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State of the field
• Large data volumes and complex 

structures: Long history of 
advanced analysis techniques in 
particle physics 

• Machine learning (ML) quickly 
becoming omnipresent in all 
aspects
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Inspire: ("machine learning" or 
"deep learning" or neural) and 
(hep-ex or hep-ph or hep-th)

420 papers in 2022



Micro-Intro: Particle Physics
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• Particle physics: study smallest constituents 
of matter


• Standard Model: incredible scientific 
achievement, describes 3/4 fundamental 
forces


• Mathematical, quantum theoretical 
understanding of matter at the smallest 
scales

• Experimental evidence (e.g. dark matter) & 
theoretical considerations: Standard Model 
is not sufficient, need new physics


• Comprehensive program at Large Hadron 
Collider (LHC)


• Experimental data is complemented by large 
volumes of high quality simulations 
(synthetic data)



Micro-Intro: Data
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• Particle collisions with ~1 MB/
event happen at a rate of 40 MHz


• Distill to ~1 kHz via lossy, 
irreversible filtering algorithms 
(Trigger)


• Very heterogenous data: low-
level readouts in ~100M 
channels; can condense to O(10) 
high-level features


• One collision/event = “one 
image” 
  
sample i.i.d. from underlying 
physics distribution (e.g. the 
Standard Model + potential new 
physics)



Experimental particle physics
This happens in the experiment

This is what we want to know
Connect observational data 
with underlying theory: 
Statistics & simulation



• Rephrase task as a minimisation problem..


• ..and “simply” solve: 
 
 

• Modern ML: function f is a deep neural network & 
minimisation carried out via gradient descent 

• Devil in the details: 

• How to map physics objective to loss function L 
• How to structure f to make maximum use of 

physics knowledge

• How learn in a robust way from minimum 

amount of data 

• …

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="RO46pFIGOAol09qGQPC65vT/S8c="></latexit>

Micro-Intro: Machine Learning
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Overview
• Detailed domain knowledge — mathematical structures, 

useful observables, symmetries — in particle physics


• How to include in neural networks to improve performance 
and/or data and resource efficiency? 


• Will cover three different areas & approaches
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FIG. 7. Performance vs. iteration for 5 trials of DisCo-FFS (performance is the mean R30 of 10 trainings). We see that the
feature selection is deterministic for the first six EFPs selected (superimposed), and there is a corresponding sharp rise in R30.
Then this is followed by 2 paths (marked path 1 and path 2) in the 7th and 8th iterations. After that, DisCo-FFS finds di↵erent
sets of features to achieve similar performance.

formance (matching that of ParticleNet-lite [14]) with
a selection of just a small number of EFPs (less than
10). We also show how it outperforms the DO-ADO-FFS
method of [30] (which we have attempted to replicate as
closely as possible), consistently achieving higher tagging
performance after each EFP that is selected.

The fact that our method falls short of the most state
of the art deep learning methods (ParT [19], PELI-
CAN [24], and LorentzNet [23]) is interesting. Either our
method is not fully optimal at selecting the features, or
the 7,000+ EFPs we used as the basis of our study do not
capture all the physics underlying top tagging. A possi-
ble follow-up study to further probe this question would
be to supplement the 7,000+ EFPs with additional jet
substructure variables, for instance the subjettiness vari-
ables of [59, 61], jet spectra and morphological features
of [62–64], or Boost Invariant Polynomials [65]. This
observation also raises the possibility that there might
be more meaningful jet substructure variables out there,
beyond those that are presently known, waiting to be
discovered. This is obviously an interesting avenue for
future research.

Beyond simple object tagging, DisCo-FFS might also
be able to shine for tasks — such as building supervised
classifiers for new physics discovery — where calibration
of the algorithm is di�cult and a small number of well-
understood features is preferable. While particle physics

is in an especially good position due to the presence of
well-motivated bases of features (such as the used EFPs)
such decompositions also exists for other domains, e.g.
in the forms of wavelets applied to images (e.g. building
on [66]).

In general, EFPs selected could make for a very
lightweight and performant top tagger. This could have
important applications to triggering [67]. For that, a fast
way to calculate EFPs on FPGAs would be required.
Such will be interesting to explore further.

It would also be potentially illuminating to study the
robustness of the selected EFPs under domain shift. For
example, recently ATLAS released an o�cial top tagging
dataset [68]. One could compare the EFPs selected by
DisCo-FFS on the di↵erent top tagging datasets, and see
how one set of EFPs performs on the other dataset. One
could also imagine training this method on a restricted
set of HLFs (EFPs or otherwise) that are deemed to
be “well-modeled” by simulations. This could help with
the calibration and robustness of taggers developed using
simulation and deployed on data.

Overall, we observe the start of a positive feedback loop
between deep learning method development and physics-
motivated feature discovery. Each one drives the other.
Early top taggers [69] started with jet substructure vari-
ables like N -subjettiness. Then it looked like deep learn-
ing was able to go way beyond HLFs and we would

Select physically relevant 
features for supervised 
classification



10

Overview
• Detailed domain knowledge — mathematical structures, 

useful observables, symmetries — in particle physics


• How to include in neural networks to improve performance 
and/or data and resource efficiency? 


