34 experiment at J-PARC² are expected to shed new light on this tension between the theory and data.
- Lepton Flavor violation (LFV) has not yet been observed in the charged lepton sector.
- Various low energy experiments have put strong bounds on branching ratios of flavor changing neutral current(FCNC) decays and correspondingly on the associated couplings.
- Experimental observation of muon anomaly and non-observation of lepton flavor violation will definitely create a tension in terms of the allowed parameter space for various candidate models ³ which satisfy these two results individually.
- In this work our goal is to satisfy both of these observations simultaneously and also, to look for signatures of lepton flavor violation in the collider experiments.

¹1501.06858, MUON G-2 Collaboration

²J. Phys. Conf. Ser. 295 (2011) 012032, EDM collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		●000000				

Two scalar doublets Φ_1 and Φ_2 with hyper charge Y = 1⁴ are present in this model ⁵.

 ${}^{4}Q = T_{3} + \frac{Y}{2}.$ 5 JHEP 05 (2017) 055, Primulendo et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		●000000				

Two scalar doublets Φ_1 and Φ_2 with hyper charge Y = 1⁴ are present in this model ⁵. The most general scalar potential can be written as:

$$\begin{split} \mathcal{V}_{2HDM} &= M_{11}^2 (\Phi_1^{\dagger} \Phi_1) + M_{22}^2 (\Phi_2^{\dagger} \Phi_2) - [M_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \quad (1) \\ &+ \{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \}. \end{split}$$

 ${}^{4}Q = T_{3} + \frac{Y}{2}.$ 5 JHEP 05 (2017) 055, Primulendo et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		●000000				

Two scalar doublets Φ_1 and Φ_2 with hyper charge Y = 1⁴ are present in this model ⁵. The most general scalar potential can be written as:

$$\begin{split} \mathcal{V}_{2\text{HDM}} &= M_{11}^2 (\Phi_1^{\dagger} \Phi_1) + M_{22}^2 (\Phi_2^{\dagger} \Phi_2) - [M_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \quad (1) \\ &+ \{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \}. \end{split}$$

The two scalar doublets of the model can be expanded as

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} \left(Re[\Phi_{1}^{0}] + i Im[\Phi_{1}^{0}] \right) \end{pmatrix}, \qquad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}} \left(Re[\Phi_{2}^{0}] + i Im[\Phi_{2}^{0}] \right) \end{pmatrix}, \quad (2)$$

 ${}^{4}Q = \overline{T_{3} + \frac{Y}{2}}.$ 5 JHEP 05 (2017) 055, Primulendo et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		●000000				

Two scalar doublets Φ_1 and Φ_2 with hyper charge Y = 1⁴ are present in this model ⁵. The most general scalar potential can be written as:

$$\begin{split} \mathcal{V}_{2HDM} &= M_{11}^2 (\Phi_1^{\dagger} \Phi_1) + M_{22}^2 (\Phi_2^{\dagger} \Phi_2) - [M_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \quad (1) \\ &+ \{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \}. \end{split}$$

The two scalar doublets of the model can be expanded as

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}} \left(Re[\Phi_{1}^{0}] + ilm[\Phi_{1}^{0}] \right) \end{pmatrix}, \qquad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}} \left(Re[\Phi_{2}^{0}] + ilm[\Phi_{2}^{0}] \right) \end{pmatrix}, \quad (2)$$

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}.$$
 (3)

A key parameter of the model is $\tan\beta=\frac{v_2}{v_1}.$

 ${}^{4}Q = \overline{T_{3} + \frac{Y}{2}}.$ 5 JHEP 05 (2017) 055, Primulendo et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		000000				

$$\begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix}, \qquad (4)$$
$$\begin{pmatrix} \sqrt{2}Im[\Phi_{1}^{0}] \\ \sqrt{2}Im[\Phi_{2}^{0}] \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} A \\ G^{0} \end{pmatrix}, \qquad (5)$$

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		000000				

$$\begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix},$$
(4)

$$\begin{pmatrix} \sqrt{2}Im[\Phi_1^0]\\ \sqrt{2}Im[\Phi_2^0] \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta\\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} A\\ G^0 \end{pmatrix},$$
(5)

$$\begin{pmatrix} \sqrt{2}Re[\Phi_1^0] - v_1\\ \sqrt{2}Re[\Phi_2^0] - v_2 \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} h\\ H \end{pmatrix},$$
(6)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		000000				

$$\begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix},$$
(4)

$$\begin{pmatrix} \sqrt{2}Im[\Phi_1^0]\\ \sqrt{2}Im[\Phi_2^0] \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta\\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} A\\ G^0 \end{pmatrix},$$
(5)

$$\begin{pmatrix} \sqrt{2}Re[\Phi_1^0] - \mathbf{v}_1\\ \sqrt{2}Re[\Phi_2^0] - \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} h\\ H \end{pmatrix},$$
(6)

Where either h or H is assumed to behave like the Higgs of Standard Model with mass 125 GeV.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		000000				

In general, a Z_2 symmetry is imposed to avoid tree-level FCNC.

Model	u_R^i	d_R^i	e_R^i
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		0000000				

Unlike these aforementioned types of 2HDM, in the generalized 2HDM, no Z_2 symmetry is imposed on the Lagrangian \rightarrow tree – level FCNC.

$$-\mathcal{L}_{Yukawa} = \bar{Q}_{L}(Y_{1}^{d}\Phi_{1} + Y_{2}^{d}\Phi_{2})d_{R} + \bar{Q}_{L}(Y_{1}^{u}\tilde{\Phi}_{1} + Y_{2}^{u}\tilde{\Phi}_{2})u_{R} + \bar{L}_{L}(Y_{1}^{\ell}\Phi_{1} + Y_{2}^{\ell}\Phi_{2})e_{R} + h.c.$$
(7)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		0000000				

Unlike these aforementioned types of 2HDM, in the generalized 2HDM, no Z_2 symmetry is imposed on the Lagrangian \rightarrow tree – level FCNC.

$$-\mathcal{L}_{Yukawa} = \bar{Q}_{L}(Y_{1}^{d}\Phi_{1} + Y_{2}^{d}\Phi_{2})d_{R} + \bar{Q}_{L}(Y_{1}^{u}\tilde{\Phi}_{1} + Y_{2}^{u}\tilde{\Phi}_{2})u_{R} + \bar{L}_{L}(Y_{1}^{\ell}\Phi_{1} + Y_{2}^{\ell}\Phi_{2})e_{R} + h.c.$$
(7)

Expanding in terms of the VEVs and physical fields, we can get the fermion mass matrix

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		0000000				

Unlike these aforementioned types of 2HDM, in the generalized 2HDM, no Z_2 symmetry is imposed on the Lagrangian \rightarrow tree – level FCNC.