• Will cover three different areas & approaches

<latexit sha1_base64="Nc7ojRIP9KOgdDv19ehCOP2kHfI=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFcCElqaUKUii4cVnBXqAJ5WQ6aYdOLsxMhBIKbnwVNy4UcetLuPNtnLZZaOsPAx//OYcz5/dizqSyrG8jt7K6tr6R3yxsbe/s7pn7By0ZJYLQJol4JDoeSMpZSJuKKU47saAQeJy2vdHNtN5+oEKyKLxX45i6AQxC5jMCSls988guOdekdnGOnRHEMdTKmjyqoGb3zKJVsmbCy2BnUESZGj3zy+lHJAloqAgHKbu2FSs3BaEY4XRScBJJYyAjGNCuxhACKt10dsMEn2qnj/1I6BcqPHN/T6QQSDkOPN0ZgBrKxdrU/K/WTZR/5aYsjBNFQzJf5CccqwhPA8F9JihRfKwBiGD6r5gMQQBROraCDsFePHkZWuWSXS1V7irFejWLI4+O0Qk6Qza6RHV0ixqoiQh6RM/oFb0ZT8aL8W58zFtzRjZziP7I+PwBLmOVSw==</latexit>

1. c = 3,  = 2, � = 1

<latexit sha1_base64="2CNpwyFXHnNi8l2BU5uYZ5v3KG4=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFcCElqaUKUii4cVnBXqAJ5WQ6aYdOLsxMhBIKbnwVNy4UcetLuPNtnLZZaOsPAx//OYcz5/dizqSyrG8jt7K6tr6R3yxsbe/s7pn7By0ZJYLQJol4JDoeSMpZSJuKKU47saAQeJy2vdHNtN5+oEKyKLxX45i6AQxC5jMCSls986hccq5J7eIcOyOIY6iVNXlUQc3umUWrZM2El8HOoIgyNXrml9OPSBLQUBEOUnZtK1ZuCkIxwumk4CSSxkBGMKBdjSEEVLrp7IYJPtVOH/uR0C9UeOb+nkghkHIceLozADWUi7Wp+V+tmyj/yk1ZGCeKhmS+yE84VhGeBoL7TFCi+FgDEMH0XzEZggCidGwFHYK9ePIytMolu1qq3FWK9WoWRx4doxN0hmx0ieroFjVQExH0iJ7RK3oznowX4934mLfmjGzmEP2R8fkDMACVTA==</latexit>

2. c = 3,  = 2, � = 1

<latexit sha1_base64="KEoNo6WOBGj31zdA/xHxRXmx6OM=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFcCElqaUKUii4cVnBXqAJ5WQ6aYdOLsxMhBIKbnwVNy4UcetLuPNtnLZZaOsPAx//OYcz5/dizqSyrG8jt7K6tr6R3yxsbe/s7pn7By0ZJYLQJol4JDoeSMpZSJuKKU47saAQeJy2vdHNtN5+oEKyKLxX45i6AQxC5jMCSls98+ii5FyTWvkcOyOIY6hZmjyqoGb3zKJVsmbCy2BnUESZGj3zy+lHJAloqAgHKbu2FSs3BaEY4XRScBJJYyAjGNCuxhACKt10dsMEn2qnj/1I6BcqPHN/T6QQSDkOPN0ZgBrKxdrU/K/WTZR/5aYsjBNFQzJf5CccqwhPA8F9JihRfKwBiGD6r5gMQQBROraCDsFePHkZWuWSXS1V7irFejWLI4+O0Qk6Qza6RHV0ixqoiQh6RM/oFb0ZT8aL8W58zFtzRjZziP7I+PwBLOyVSg==</latexit>

3. c = 2,  = 0, � = 1

<latexit sha1_base64="s72yxFgaMIzQNvhVGia/eVolmEI=">AAACBXicbZC7SgNBFIZn4y3G26qlFoNBsJBlV2MUJBCwsYxgLpBdwtnJbDJk9sLMrBCWNDa+io2FIra+g51v4+RSaOIPAx//OYcz5/cTzqSy7W8jt7S8srqWXy9sbG5t75i7ew0Zp4LQOol5LFo+SMpZROuKKU5biaAQ+pw2/cHNuN58oEKyOLpXw4R6IfQiFjACSlsd87Bkudekcn6K3QEkCVQcTT5VULGti45ZtC17IrwIzgyKaKZax/xyuzFJQxopwkHKtmMnystAKEY4HRXcVNIEyAB6tK0xgpBKL5tcMcLH2uniIBb6RQpP3N8TGYRSDkNfd4ag+nK+Njb/q7VTFVx5GYuSVNGITBcFKccqxuNIcJcJShQfagAimP4rJn0QQJQOrqBDcOZPXoTGmeWUrdJdqVgtz+LIowN0hE6Qgy5RFd2iGqojgh7RM3pFb8aT8WK8Gx/T1pwxm9lHf2R8/gAgHpXD</latexit>