$$-\mathcal{L}_{Y_{ukawa}} = \bar{Q}_{L}(Y_{1}^{d}\Phi_{1} + Y_{2}^{d}\Phi_{2})d_{R} + \bar{Q}_{L}(Y_{1}^{u}\tilde{\Phi}_{1} + Y_{2}^{u}\tilde{\Phi}_{2})u_{R} + \bar{L}_{L}(Y_{1}^{\ell}\Phi_{1} + Y_{2}^{\ell}\Phi_{2})e_{R} + h.c.$$
(7)

Expanding in terms of the VEVs and physical fields, we can get the fermion mass matrix

$$\bar{f}_{L}\mathbf{M}^{f}f_{R} = \bar{f}_{L}(\frac{v_{1}Y_{1}^{f}}{\sqrt{2}} + \frac{v_{2}Y_{2}^{f}}{\sqrt{2}})f_{R} + h.c.$$
(8)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		0000000				

Diagonalize Y_2^u , Y_2^d and Y_1^ℓ matrices where others remain non-diagonal leading to tree- level FCNC in the Yukawa sector. We consider the Yukawa Lagrangian as a perturbation of Type X model in terms of FCNC couplings ⁶.

$$-\mathcal{L}_{Y_{ukawa}}^{\phi} = \bar{u}_{L} \left[\left(\frac{c_{\alpha}\mathbf{m}^{u}}{vs_{\beta}} - \frac{c_{\beta-\alpha}\Sigma^{u}}{\sqrt{2}s_{\beta}} \right) h + \left(\frac{s_{\alpha}\mathbf{m}^{u}}{s_{\beta}v} + \frac{s_{\beta-\alpha}\Sigma^{u}}{\sqrt{2}s_{\beta}} \right) H \right] u_{R} \\
+ \bar{d}_{L} \left[\left(\frac{c_{\alpha}\mathbf{m}^{d}}{vs_{\beta}} - \frac{c_{\beta-\alpha}\Sigma^{d}}{\sqrt{2}s_{\beta}} \right) h + \left(\frac{s_{\alpha}\mathbf{m}^{d}}{s_{\beta}v} + \frac{s_{\beta-\alpha}\Sigma^{d}}{\sqrt{2}s_{\beta}} \right) H \right] d_{R} \\
+ \bar{e}_{L} \left[\left(-\frac{s_{\alpha}\mathbf{m}^{\ell}}{vc_{\beta}} + \frac{c_{\beta-\alpha}\Sigma^{\ell}}{\sqrt{2}c_{\beta}} \right) h + \left(\frac{c_{\alpha}\mathbf{m}^{\ell}}{c_{\beta}v} - \frac{s_{\beta-\alpha}\Sigma^{\ell}}{\sqrt{2}c_{\beta}} \right) H \right] e_{R} \\
- i \left[\bar{u}_{L} \left(\frac{\mathbf{m}^{u}}{t_{\beta}v} - \frac{\Sigma^{u}}{\sqrt{2}s_{\beta}} \right) u_{R} + \bar{d}_{L} \left(-\frac{\mathbf{m}^{d}}{t_{\beta}v} + \frac{\Sigma^{d}}{\sqrt{2}s_{\beta}} \right) d_{R} \right] A \\
- i \left[\bar{e}_{L} \left(\frac{t_{\beta}\mathbf{m}^{\ell}}{v} - \frac{\Sigma^{\ell}}{\sqrt{2}c_{\beta}} \right) e_{R} \right] A + h.c.$$
(9)

⁶PhysRevLett.116.081801, Crivellin et al

8/42

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		0000000				

Here $\mathbf{m}^{f} = U_{L}^{f} \mathbf{M}^{f} U_{R}^{f}$ is the diagonal mass matrices of the fermions and U_{L}^{f} and U_{R}^{f} are the unitary matrices required to diagonalize \mathbf{M}^{f} , $\Sigma^{u} = U_{L}^{u} Y_{1}^{u} U_{R}^{\dagger u}$, $\Sigma^{d} = U_{L}^{d} Y_{1}^{d} U_{R}^{\dagger d}$ and $\Sigma^{\ell} = U_{L}^{\ell} Y_{2}^{u} U_{R}^{\dagger l}$.

⁷Phys. Rev. D35 (1987) 3484, Cheng et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		0000000				

Here $\mathbf{m}^{f} = U_{L}^{f} \mathbf{M}^{f} U_{R}^{f}$ is the diagonal mass matrices of the fermions and U_{L}^{f} and U_{R}^{f} are the unitary matrices required to diagonalize \mathbf{M}^{f} , $\Sigma^{u} = U_{L}^{u} Y_{1}^{u} U_{R}^{\dagger u}$, $\Sigma^{d} = U_{L}^{d} Y_{1}^{d} U_{R}^{\dagger d}$ and $\Sigma^{\ell} = U_{L}^{\ell} Y_{2}^{u} U_{R}^{\dagger l}$. Following the convention of ⁷

$$\Sigma_{ij}^{f} = \sqrt{m_{i}^{f} m_{j}^{f}} \chi_{ij}^{f} / v \tag{10}$$

Yukawa couplings of the charged Higgs boson are similar to those of the CP-odd scalar and can be written as

$$\mathcal{L}_{Y}^{H^{\pm}} = \frac{\sqrt{2}}{v} \bar{u}_{i} \left(m_{i}^{u} (\xi^{u*})_{ki} V_{kj} P_{L} + V_{ik} (\xi^{d})_{kj} m_{j}^{d} P_{R} \right) d_{j} H^{+} + \frac{\sqrt{2}}{v} \bar{\nu}_{i} (\xi^{\ell})_{ij} m_{j}^{\ell} P_{R} \ell_{j} H^{+} + h.c.$$
(11)

⁷Phys. Rev. D35 (1987) 3484, Cheng et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
		000000				

$$\xi^{\mu} = \frac{1}{t_{\beta}} \delta_{ij} - \frac{1}{\sqrt{2}s_{\beta}} \sqrt{\frac{m_i^{\mu}}{m_j^{\mu}}} \chi_{ij}^{\mu}, \qquad (12)$$

$$z^d = -\frac{1}{t_{\beta}} \delta_{ij} + \frac{1}{\sqrt{2}s_{\beta}} \sqrt{\frac{m_i^{d}}{m_j^{d}}} \chi_{ij}^{d}, \qquad (13)$$

$$\xi^{\ell} = t_{\beta} \delta_{ij} - \frac{1}{\sqrt{2}c_{\beta}} \sqrt{\frac{m_i^{\ell}}{m_j^{\ell}}} \chi_{ij}^{\ell} \qquad (14)$$

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			000000			

$$a_{\mu}^{SM} = 116591810(43) \times 10^{-11} \tag{15}$$

Recently, the "MUON G-2" collaboration at Fermilab has published their result.

$$a_{\mu}^{exp-FNAL} = 116592040(54) \times 10^{-11}$$
(16)

The combined new world average(combination of recent FNAL and older BNL(2006) data) is published as

$$a_{\mu}^{exp-comb} = 116592061(41) \times 10^{-11} \tag{17}$$

The difference between the experimental observation and the SM prediction, defined as Δa_{μ} , amounts to a 4.2 σ discrepancy, which urges us to look beyond the SM.

$$\Delta a_{\mu} = a_{\mu}^{exp-comb} - a_{\mu}^{SM} = 251(59) \times 10^{-11}$$
(18)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			000000			

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			000000			

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			000000			

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusio
			0000000			

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			0000000			

Figure. The allowed region in $m_A - \tan \beta$ plane from $g_{\mu} - 2$ data at 3σ . The flavor changing couplings are taken to be $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$, $y_{\mu \tau} = 5 \times 10^{-5}$. The non-standard neutral CP-even Higgs mass is 120 GeV and charged Higgs mass is 150 GeV.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			000000			

One can check that a low mass pseudoscalar with an enhanced coupling to the C leptons will give significant contribution to muon anomaly.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
			000000			

One can check that a low mass pseudoscalar with an enhanced coupling to the C leptons will give significant contribution to muon anomaly. In our model the coupling of pseudoscalar with a pair of V leptons is proportional to $tan\beta$. Therefore, low m_A and large $tan\beta$ region is favored in the light of muon anomaly data.

Outline 0	Motivation O	Model 0000000	Muon Anomaly 0000000	Constraints 0000 000 0 0	Collider Searches 00 000000 000	Conclusion O
Low Energy	v Experiments					

Low Energy Experiments

 ${\it BR}(\mu o e\gamma) <$ 4.2 imes 10⁻¹³ 8, ${\it BR}(au o e\gamma) <$ 3.3 imes 10⁻⁸ and $BR(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$

⁸MEG collaboration, EPJC 76 (2016) 434

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
Low Energy	Experiments					

Low Energy Experiments

 $BR(\mu
ightarrow e\gamma) < 4.2 imes 10^{-13}$ ⁸, $BR(\tau
ightarrow e\gamma) < 3.3 imes 10^{-8}$ and $BR(\tau
ightarrow \mu\gamma) < 4.4 imes 10^{-8}$

$$CR(\mu \ Ti
ightarrow e \ Ti) \simeq rac{1}{200} BR(\mu
ightarrow e \gamma)$$
 (19)

$$BR(\mu \to 3e) \simeq rac{1}{160} BR(\mu \to e\gamma)$$
 (20)

⁸MEG collaboration, EPJC 76 (2016) 434

Outline	Motivation	Model	Muon Anomaly	Constraints
				0000 0000 0

Collider Searches

Low Energy Experiments

Low Energy Experiments

Outline 0	Motivation O	Model 0000000	Muon Anomaly 0000000	Constraints 00000 0000	Collider Searches	Conclusion O
E						

Low Energy Experiments

We have found that the two loop contribution to $\tau \to e\gamma$ and $\tau \to \mu\gamma$ amplitudes add up to mere $\sim 2\%$ of their one-loop counterpart. On the contrary, in case of $\mu \rightarrow e\gamma$, the addition of two loop contribution induces 3 times enhancement to the one-loop amplitude.

ıtline	Motivation	Model

Constraints0000
000
000
0
0

Collider Searches

Conclusion

Low Energy Experiments

Low Energy Experiments

Figure: The magenta, green and cyan regions are the allowed range for $\mu \to e\gamma$, $\tau \to e\gamma$ and $\tau \to \mu\gamma$ respectively. $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 10^{-4}$, $y_{\mu \tau} = 5 \times 10^{-5}$.
utline	Motivation	Model	Миот	

Constraints
00000

Collider Searches

Conclusion

Low Energy Experiments

Low Energy Experiments

Figure: The magenta, green and cyan regions are the allowed range for $\mu \to e\gamma$, $\tau \to e\gamma$ and $\tau \to \mu\gamma$ respectively. $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$, $y_{\mu \tau} = 10^{-4}$.

Outline	Motivation	Model	Muon Anomaly

Constraints 0000● 0000 0 Collider Searcher

Conclusion

Low Energy Experiments

Low Energy Experiments

Figure. The magenta, green and cyan regions are the allowed range for $\mu \to e\gamma$, $\tau \to e\gamma$ and $\tau \to \mu\gamma$ respectively. $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$, $y_{\mu \tau} = 5 \times 10^{-5}$.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0 000		
Theoretical	constraints					

Vacuum stability requires

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 - |\lambda_5| > \sqrt{\lambda_1 \lambda_2}$$
(21)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0		
Theoretical	constraints					

Vacuum stability requires

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 - |\lambda_5| > \sqrt{\lambda_1 \lambda_2}$$
 (21)

$$m_{A}^{2} = \frac{m_{12}^{2}}{s_{\beta}c_{\beta}} - \frac{1}{2}v^{2}(2\lambda_{5} + \frac{\lambda_{6}}{t_{\beta}} + \lambda_{7}t_{\beta})$$
(22)

$$m_{H^{\pm}}^2 = m_A^2 + \frac{1}{2}v^2(\lambda_5 - \lambda_4)$$
 (23)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0 0		
Theoretical	constraints					

Vacuum stability requires

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 - |\lambda_5| > \sqrt{\lambda_1 \lambda_2}$$
(21)

$$m_{A}^{2} = \frac{m_{12}^{2}}{s_{B}c_{B}} - \frac{1}{2}v^{2}(2\lambda_{5} + \frac{\lambda_{6}}{t_{B}} + \lambda_{7}t_{\beta})$$
(22)

$$m_{H^{\pm}}^2 = m_A^2 + \frac{1}{2}v^2(\lambda_5 - \lambda_4)$$
 (23)

 $\begin{array}{ll} m_{A} \in [10.0 \text{ GeV}, \ 60.0 \text{ GeV}], & m_{h} \in [62.5 \text{ GeV}, \ 125.0 \text{ GeV}], & m_{H}^{\pm} \in [89.0 \text{ GeV}, \ 190.0 \text{ GeV}], \\ \text{GeV}], & m_{12}^{2} \in [-1000 \text{ GeV}^{2}, \ 1000 \text{ GeV}^{2}], & \tan \beta \in [10, \ 70], & |\cos(\beta - \alpha)| \in [0.99, \\ 1], & \lambda_{6} \in [0, \ 0.1], & \lambda_{7} \in [0, \ 0.1] \end{array}$