4. c = 3,  = 1, � = 0.5

<latexit sha1_base64="L2vTFlWJPQJsI8+QpSrXBi0oAuk=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFcCHDjNYqSKHgxmUFe4HOUDJppg3NZEKSEcpQcOOruHGhiFtfwp1vY3pZaOsPgY//nMPJ+UPBqNKu+23llpZXVtfy64WNza3tHXt3r6GSVGJSxwlLZCtEijDKSV1TzUhLSILikJFmOLgZ15sPRCqa8Hs9FCSIUY/TiGKkjdWxDy4c/xpXzk+hP0BCoIpnKCTaQMcuuo47EVwEbwZFMFOtY3/53QSnMeEaM6RU23OFDjIkNcWMjAp+qohAeIB6pG2Qo5ioIJvcMILHxunCKJHmcQ0n7u+JDMVKDePQdMZI99V8bWz+V2unOroKMspFqgnH00VRyqBO4DgQ2KWSYM2GBhCW1PwV4j6SCGsTW8GE4M2fvAiNM8crO6W7UrFansWRB4fgCJwAD1yCKrgFNVAHGDyCZ/AK3qwn68V6tz6mrTlrNrMP/sj6/AEzSpVO</latexit>

5. c = 3,  = 1, � = 1

<latexit sha1_base64="q2MzCQIjZmwdD09lN0t2SRNbtD4=">AAACBXicbZC7SgNBFIZnvcZ4W7XUYjAIFrLsxhgFCQRsLCOYC2SXcHYymwyZvTAzK4SQxsZXsbFQxNZ3sPNtnCRbaOIPAx//OYcz5/cTzqSy7W9jaXlldW09t5Hf3Nre2TX39hsyTgWhdRLzWLR8kJSziNYVU5y2EkEh9Dlt+oObSb35QIVkcXSvhgn1QuhFLGAElLY65lHZcq9J5fwMuwNIEqgUNflUQcW2LjpmwbbsqfAiOBkUUKZax/xyuzFJQxopwkHKtmMnyhuBUIxwOs67qaQJkAH0aFtjBCGV3mh6xRifaKeLg1joFyk8dX9PjCCUchj6ujME1ZfztYn5X62dquDKG7EoSRWNyGxRkHKsYjyJBHeZoETxoQYggum/YtIHAUTp4PI6BGf+5EVoFC2nbJXuSoVqOYsjhw7RMTpFDrpEVXSLaqiOCHpEz+gVvRlPxovxbnzMWpeMbOYA/ZHx+QMk65XG</latexit>

6. c = 3,  = 2, � = 0.5

Select physically relevant 
features for supervised 
classification

SciPost Physics Submission

p1

g g� 

�p

�g

gl
ob

al
 


at
tri

bu
te

s
po

in
t a

ttr
ib

ut
es

�p

�p

p2

pn

p� 1

p� 2

p� n

EPiC layer: Final version

Figure 1: Equivariant Point Cloud (EPiC) layer structure. The global function � g

and point function �p are learned by neural networks. The � symbol indicates the
aggregation function ⇢p!g with both element-wise summation and average pooling.

the number of points. We find that EPiC-GAN provides fidelity of generated distributions on
par with MP-GAN, yet offers a significant speed-up in generation time and much better scal-
ing to large point cloud multiplicities. Additionally, the global attributes associated with each
EPiC-GAN layer provide an interpretable latent space that can be correlated to known physical
observables.

As a proof-of-principle case study, we apply EPiC-GAN to generate jets trained on the JetNet
benchmark dataset [17]. In comparison to earlier permutation equivariant set-based gener-
ative models [24–26], the EPiC-GAN utilizes a continuously updated global attribute vector
that allows for inter-point communication without the computational overhead of a full graph
model. A model relying on such global attributes works well for modeling particle jets, which
are defined by a number of per-jet (i.e. global) physical observables such as mass and trans-
verse momentum. The fidelity reached on such complex physical distributions suggests that
this model could also perform well for tasks like fast calorimeter simulation.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the EPiC-
GAN architecture and associated loss functions. We present a case study using EPiC-GAN for
generating jets at the LHC in Sec. 3 and draw our conclusions in Sec. 4.

2 Equivariant Point Cloud GAN

In this section, we introduce equivariant point cloud (EPiC) layers, which are the founda-
tion for our generative model. By stacking multiple EPiC layers, we build our generator and
discriminator architectures. To the best of our knowledge, these architectures are a novel con-
tribution to the generative modeling literature, not just in HEP. We implement EPiC-GAN in
Pytorch [27] and the code is available on GitHub.1

2.1 EPiC Layers

Following the notation in Ref. [28], we define a 2-tuple point cloud C = (g , P) as a graph
without edges. The global attributes of the point cloud are represented by g . The set of points
are represented by P = p i=1:N , where p i are the attributes of point i and N is the set cardinality
(in jet physics terms: particle multiplicity).