Outline	Moti

Model

Muon Anomal

Constraints 00000 0●00 0 0 Collider Searcher

Theoretical constraints

Theoretical constraints

utline	Motivation	Model	Muon

Constraints

Collider Searches

Conclusion

Theoretical constraints

Theoretical constraints

We can see that $m_H^\pm < 170-180$ GeV is allowed for low m_A . We see that although very large $tan\beta$ is allowed from perturbativity considerations, low to moderate $tan\beta$ values are much more favored compared to the high values.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
Theoretical	constraints					

$$g_{hAA} = \frac{1}{2\nu} \left[(2m_A^2 - m_h^2) \frac{\cos(\alpha - 3\beta)}{\sin 2\beta} + (8m_{12}^2 - \sin 2\beta(2m_A^2 + 3m_h^2)) \frac{\cos(\beta + \alpha)}{\sin^2 2\beta} \right]$$
$$+\nu \left[\sin 2\beta \cos 2\beta(\lambda_6 - \lambda_7) \sin(\beta - \alpha) - (\lambda_6 \sin \beta \sin 3\beta + \lambda_7 \cos \beta \cos 3\beta) \cos(\beta - \alpha) \right]$$
(24)

The experimental upper limit on this branching ratio is rather strong in the scenario $m_A < \frac{m_h}{2} \,^9$, from the search for $(pp \rightarrow h \rightarrow AA)$ process in the $\mu^+\mu^-\tau^+\tau^-$ final state $\rightarrow g_{hAA}$ is extremely small. This in turn imposes a relation between m_{12}^2 , $\tan \beta$ and m_A ¹⁰. However it is required for perturbativity that $m_{12}^2 \sim \frac{m_H^2}{\tan \beta}$. In the case where 125 GeV Higgs is the lightest Higgs boson, and $m_H > 125$ GeV, it is possible to obey the perturbativity constraints as well as the upper limit on BR($h \rightarrow AA$) for low tan $\beta < 10$ and the mass gap $m_H - m_h$ is not very large. Although this region is phenomenologically viable, the ($g_{\mu} - 2$) requirements impose that m_A should also be very small, ie $m_A < 10$ GeV.

⁹CMS collaboration, JHEP 08 (2020) 139

¹⁰Gunion et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0 0 0		
Theoretical	constraints					

The other possibility is to consider the case when the heavier CP even Higgs is SM-like, ie $m_H = 125$ GeV. However in this case the LEP limit implies either m_A or m_h can be $< \frac{m_H}{2}$. We consider the low mass pseudoscalar, and therefore $m_h > \frac{m_H}{2}$. Here also, like the previous case the limit on BR($h \rightarrow AA$) will indicate extremely small value of the coupling g_{HAA} whose expression is given as follows:

$$g_{HAA} = \frac{1}{2\nu} \left[\left(2m_A^2 - m_H^2 \right) \frac{\cos(\alpha - 3\beta)}{\sin 2\beta} + \left(8m_{12}^2 - \sin 2\beta (2m_A^2 + 3m_H^2) \right) \frac{\cos(\beta + \alpha)}{\sin^2 2\beta} \right]$$

+ $\nu \left[\sin 2\beta \cos 2\beta (\lambda_5 - \lambda_7) \cos(\beta - \alpha) + (\lambda_5 \sin \beta \sin 3\beta + \lambda_7 \cos \beta \cos 3\beta) \sin(\beta - \alpha) \right] (25)$

+ $v [\sin 2\beta \cos 2\beta (\lambda_6 - \lambda_7) \cos(\beta - \alpha) + (\lambda_6 \sin \beta \sin 3\beta + \lambda_7 \cos \beta \cos 3\beta) \sin(\beta - \alpha)]$ (25)

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0 0 0		
Theoretical	constraints					

The other possibility is to consider the case when the heavier CP even Higgs is SM-like, ie $m_H = 125$ GeV. However in this case the LEP limit implies either m_A or m_h can be $< \frac{m_H}{2}$. We consider the low mass pseudoscalar, and therefore $m_h > \frac{m_H}{2}$. Here also, like the previous case the limit on BR($h \rightarrow AA$) will indicate extremely small value of the coupling g_{HAA} whose expression is given as follows:

$$g_{HAA} = \frac{1}{2\nu} \left[\left(2m_A^2 - m_H^2 \right) \frac{\cos(\alpha - 3\beta)}{\sin 2\beta} + \left(8m_{12}^2 - \sin 2\beta (2m_A^2 + 3m_H^2) \right) \frac{\cos(\beta + \alpha)}{\sin^2 2\beta} \right] + \nu \left[\sin 2\beta \cos 2\beta (\lambda_6 - \lambda_7) \cos(\beta - \alpha) + (\lambda_6 \sin \beta \sin 3\beta + \lambda_7 \cos \beta \cos 3\beta) \sin(\beta - \alpha) \right]$$
(25)

One can have a pseudoscalar mass > 10 GeV with moderate tan β , with suitable value of m_{12}^2 and m_h , while satisfying perturbativity condition and the small BR($H \rightarrow AA$) simultaneously. This point onwards, we will explore this particular scenario, ie. for our work $m_H = 125 \,\text{GeV}$.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 • 0 00		
Constraints	From B-Physics					

Constraints From B-Physics

In our analysis also we have taken only λ_{tt} and λ_{bb} to be non-zero where λ_{tt} and λ_{bb} are the $ht\bar{t}$ and $hb\bar{b}$ coupling strengths respectively, considering h to be the non-SM like CP-even Higgs.

¹¹Phys. Rev. D69 (2004) 014002, Xiao et al and Phys. Rev. D81 (2010) 035016, Mahmoudi et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0 00		
Constraints	From B-Physics					

Constraints From B-Physics

In our analysis also we have taken only λ_{tt} and λ_{bb} to be non-zero where λ_{tt} and λ_{bb} are the $ht\bar{t}$ and $hb\bar{b}$ coupling strengths respectively, considering h to be the non-SM like CP-even Higgs. We have taken in our analysis $\lambda_{tt} \sim 0.5$ and $\lambda_{bb} \sim 2$, which allows a charged Higgs mass $m_{H^\pm}\gtrsim 150$ GeV 11 .

¹¹Phys. Rev. D69 (2004) 014002, Xiao et al and Phys. Rev. D81 (2010) 035016, Mahmoudi et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 • 00		
Electroweak	constraints					

Electroweak constraints

We have calculated the oblique parameter ¹²

$m_h = 120$ GeV, $m_{H^{\pm}} = 150$ GeV.

¹²Eur. Phys. J. C78 (2018) 675, Haller et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion			
				00000 0000 0 0 0					
Constraints	Constraints from collider								

LEP has put a robust lower limit of 80 GeV on $m_{H^{\pm}}$ ¹³.