1https://github.com/uhh-pd-ml/EPiC-GAN
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

See how these issues  
affect the current frontier  
of anomaly detection
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• Distinguish jets initiated by a top quarks 
from jets from other particles


• Binary classification task


• Use simulation as synthetic training data: 
perfect class labels available


• (Leads to domain shift when applied 
to collider data)

• 1.2M training examples (jets),  
400k each for testing and validation


• Each example: Up to 200 particles with  
3 features/particle 
(2D position on detector surface+ 
energy)


• Metrics: AUC: area under curve and  
R30:1/FPR @ TPR=0.3

GK, Plehn, et al 1902.09914

Concrete Task

Better
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FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-

Convolutions

Graphs

~pre-deep learning

Transformers

Sets

Physics symmetries

Das, GK, Shih 2212.00046

• Many ways to encode symmetries in network architecture to improve  
tagging performance: Dedicated talk later today


• Instead, a way to automatically find best features to describe a jet



Motivation

• Advantage of few high-level 
features: 
-easy to understand and calibrate 
-cheap to evaluate 

• Advantage of complex 
architecture and low-level 
features: performance


• Can we combine both?
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We need a basis
• Energy Flow Polynomials (EFPs) form a basis of jet substructure


• Nodes: energy fractions


• Edges: angular distances


• Depending on order considered, too many (e.g 7k) to efficiently train NN 
(many features work if there is structure, not so much for EFPs)

2 Energy flow polynomials

IRC-safe observables have long been of theoretical and experimental interest because ob-

servables which lack IRC safety are not well defined [78–81], or require additional care to

calculate [82–86], in perturbative quantum chromodynamics (pQCD). More broadly, though,

IRC safety is a simple and natural organizing principle for high-energy physics observables,

since IRC-safe observables probe the high-energy structure of an event while being insensitive

to low-energy and collinear modifications. IRC safety is also an important property experi-

mentally as IRC-safe observables are more robust to noise and finite detector granularity.

As argued in Refs. [74, 87–89], the C-correlators in Eq. (1.3) are a generic way to capture

the IRC-safe structure of a jet, as long as one chooses an appropriate angular weighting

function fN . Later in Sec. 3, we give an alternative proof that C-correlators span the space

of IRC-safe observables and go on to give a systematic expansion for fN . This expansion

results in the EFPs, which yield an (over)complete linear basis for IRC-safe observables. In

this section, we highlight the basic features of the EFPs and their relationship to previous jet

substructure observables.

2.1 The energy flow basis

One can think of the EFPs as C-correlators that make specific, discrete choices for the angular

weighting function fN in Eq. (1.3). True to their name, EFPs have angular weighting functions

that are polynomial in pairwise angular distances ✓ij . The energy flow basis is therefore all

C-correlators with angular structures that are unique monomials in ✓ij , meaning monomials

that give algebraically di↵erent expressions once the sums in Eq. (1.3) are performed. Since

we intend to apply the energy flow basis for jet substructure, we remove the dependence

on the overall jet kinematics by normalizing the particle energies by the total jet energy,

EJ ⌘
PM

i=1 Ei, leading to the EFPs written in terms of the energy fractions zi ⌘ Ei/EJ as

in Eq. (1.1).

The uniqueness requirement on angular monomials can be better understood by devel-

oping a correspondence between monomials in ✓ij and multigraphs:

Multigraph/EFP Correspondence. The set of loopless multigraphs on N vertices corre-

sponds exactly to the set of angular monomials in {✓iki`}k<`2{1,··· ,N}. Each edge (k, `) in a

multigraph is in one-to-one correspondence with a term ✓iki` in an angular monomial; each

vertex j in the multigraph corresponds to a factor of zij and summation over ij in the EFP:

j
()

MX

ij=1

zij , k ` () ✓iki` . (2.1)

Using Eq. (2.1), the EFPs can be directly encoded by their corresponding multigraphs.

For instance:

=
MX

i1=1

MX

i2=1

MX

i3=1

MX

i4=1

zi1zi2zi3zi4✓i1i2✓i2i3✓
2
i2i4✓i3i4 . (2.2)
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FIG. 1: Overview of a boosted forward feature selection algorithm

4. Step 4: Add the feature with best relevance

score to the list of known features

We select the feature with the best score and up-
date Fknown = [f1, f2, f3, .., fbest score]. Then we
proceed back to the 1st step to train a network on
the updated set of features Fknown. The procedure
is stopped when the performance metric saturates
and the final set Fknown is returned.

While the above method explicitly describes the
DisCo-Forward Feature Selection (DisCo-FFS), the pro-
tocol is general enough to accommodate also other it-
erative feature selection techniques. In appendix VA,
we outline how the DO-ADO Forward Feature Selection
(DO-ADO-FFS) by Faucett et al [7] operates.

III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging referemce data
set [13, 14]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [15], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes

[16], with the ATLAS detector card. FastJet [17] is used
to create fat jets using the anti-kT algorithm [18] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only kine-
matic information, in the form energy-momentum four-
vectors, which are extracted using the Delphes energy-
flow algorithm. No additional tracking information, or
particle information, is included which allows for a fair
comparison amongst di↵erent techniques. Jets with less
than 200 constituents are padded with zero four-vectors.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with Fknown =
[mJ , pT ,mW�candidate], where mJ is the mass of
the jet, pT is the transverse momentum of the jet and
mW�candidate is the mass of the W-candidate in the jet,
calculated as . . ..
We then apply feature selection algorithms to a large

set of Energy Flow Polynomials (EFPs)[8]. EFPs are
functions of energy fractions, and angular separation of
jet constituents. Each polynomial has a one to one cor-
respondence with a graph:

X

a2J

za ! (each node) (2)

✓
k=1
ab ! (each edge) (3)

A single edge graph, corresponds to k = 1, and a
multi-edge, corresponds to higher powers of k. Each
graph/polynomial is further characterized by two other
parameters (,�):

z
()
a =

0

@ pT aP
i2J

pT i

1

A


(4)

✓
(�)
ab = (�⌘

2
ab +��

2
ab)

�/2
, (5)

where pT a is the transverse momentum of ath jet con-
stituent, and the denominator in za is summed over all
jet constituents in a jet J .