¹³Abbiendi et al,Eur.Phys.J.C 73 (2013) 2463

¹⁴ATLAS collaboration, JHEP 03 (2015) 088, CMS collaboration, JHEP 11 (2015) 018

¹⁵ATLAS Eur.Phys.J.C 73 (2013) 6, 2465, CMS JHEP 12 (2015) 178

¹⁶ATLAS-CONF-2016-088,CMS-PAS-HIG-16-031

¹⁷CMS-PAS-HIG-16-010

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0		
Constraints	from collider					

LEP has put a robust lower limit of 80 GeV on $m_{H^{\pm}}$ ¹³. At the LHC the charged Higgs search can be categorized in two types. For $m_{H}^{\pm} < m_{t}$, charged Higgs can be produced from the decay of top quark $(t \rightarrow bH^{\pm})$. This decay has been searched for in $\tau\nu$ ¹⁴ and $c\bar{s}$ ¹⁵ final state. These searches have put an upper limit on BR $(t \rightarrow bH^{\pm}) \times (H^{\pm} \rightarrow \tau\nu/c\bar{s})$. The other important search mode at the LHC is $(pp \rightarrow tbH^{\pm})$ in the final states $\tau\nu$ and $c\bar{s}$ ¹⁶ and $t\bar{b}$.

¹³ Abbiendi et al, Eur. Phys. J.C 73 (2013) 2463

¹⁴ATLAS collaboration, JHEP 03 (2015) 088, CMS collaboration, JHEP 11 (2015) 018

¹⁵ATLAS Eur.Phys.J.C 73 (2013) 6, 2465, CMS JHEP 12 (2015) 178

¹⁶ATLAS-CONF-2016-088,CMS-PAS-HIG-16-031

¹⁷CMS-PAS-HIG-16-010

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
Constraints	from collider					

LEP has put a robust lower limit of 80 GeV on $m_{H^{\pm}}$ ¹³. At the LHC the charged Higgs search can be categorized in two types. For $m_{H}^{\pm} < m_t$, charged Higgs can be produced from the decay of top quark $(t \rightarrow bH^{\pm})$. This decay has been searched for in $\tau \nu$ ¹⁴ and $c\bar{s}$ ¹⁵ final state. These searches have put an upper limit on BR $(t \rightarrow bH^{\pm}) \times (H^{\pm} \rightarrow \tau \nu / c\bar{s})$. The other important search mode at the LHC is $(pp \rightarrow tbH^{\pm})$ in the final states $\tau \nu$ and $c\bar{s}$ ¹⁶ and $t\bar{b}$. Collider searches for the non-standard neutral Higgs also put constraints on the parameter space of interest. Constraints from the search for low mass (pseudo)scalar produced in association with $b\bar{b}$ and decaying into $b\bar{b}$ has been taken into account. CMS has also searched for decay involving two non-standard Higgs bosons such as $h/H \rightarrow Z(\ell\ell)A(\tau\tau)$ and $h/H \rightarrow Z(\ell\ell)A(b\bar{b})$ ¹⁷. However these limits become applicable for heavier CP-even Higgs $\gtrsim 200$ GeV. Therefore these particular searches do not have any considerable affect on our parameter space.

¹³Abbiendi et al,Eur.Phys.J.C 73 (2013) 2463

¹⁴ATLAS collaboration, JHEP 03 (2015) 088, CMS collaboration, JHEP 11 (2015) 018

15ATLAS Eur.Phys.J.C 73 (2013) 6, 2465, CMS JHEP 12 (2015) 178

¹⁶ATLAS-CONF-2016-088,CMS-PAS-HIG-16-031

¹⁷CMS-PAS-HIG-16-010

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
Constraints	from collider					

We mention here that one should also take into account the limits coming from the direct search of the 125 GeV Higgs in various final states including $\tau\tau$, $\mu\mu$.

¹⁸ CMS-PAS-HIG-14-040

¹⁹CMS collaboration, Phys. Lett. B 749 (2015) 337-362

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0		
Constraints	from collider					

We mention here that one should also take into account the limits coming from the direct search of the 125 GeV Higgs in various final states including $\tau\tau$, $\mu\mu$. Moreover, as the focus of our work is FCNC in the Yukawa sector, the constraints coming from flavor violating decays of 125 GeV Higgs boson also put constraints on the flavor-violating Yukawa matrix elements.

¹⁸ CMS-PAS-HIG-14-040

¹⁹CMS collaboration, Phys. Lett. B 749 (2015) 337-362

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00000 0000 0 0		
Constraints	from collider					

We mention here that one should also take into account the limits coming from the direct search of the 125 GeV Higgs in various final states including $\tau\tau$, $\mu\mu$. Moreover, as the focus of our work is FCNC in the Yukawa sector, the constraints coming from flavor violating decays of 125 GeV Higgs boson also put constraints on the flavor-violating Yukawa matrix elements.

The 125 GeV Higgs decaying to $e\mu$ and $e\tau$ final state have been looked for by the CMS experiments ¹⁸. CMS also puts an upper limit on the branching ratio for 125 GeV Higgs decaying to $\mu\tau$ final state ¹⁹. Undoubtedly, these limits are crucial for our study. However, as we strictly confine ourselves to alignment limit $(\cos(\beta - \alpha) \approx 0.999)$, the flavor violating decays of the 125 GeV Higgs(*H* in our case) will receive a suppression by a factor $\sin^2(\beta - \alpha)$.

¹⁸ CMS-PAS-HIG-14-040

¹⁹CMS collaboration, Phys. Lett. B 749 (2015) 337-362

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
Constraints	from collider					

We mention here that one should also take into account the limits coming from the direct search of the 125 GeV Higgs in various final states including $\tau\tau$, $\mu\mu$. Moreover, as the focus of our work is FCNC in the Yukawa sector, the constraints coming from flavor violating decays of 125 GeV Higgs boson also put constraints on the flavor-violating Yukawa matrix elements.

The 125 GeV Higgs decaying to $e\mu$ and $e\tau$ final state have been looked for by the CMS experiments ¹⁸. CMS also puts an upper limit on the branching ratio for 125 GeV Higgs decaying to $\mu\tau$ final state ¹⁹. Undoubtedly, these limits are crucial for our study. However, as we strictly confine ourselves to alignment limit $(\cos(\beta - \alpha) \approx 0.999)$ the flavor violating decays of the 125 GeV Higgs(*H* in our case)

 $(\cos(\beta - \alpha) \approx 0.999)$, the flavor violating decays of the 125 GeV Higgs(*H* in our case) will receive a suppression by a factor $\sin^2(\beta - \alpha)$.

Therefore in this limit the constraints coming from lepton flavor violating decays of the 125 GeV Higgs are trivially satisfied.