Look for optimal feature set

Solution: Iterative feature selection

Das, GK, Shih 2212.00046; Faucett, Thaler, 
Whiteson, 2010.11998 17
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in which case we are performing ab initio forward fea-
ture selection in order to produce the highest-performing
classifier that we can; or the reference label could be a
pre-trained state-of-the-art classifier, in which case we are
performing forward feature selection for the purposes of
AI explainability (explaining the pre-trained “black box”
classifier).

In any event, for a set of features, the point is that
the relevance score can be obtained much more quickly
than training a classifier on the features, and the forward
feature selection algorithm can select the feature with the
highest score as the next feature.

The 4 steps involved in our feature selection algorithm
are illustrated in Fig. 1 and explained in the following:

1. Step 1: Train on known features

Train a classifier network on a set of features Fn =
{fi1 , fi2 , . . . fin} using the full training sample of all
events Xall, and obtain the classifier output ypred
for all events in Xall.

For simplicity and best possible performance, we
use a dense neural network (details in Appendix B),
although any other classification algorithm (e.g.
XGBoost, logistic regressor) could be used as well.

2. Step 2: Select the confusion set X0 ⇢ Xall

Instead of calculating the relevance scores using the
full dataset, we choose to instead focus on a sub-
set of the full data X0 ⇢ Xall that we call the
“confusion set”. These are events where we believe
the features in Fn are least e↵ective in separating
signal from background, and where adding a new
feature may have the largest impact. To identify
this subset, we select all events in a window around
ypred = 0.5, as shown in Fig. 2 – these should be the
events where the classifier is most confused about
whether it is a signal or a background. We observe
that using a confusion set instead of the full dataset
improves performance.

3. Step 3: Assign a relevance score to each fea-
ture

To each feature fi in the feature space F , we assign
a relevance score sfi , which gauges how much the
feature will improve classification performance.

The relevance score is calculated using the feature
vectors evaluated on the events in the confusion set
X0, together with the classifier output of a reference
label yref :

X =
n⇣

fi1(~x), . . . , fin(~x), fi(~x)
⌘���~x 2 X0

o

Y = {yref(~x)|~x 2 X0}
(2)

The relevance score assigned to each feature fi is:

sfi = A�ne-DisCo(X ,Y). (3)

FIG. 2. Events in a window around the classifier output value
ypred = 0.5 are selected as the confusion set X0 for DisCo-
FFS.

As described in the Introduction, DisCo is short for
distance correlation [35–38], a measure of statistical
dependence that is zero i↵ the random vectors X
and Y are statistically independent, and positive
(and  1) otherwise. Therefore, it is well-suited
to judging whether adding fi to the feature vector
(fi1 , . . . fin) produces a stronger correlation with
the reference label yref or not. Here we are using
the a�ne-invariant version of DisCo [53], which is
invariant under arbitrary linear transformations of
X and Y, in order to make it more robust against
basis reparametrizations in the EFP space. The
multivariate A�ne-DisCo calculation is described
in more detail in Appendix C.

4. Step 4: Add the feature with best relevance
score to the list of known features

We select the feature with the best score and add
it to Fn. Then we proceed back to the first step
to train a network on the updated set of features
Fn+1. The procedure is stopped when the perfor-
mance metric saturates and the final set of features
is returned.

While the above method explicitly describes our
DisCo-based Forward Feature Selection algorithm
(DisCo-FFS), the protocol is general enough to accom-
modate also other iterative feature selection techniques.
In Appendix A, we use the same framework to outline
how the Forward Feature Selection from [30] operates.
This is based on Decision Ordering (DO) for the confu-
sion set, and Average Decision Ordering (ADO) for the
relevance score, and we will refer to it as DO-ADO-FFS
throughout this work.

3

FIG. 1: Overview of a boosted forward feature selection algorithm

4. Step 4: Add the feature with best relevance

score to the list of known features

We select the feature with the best score and up-
date Fknown = [f1, f2, f3, .., fbest score]. Then we
proceed back to the 1st step to train a network on
the updated set of features Fknown. The procedure
is stopped when the performance metric saturates
and the final set Fknown is returned.

While the above method explicitly describes the
DisCo-Forward Feature Selection (DisCo-FFS), the pro-
tocol is general enough to accommodate also other it-
erative feature selection techniques. In appendix VA,
we outline how the DO-ADO Forward Feature Selection
(DO-ADO-FFS) by Faucett et al [7] operates.