¹⁸ CMS-PAS-HIG-14-040

¹⁹CMS collaboration, Phys. Lett. B 749 (2015) 337-362

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					•0 000000 000	

We consider probing the CP-odd scalar A in flavor violating leptonic decay mode in generalized 2HDM at the HL-LHC. Our signal process is given as

$$pp \to A \to \ell \tau_{\ell'}$$
 (26)

where $\ell, \ell' = e, \mu$ and $\tau_{\ell'}$ denotes the leptonic decay of τ . The signal of our interest is $\ell^+ \ell'^- + E_T$.

²⁰JHEP03(2020)103, CMS collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					•0 000000 000	

We consider probing the CP-odd scalar A in flavor violating leptonic decay mode in generalized 2HDM at the HL-LHC. Our signal process is given as

$$pp \to A \to \ell \tau_{\ell'}$$
 (26)

where $\ell, \ell' = e, \mu$ and $\tau_{\ell'}$ denotes the leptonic decay of τ . The signal of our interest is $\ell^+\ell'^- + E_T$. The SM processes that can give rise to similar final states are $\tau\tau/ee/\mu\mu$, $t\bar{t}, W^{\pm}$ +jets, di-boson, SM Higgs ²⁰.

²⁰JHEP03(2020)103, CMS collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					•0 000000 000	

We consider probing the CP-odd scalar A in flavor violating leptonic decay mode in generalized 2HDM at the HL-LHC. Our signal process is given as

$$pp \to A \to \ell \tau_{\ell'}$$
 (26)

where $\ell, \ell' = e, \mu$ and $\tau_{\ell'}$ denotes the leptonic decay of τ . The signal of our interest is $\ell^+\ell'^- + E_T$. The SM processes that can give rise to similar final states are $\tau\tau/ee/\mu\mu$, $t\bar{t}, W^{\pm}$ +jets, di-boson, SM Higgs ²⁰.

²⁰JHEP03(2020)103, CMS collaboration

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					0● 000000 000	

We mention here that since the branching ratios of the pseudoscalar decaying to flavor violating final states is very small (BR($A \rightarrow \mu \tau$) \approx BR($A \rightarrow \tau e$) $\approx 10^{-7}$), owing to the smallness of lepton flavor violating Yukawa couplings, we are compelled to choose low mass pseudoscalar which will have considerable production cross-section and therefore will be a viable candidate to search for in the collider.

	aneta	m _A	m _h	m_H^{\pm}	m_{12}^2	λ_6	λ_7	$ \cos(\beta - \alpha) $	$\sigma_{prod}(\sqrt{s} = 14 \text{ TeV})$
		(in GeV)	(in GeV)	(in GeV)	(in GeV ²)				(in fb)
BP1	15	21	120	150	970	0.001	0.001	0.999	0.085
BP2	20	25	120	150	843	0.1	0.005	0.999	0.067
BP3	22	27	120	150	775	0.01	0.0045	0.999	0.052

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 •00000 000	
Cut-Based	Analysis					

To generate our signal and background events, we employ the following pre-selection cuts.

$$\begin{array}{ll} p_{\mathcal{T}}(j,b) &> 20 \; \text{GeV} \; ; & |\eta(j)| < 4.7 \; ; & |\eta(b)| < 2.5 \; , \\ p_{\mathcal{T}}(\ell) &> 10 \; \text{GeV} \; , & |\eta(\ell)| < 2.5 \; . \end{array}$$

The *b*-jets are tagged with the p_T -dependent *b*-tag efficiency which has an average 75% tagging efficiency of the *b*-jets with 50 GeV $< p_T < 200$ GeV and 1% mis-tagging efficiency for light jets.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
Cut-Based	Analysis					

To affirm that our signal has 2 isolated leptons, we reject any third lepton with $p_T(\ell) > 10$ GeV. Moreover, since our signal is hadronically quiet, we put a jet-veto of with $p_T(j) > 20$ GeV. We also reject any b - jet with $p_T(b) > 20$ GeV. This helps us reduce the $t\bar{t}$ semileptonic and W^{\pm} + jets background.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 00000 000	
Cut-Based	Analysis					

To affirm that our signal has 2 isolated leptons, we reject any third lepton with $p_T(\ell) > 10$ GeV. Moreover, since our signal is hadronically quiet, we put a jet-veto of with $p_T(j) > 20$ GeV. We also reject any b - jet with $p_T(b) > 20$ GeV. This helps us reduce the $t\bar{t}$ semileptonic and W^{\pm} + jets background.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 000000 000	

Cut-Based Analysis

The lower E_T bins are populated both for signal and $\tau\tau$ background. On the other hand, top decay being a three-body decay, the E_T produced in $t\bar{t}$ event peaks at a larger value.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 000000 000	
A . A .						

Cut-Based Analysis

The lower E_T bins are populated both for signal and $\tau\tau$ background. On the other hand, top decay being a three-body decay, the E_T produced in $t\bar{t}$ event peaks at a larger value.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 000000 000	
Cut Barrel	Ameliate					

Cut-Based Analysis

The lower E_T bins are populated both for signal and $\tau\tau$ background. On the other hand, top decay being a three-body decay, the E_T produced in $t\bar{t}$ event peaks at a larger value.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 000000 000	
C . D	A					

The lower E_{T} bins are populated both for signal and $\tau\tau$ background. On the other hand, top decay being a three-body decay, the E_T produced in $t\bar{t}$ event peaks at a larger value.

The invariant mass for $ee/\mu\mu$ peaks at a Z-boson mass and therefore a suitable cut on this variable helps us get rid of this background. In addition, $M_{\ell\ell\ell'}$ turns out to be an important observable to **discriminate between** $\tau\tau$ **background and signal**.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
A . A .						

Cut-Based Analysis

The collinear mass is defined as follows:

$$m_{\mathcal{A}} = M_{collinear} = rac{M_{vis}}{\sqrt{x_{ au_{vis}}}},$$

with the visible momentum fraction of the au decay products being,

 $\begin{aligned} \mathbf{x}_{\tau_{vis}} &= \frac{|\vec{p}_T^{\tau_{vis}}|}{|\vec{p}_T^{\tau_{vis}}| + |\vec{p}_T^{\tau_{v}}|}, \text{ where } \vec{p}_T^{\tau} &= |\vec{E}_T | \hat{p}_T^{\tau_{vis}} \text{ and } M_{vis} \text{ is the visible mass of the } \tau - \ell \\ \text{system. The variable } M_{collinear} \text{ essentially reconstructs the mass of the pseudoscalar.} \\ \mathbf{A} \text{ suitable cut should be imposed on this variable to reduce the } \tau\tau \text{ background.} \end{aligned}$

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 0000●0 000	

Cut-Based Analysis

The transverse mass is defined as

$$M_{T}(\ell) = \sqrt{2\rho_{T}(\ell)\vec{E}_{T}(1 - \cos\Delta\phi_{\vec{\ell}-\vec{E}_{T}})}$$
(28)

where $\Delta \phi_{\vec{\ell}-\vec{E}_{T}}$ denotes the azimuthal angle between the leading lepton and \vec{E}_{T} . A cut on M_{T} variable helps us **reduce the** $t\bar{t}$ **background**.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 00000 000	
Cut-Based	Analysis					

	Effective NLO cross-section after the cut(fb)					
SM-background	Preselection cuts	$\Delta \phi_{\rho \rho \prime} < 2.2$	$M_{\rho\rho\prime} < 15 \text{ GeV}$	E_{f_T} < 15 GeV	Mcollinear > 10 GeV	$M_T < 25 \text{ GeV}$
ττ	8582.75	132.089	0.21	0.089	0.052	0.052
tt leptonic	22.10	11.01	0.099	0.016	0.016	0.0016
Signal						
BP1	0.0689	0.0686	0.0276	0.0266	0.0262	0.0258
BP2	0.0637	0.0542	0.0081	0.0076	0.0073	0.0073
BP3	0.0513 0.0381		0.0028	0.0026	0.0025	0.0025
		1	·C 1	1		

Benchmark points	Significance reach at 3 ab	luminosity
BP1	5.7 σ	
BP2	1.7 σ	
BP3	0.6 σ	

²¹Eur. Phys. J. C71 (2011) 1554, Cowan et al

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 00000 000	
Cut-Based	Analysis					

	Effective NLO cross-section after the cut(fb)					
SM-background	Preselection cuts	$\Delta \phi_{\ell \ell'} < 2.2$	$M_{ff'} < 15 \text{ GeV}$	$E_{/T}$ < 15 GeV	Mcollinear > 10 GeV	$M_T < 25 \text{ GeV}$
ττ	8582.75	132.089	0.21	0.089	0.052	0.052
tt leptonic	22.10	11.01	0.099	0.016	0.016	0.0016
Signal						
BP1	0.0689	0.0686	0.0276	0.0266	0.0262	0.0258
BP2	0.0637	0.0542	0.0081	0.0076	0.0073	0.0073
BP3	0.0513	0.0381	0.0028	0.0026	0.0025	0.0025

Benchmark points	Significance reach at 3 ab ⁻¹ luminosity
BP1	5.7 σ
BP2	1.7 σ
BP3	0.6 σ

The significance ²¹ is calculated using the following formula.

$$\mathcal{S} = \sqrt{2[(S+B)ln(1+rac{S}{B})-S]}$$

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
					00 000000 •00	
Improved a	nalveie with Artific	ial Neural Network	(ANN)			

ANN

Variable	Definition
$p_T^{\ell_1}$	Transverse momentum of the leading lepton
$p_T^{\ell_2}$	Transverse momentum of the sub-leading lepton
E_T^{miss}	Missing transverse energy
Μ _{ℓℓ′}	Invariant mass of the di-lepton pair
$\Delta \phi_{\ell\ell'}$	Azimuthal angle difference between the di-lepton pair
$\Delta R_{\ell\ell'}$	ΔR separation between the di-lepton pair
M _{vis}	Visible mass of the di-lepton system
X _{vis}	Visible momentum fraction of the $ au$ decay products
<i>M_{collinear}</i>	Collinear mass
MT	Transverse mass
$\Delta \phi_{\ell_1 E_T}$	Azimuthal angle difference between the leading lepton and $ ot\!$
$\Delta \phi_{\ell_2 E_T}$	Azimuthal angle difference between the sub-leading lepton and E_{T}
Improved analysis with Artificial Neural Network (ANN)	
--	--

ANN

For ANN analysis we have chosen a network with four hidden layers with activation curve relu at all of them. The batch-size is taken to be 1000 and the number of epochs is 100 in our case for each batch. We have used 80% of the dataset for training and 20% for validation.

In order to obtain a better performance from the network we have applied two basic cuts, namely $M_{\ell\ell'} < 30$ GeV and $M_{collinear} < 40$ GeV on signal and background events over and above the lepton selection and jet-veto.

Outline Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00 00000 0000	
Improved analysis with Artifi	cial Neural Network	(ANN)			

ANN

For ANN analysis we have chosen a network with four hidden layers with activation curve relu at all of them. The batch-size is taken to be 1000 and the number of epochs is 100 in our case for each batch. We have used 80% of the dataset for training and 20% for validation.

In order to obtain a better performance from the network we have applied two basic cuts, namely $M_{\ell\ell'} < 30$ GeV and $M_{collinear} < 40$ GeV on signal and background events over and above the lepton selection and jet-veto.

Therefore the network will be trained better to separate signal from background specifically in the signal region, this results in a better accuracy in the output. The accuracy we get is 99%(BP1), 98%(BP2) and 96%(BP3) which indicates very good discriminating power between signal and background.

Outline Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
				00 00000 0000	
Improved analysis with Artifi	cial Neural Network	(ANN)			

ANN

For ANN analysis we have chosen a network with four hidden layers with activation curve relu at all of them. The batch-size is taken to be 1000 and the number of epochs is 100 in our case for each batch. We have used 80% of the dataset for training and 20% for validation.

In order to obtain a better performance from the network we have applied two basic cuts, namely $M_{\ell\ell'} < 30$ GeV and $M_{collinear} < 40$ GeV on signal and background events over and above the lepton selection and jet-veto.

Therefore the network will be trained better to separate signal from background specifically in the signal region, this results in a better accuracy in the output. The accuracy we get is 99%(BP1), 98%(BP2) and 96%(BP3) which indicates very good discriminating power between signal and background.

The area under curve is 0.999(BP1), 0.998(BP2) and 0.994(BP3).

Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusio
				00 000000 000	
	Motivation O	Motivation Model 0 0000000	Motivation Model Muon Anomaly 0 0000000 0000000	Motivation Model Muon Anomaly Constraints 0 0000000 000000 <td>Motivation Model Muon Anomaly Constraints Collider Searches 0 0000000 0000000 0000000 000000 000000 00000000 00000000 00000000</td>	Motivation Model Muon Anomaly Constraints Collider Searches 0 0000000 0000000 0000000 000000 000000 00000000 00000000 00000000

Improved analysis with Artificial Neural Network (ANN)

ANN

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusio
					00 000000 000	

Improved analysis with Artificial Neural Network (ANN)

ANN

BP	\mathcal{S} (cuts+ANN)
BP1	9.2 <i>σ</i>
BP2	5.3 <i>σ</i>
BP3	3.2 <i>σ</i>

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
						•

We show that the long-standing problem of muon anomaly and LFV constraints can be solved simultaneously over considerable range of parameter space in this model with flavor changing couplings fixed at $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$ and $y_{\mu \tau} = 5 \times 10^{-5}$ and the non-standard CP-even and charged Higgs masses are fixed at 120 GeV and 150 GeV respectively.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
						•