III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging referemce data
set [13, 14]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [15], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes

[16], with the ATLAS detector card. FastJet [17] is used
to create fat jets using the anti-kT algorithm [18] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only kine-
matic information, in the form energy-momentum four-
vectors, which are extracted using the Delphes energy-
flow algorithm. No additional tracking information, or
particle information, is included which allows for a fair
comparison amongst di↵erent techniques. Jets with less
than 200 constituents are padded with zero four-vectors.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with Fknown =
[mJ , pT ,mW�candidate], where mJ is the mass of
the jet, pT is the transverse momentum of the jet and
mW�candidate is the mass of the W-candidate in the jet,
calculated as . . ..
We then apply feature selection algorithms to a large

set of Energy Flow Polynomials (EFPs)[8]. EFPs are
functions of energy fractions, and angular separation of
jet constituents. Each polynomial has a one to one cor-
respondence with a graph:
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where pT a is the transverse momentum of ath jet con-
stituent, and the denominator in za is summed over all
jet constituents in a jet J .
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FIG. 1: Overview of a boosted forward feature selection algorithm
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proceed back to the 1st step to train a network on
the updated set of features Fknown. The procedure
is stopped when the performance metric saturates
and the final set Fknown is returned.

While the above method explicitly describes the
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tocol is general enough to accommodate also other it-
erative feature selection techniques. In appendix VA,
we outline how the DO-ADO Forward Feature Selection
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ing Pythia8 [15], with a center-of-mass energy of 14 TeV.
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matic information, in the form energy-momentum four-
vectors, which are extracted using the Delphes energy-
flow algorithm. No additional tracking information, or
particle information, is included which allows for a fair
comparison amongst di↵erent techniques. Jets with less
than 200 constituents are padded with zero four-vectors.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with Fknown =
[mJ , pT ,mW�candidate], where mJ is the mass of
the jet, pT is the transverse momentum of the jet and
mW�candidate is the mass of the W-candidate in the jet,
calculated as . . ..
We then apply feature selection algorithms to a large

set of Energy Flow Polynomials (EFPs)[8]. EFPs are
functions of energy fractions, and angular separation of
jet constituents. Each polynomial has a one to one cor-
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in which case we are performing ab initio forward fea-
ture selection in order to produce the highest-performing
classifier that we can; or the reference label could be a
pre-trained state-of-the-art classifier, in which case we are
performing forward feature selection for the purposes of
AI explainability (explaining the pre-trained “black box”
classifier).

In any event, for a set of features, the point is that
the relevance score can be obtained much more quickly
than training a classifier on the features, and the forward
feature selection algorithm can select the feature with the
highest score as the next feature.

The 4 steps involved in our feature selection algorithm
are illustrated in Fig. 1 and explained in the following:

1. Step 1: Train on known features

Train a classifier network on a set of features Fn =
{fi1 , fi2 , . . . fin} using the full training sample of all
events Xall, and obtain the classifier output ypred
for all events in Xall.

For simplicity and best possible performance, we
use a dense neural network (details in Appendix B),
although any other classification algorithm (e.g.
XGBoost, logistic regressor) could be used as well.

2. Step 2: Select the confusion set X0 ⇢ Xall

Instead of calculating the relevance scores using the
full dataset, we choose to instead focus on a sub-
set of the full data X0 ⇢ Xall that we call the
“confusion set”. These are events where we believe
the features in Fn are least e↵ective in separating
signal from background, and where adding a new
feature may have the largest impact. To identify
this subset, we select all events in a window around
ypred = 0.5, as shown in Fig. 2 – these should be the
events where the classifier is most confused about
whether it is a signal or a background. We observe
that using a confusion set instead of the full dataset
improves performance.

3. Step 3: Assign a relevance score to each fea-
ture

To each feature fi in the feature space F , we assign
a relevance score sfi , which gauges how much the
feature will improve classification performance.

The relevance score is calculated using the feature
vectors evaluated on the events in the confusion set
X0, together with the classifier output of a reference
label yref :

X =
n⇣

fi1(~x), . . . , fin(~x), fi(~x)
⌘���~x 2 X0

o

Y = {yref(~x)|~x 2 X0}
(2)

The relevance score assigned to each feature fi is:

sfi = A�ne-DisCo(X ,Y). (3)

FIG. 2. Events in a window around the classifier output value
ypred = 0.5 are selected as the confusion set X0 for DisCo-
FFS.

As described in the Introduction, DisCo is short for
distance correlation [35–38], a measure of statistical
dependence that is zero i↵ the random vectors X
and Y are statistically independent, and positive
(and  1) otherwise. Therefore, it is well-suited
to judging whether adding fi to the feature vector
(fi1 , . . . fin) produces a stronger correlation with
the reference label yref or not. Here we are using
the a�ne-invariant version of DisCo [53], which is
invariant under arbitrary linear transformations of
X and Y, in order to make it more robust against
basis reparametrizations in the EFP space. The
multivariate A�ne-DisCo calculation is described
in more detail in Appendix C.

4. Step 4: Add the feature with best relevance
score to the list of known features

We select the feature with the best score and add
it to Fn. Then we proceed back to the first step
to train a network on the updated set of features
Fn+1. The procedure is stopped when the perfor-
mance metric saturates and the final set of features
is returned.