- We show that the long-standing problem of muon anomaly and LFV constraints can be solved simultaneously over considerable range of parameter space in this model with flavor changing couplings fixed at $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$ and $y_{\mu \tau} = 5 \times 10^{-5}$ and the non-standard CP-even and charged Higgs masses are fixed at 120 GeV and 150 GeV respectively.
- After finding out the region allowed by all constraints, we look for flavor violating decay of CP-odd scalar (A) in the $\ell \tau \rightarrow \ell^+ \ell'^- + E_T$ final state, where τ decays leptonically and $\ell, \ell' = e, \mu$.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
						•

- We show that the long-standing problem of muon anomaly and LFV constraints can be solved simultaneously over considerable range of parameter space in this model with flavor changing couplings fixed at $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$ and $y_{\mu \tau} = 5 \times 10^{-5}$ and the non-standard CP-even and charged Higgs masses are fixed at 120 GeV and 150 GeV respectively.
- After finding out the region allowed by all constraints, we look for flavor violating decay of CP-odd scalar (A) in the $\ell \tau \rightarrow \ell^+ \ell'^- + E_T$ final state, where τ decays leptonically and $\ell, \ell' = e, \mu$.
- Performing a rectangular cut-based analysis for 14 TeV LHC with $3ab^{-1}$ luminosity, we show that the significance drops from $\sim 6\sigma$ to $\sim 1\sigma$ as the mass of the scalar increases from 21 GeV to 27 GeV which definitely improves in ANN.

Outline	Motivation	Model	Muon Anomaly	Constraints	Collider Searches	Conclusion
						•

- We show that the long-standing problem of muon anomaly and LFV constraints can be solved simultaneously over considerable range of parameter space in this model with flavor changing couplings fixed at $y_{\mu e} = 10^{-7}$, $y_{\tau e} = 5 \times 10^{-5}$ and $y_{\mu \tau} = 5 \times 10^{-5}$ and the non-standard CP-even and charged Higgs masses are fixed at 120 GeV and 150 GeV respectively.
- After finding out the region allowed by all constraints, we look for flavor violating decay of CP-odd scalar (A) in the $\ell \tau \rightarrow \ell^+ \ell'^- + E_T$ final state, where τ decays leptonically and $\ell, \ell' = e, \mu$.
- Performing a rectangular cut-based analysis for 14 TeV LHC with $3ab^{-1}$ luminosity, we show that the significance drops from $\sim 6\sigma$ to $\sim 1\sigma$ as the mass of the scalar increases from 21 GeV to 27 GeV which definitely improves in ANN.

B-Physics

The most stringent constraint comes from the $B \rightarrow X_s \gamma$ decay. The impact of these constraints in terms of specific types of 2HDM as well as in generalised 2HDM have been studied in great detail in earlier works ²². In conventional type I and type II 2HDM, the dominant additional contribution to the loop induced decay $B \rightarrow X_s \gamma$ comes from the charged Higgs boson-top quark penguin diagrams and its contribution depends on $m_{H\pm}$. In type II 2HDM, this extra contribution interferes constructively with its SM counterpart and therefore the lower bound on the charged Higgs boson becomes rather high ($m_{\mu}^{\pm} \gtrsim 600$ GeV). In type I, the charged Higgs penguin diagram's contribution interferes destructively with its SM counterpart and gives negligible result at large tan β . The type X model has same structure as type I, as far as the interactions of Higgs with the quark sector is concerned. Therefore Type X models also do not receive any strong lower bound on $m_{\mu\pm}$. As we can think of our model as a perturbation from the type X scenario, in the absence of the extra terms in the Yukawa Lagrangian, there is no strict lower bound on the charged Higgs mass. However, even in the presence of non-zero FCNC Yukawa matrix elements, it is possible to have low enough charged Higgs mass with suitable choice of λ_{tt} and λ_{bb} couplings. We have taken in our analysis $\lambda_{tt} \sim 0.5$ and $\lambda_{bb} \sim 2$, which allows a charged Higgs mass $m_{\mu+} \ge 150$ GeV.

²²Crivellin et al, Phys. Rev. D 87 (2013) 9, 094031

B-physics

Another decay process which can constrain our model parameters space is $B^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ where charged Higgs enters at the tree level itself. The observed branching ratio for the process $B_u^{\pm} \rightarrow \tau^{\pm} \nu_{\tau} = (1.06 \pm 0.19) \times 10^{-4}$ ²³. The decay $B_c^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$, although has not been observed, but puts an upper limit (< 30%) on the branching ratio for this decay. However, we have assumed only λ_{tt} and λ_{bb} are non-zero in the quark sector, we find out that these limits essentially reduces to a limit on λ_{bb} and tan β . In ²⁴, it has been shown that $\lambda_{bb} \sim 2$ is favored for large or moderate tan β .

The constraint from ΔM_B puts an an upper limit on λ_{tt} as a function of the charged Higgs mass ²⁵. $m_{H^{\pm}} \gtrsim 150$ GeV is allowed for $\lambda_{tt} \lesssim 0.5$.

The upper limit on the BR $(B_s o \mu^+ \mu^-)$ is $2.4^{+0.9}_{-0.7} imes 10^{-9}$ ²⁶. This particular

branching fraction constrains the low tan β (< 2) region for low $m_{H}^{\pm}(\sim 100 \text{ GeV})^{27}$. For higher charged Higgs mass this limit is further relaxed.

²³Alonso et al, Phys. Rev. Lett. 118 (2017) 081802

²⁴Arhrib et al, Arxiv:1710.05898

²⁵Mahmoudi et al, Phys.Rev.D 81 (2010) 035016

²⁶Patrignani et al, Chin.Phys.C 40 (2016) 10, 100001

²⁷Arbey et al, Eur.Phys.J.C 78 (2018) 3, 182

The collinear mass is defined as follows:

$$m_{A} = M_{collinear} = rac{M_{vis}}{\sqrt{ imes au_{vis}}},$$

with the visible momentum fraction of the τ decay products being, $x_{\tau_{vis}} = \frac{|\vec{\rho}_T^{\tau_{vis}}|}{|\vec{\rho}_T^{\tau_{vis}}| + |\vec{\rho}_T^{\tau_i}|}, \text{ where } \vec{\rho}_T^{\nu} = |\vec{E}_T| \hat{\rho}_T^{\tau_{vis}} \text{ and } M_{vis} \text{ is the visible mass of the } \tau - \ell$ system. The variable $M_{collinear}$ essentially reconstructs the mass of the pseudoscalar.

$$M_{T}(\ell) = \sqrt{2\rho_{T}(\ell)\vec{E}_{T}(1 - \cos\Delta\phi_{\vec{\ell}-\vec{E}_{T}})}$$
(29)