While the above method explicitly describes our
DisCo-based Forward Feature Selection algorithm
(DisCo-FFS), the protocol is general enough to accom-
modate also other iterative feature selection techniques.
In Appendix A, we use the same framework to outline
how the Forward Feature Selection from [30] operates.
This is based on Decision Ordering (DO) for the confu-
sion set, and Average Decision Ordering (ADO) for the
relevance score, and we will refer to it as DO-ADO-FFS
throughout this work.

Truth label or 
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Already selected 
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New feature under 
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classifier that we can; or the reference label could be a
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performing forward feature selection for the purposes of
AI explainability (explaining the pre-trained “black box”
classifier).

In any event, for a set of features, the point is that
the relevance score can be obtained much more quickly
than training a classifier on the features, and the forward
feature selection algorithm can select the feature with the
highest score as the next feature.

The 4 steps involved in our feature selection algorithm
are illustrated in Fig. 1 and explained in the following:

1. Step 1: Train on known features

Train a classifier network on a set of features Fn =
{fi1 , fi2 , . . . fin} using the full training sample of all
events Xall, and obtain the classifier output ypred
for all events in Xall.

For simplicity and best possible performance, we
use a dense neural network (details in Appendix B),
although any other classification algorithm (e.g.
XGBoost, logistic regressor) could be used as well.

2. Step 2: Select the confusion set X0 ⇢ Xall

Instead of calculating the relevance scores using the
full dataset, we choose to instead focus on a sub-
set of the full data X0 ⇢ Xall that we call the
“confusion set”. These are events where we believe
the features in Fn are least e↵ective in separating
signal from background, and where adding a new
feature may have the largest impact. To identify
this subset, we select all events in a window around
ypred = 0.5, as shown in Fig. 2 – these should be the
events where the classifier is most confused about
whether it is a signal or a background. We observe
that using a confusion set instead of the full dataset
improves performance.

3. Step 3: Assign a relevance score to each fea-
ture

To each feature fi in the feature space F , we assign
a relevance score sfi , which gauges how much the
feature will improve classification performance.

The relevance score is calculated using the feature
vectors evaluated on the events in the confusion set
X0, together with the classifier output of a reference
label yref :

X =
n⇣

fi1(~x), . . . , fin(~x), fi(~x)
⌘���~x 2 X0

o

Y = {yref(~x)|~x 2 X0}
(2)

The relevance score assigned to each feature fi is:

sfi = A�ne-DisCo(X ,Y). (3)

FIG. 2. Events in a window around the classifier output value
ypred = 0.5 are selected as the confusion set X0 for DisCo-
FFS.

As described in the Introduction, DisCo is short for
distance correlation [35–38], a measure of statistical
dependence that is zero i↵ the random vectors X
and Y are statistically independent, and positive
(and  1) otherwise. Therefore, it is well-suited
to judging whether adding fi to the feature vector
(fi1 , . . . fin) produces a stronger correlation with
the reference label yref or not. Here we are using
the a�ne-invariant version of DisCo [53], which is
invariant under arbitrary linear transformations of
X and Y, in order to make it more robust against
basis reparametrizations in the EFP space. The
multivariate A�ne-DisCo calculation is described
in more detail in Appendix C.

4. Step 4: Add the feature with best relevance
score to the list of known features

We select the feature with the best score and add
it to Fn. Then we proceed back to the first step
to train a network on the updated set of features
Fn+1. The procedure is stopped when the perfor-
mance metric saturates and the final set of features
is returned.

While the above method explicitly describes our
DisCo-based Forward Feature Selection algorithm
(DisCo-FFS), the protocol is general enough to accom-
modate also other iterative feature selection techniques.
In Appendix A, we use the same framework to outline
how the Forward Feature Selection from [30] operates.
This is based on Decision Ordering (DO) for the confu-
sion set, and Average Decision Ordering (ADO) for the
relevance score, and we will refer to it as DO-ADO-FFS
throughout this work.
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FIG. 1: Overview of a boosted forward feature selection algorithm

4. Step 4: Add the feature with best relevance

score to the list of known features

We select the feature with the best score and up-
date Fknown = [f1, f2, f3, .., fbest score]. Then we
proceed back to the 1st step to train a network on
the updated set of features Fknown. The procedure
is stopped when the performance metric saturates
and the final set Fknown is returned.

While the above method explicitly describes the
DisCo-Forward Feature Selection (DisCo-FFS), the pro-
tocol is general enough to accommodate also other it-
erative feature selection techniques. In appendix VA,
we outline how the DO-ADO Forward Feature Selection
(DO-ADO-FFS) by Faucett et al [7] operates.

III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging referemce data
set [13, 14]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [15], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes

[16], with the ATLAS detector card. FastJet [17] is used
to create fat jets using the anti-kT algorithm [18] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only kine-
matic information, in the form energy-momentum four-
vectors, which are extracted using the Delphes energy-
flow algorithm. No additional tracking information, or
particle information, is included which allows for a fair
comparison amongst di↵erent techniques. Jets with less
than 200 constituents are padded with zero four-vectors.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with Fknown =
[mJ , pT ,mW�candidate], where mJ is the mass of
the jet, pT is the transverse momentum of the jet and
mW�candidate is the mass of the W-candidate in the jet,
calculated as . . ..
We then apply feature selection algorithms to a large

set of Energy Flow Polynomials (EFPs)[8]. EFPs are
functions of energy fractions, and angular separation of
jet constituents. Each polynomial has a one to one cor-
respondence with a graph:
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where pT a is the transverse momentum of ath jet con-
stituent, and the denominator in za is summed over all
jet constituents in a jet J .
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FIG. 4. Performance comparison between DisCo-FFS and DO-ADO-FFS methods, truth-guided and LorentzNet-guided.
Shown in gray is also the random selection baseline. The shaded bands around each curve come from training the NN classifier
ten times on the same set of features (similar to [1]). Overall, DisCo-FFS seems to select more relevant features than DO-ADO-
FFS, resulting in a higher-performing classifier at every step. Interestingly, while DO-ADO-FFS with truth labels actually
performs worse than with LorentzNet (a phenomenon also observed in [30]), no degradation in performance is observed for
DisCo-FFS with truth labels.

significantly worse than the performance using the small
subset of EFPs selected by DisCo-FFS. Clearly, the use
of uninformative features in the training deteriorates the
performance of the network. In principle, it should be
possible to optimize the hyper-parameters to recover the
lost performance, but this is not so straightforward in
practice, given the amount of time and resources it takes
to train a network on all 7k EFPs.4 This emphasizes the
need of doing feature selection.

As a further aside, this result also indicates why an-
other popular feature selection method, which is based
on assigning feature attributions using Shapley values, is
not suitable here. Shapley values assume the existence of
a high-performing classifier trained on a set of features,
and then ranks those features in terms of their estimated
contributions to the classifier outputs. In fact, the orig-
inal Shapley values [43, 44, 47] are very much ill-suited
to the problem at hand – their computational complex-
ity grows exponentially with the number of features, so
in practice can never be computed for more than ⇠ 10
features. Also the features are assumed to be uncorre-
lated, for the computation of Shapley values. With 7k

4This is also why the R30 quoted here does not come with an
error bar from multiple retrainings – a single training was already
prohibitively time consuming for us.

highly correlated features, this is clearly not the right
approach. Later approaches such as SHAP [48] attempt
to overcome the computational complexity issue by ap-
proximating the Shapley values in various ways. SHAP
also used (approximate) Shapley values to unify di↵erent
feature attribution methods [42, 45, 46, 60]. But gen-
erally all these works still assume independence of the
features. This is an area of active research and it is pos-
sible a Shapley-inspired approach will work well on this
problem in the future. Su�ce to say that in our exper-
iments (based on Deep SHAP [46, 48] and the sub-par
DNN trained on 7k EFPs), we obtained results that were
only marginally better than random selection.

E. Ablation studies

To showcase another important benefit of feature se-
lection, we compare the performance of the features
we obtained using DisCo-FFS to ParticleNet and
LorentzNet, on smaller training datasets. We take the
set of features obtained in section III C and train the
same neural network with same hyper-parameters on
5%, 1% and 0.5% of the same training data. While
both LorentzNet and ParticleNet had a superior per-
formance for the full training dataset, our set of fea-
tures outperforms ParticleNet at lower training frac-
tions, and more-or-less matches LorentzNet at 0.5% and
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selection methods
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FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-
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6. c = 3,  = 2, � = 0.5

FIG. 7. Performance vs. iteration for 5 trials of DisCo-FFS (performance is the mean R30 of 10 trainings). We see that the
feature selection is deterministic for the first six EFPs selected (superimposed), and there is a corresponding sharp rise in R30.
Then this is followed by 2 paths (marked path 1 and path 2) in the 7th and 8th iterations. After that, DisCo-FFS finds di↵erent
sets of features to achieve similar performance.

formance (matching that of ParticleNet-lite [14]) with
a selection of just a small number of EFPs (less than
10). We also show how it outperforms the DO-ADO-FFS
method of [30] (which we have attempted to replicate as
closely as possible), consistently achieving higher tagging
performance after each EFP that is selected.

The fact that our method falls short of the most state
of the art deep learning methods (ParT [19], PELI-
CAN [24], and LorentzNet [23]) is interesting. Either our
method is not fully optimal at selecting the features, or
the 7,000+ EFPs we used as the basis of our study do not
capture all the physics underlying top tagging. A possi-
ble follow-up study to further probe this question would
be to supplement the 7,000+ EFPs with additional jet
substructure variables, for instance the subjettiness vari-
ables of [59, 61], jet spectra and morphological features
of [62–64], or Boost Invariant Polynomials [65]. This
observation also raises the possibility that there might
be more meaningful jet substructure variables out there,
beyond those that are presently known, waiting to be
discovered. This is obviously an interesting avenue for
future research.

Beyond simple object tagging, DisCo-FFS might also
be able to shine for tasks — such as building supervised
classifiers for new physics discovery — where calibration
of the algorithm is di�cult and a small number of well-
understood features is preferable. While particle physics

is in an especially good position due to the presence of
well-motivated bases of features (such as the used EFPs)
such decompositions also exists for other domains, e.g.
in the forms of wavelets applied to images (e.g. building
on [66]).

In general, EFPs selected could make for a very
lightweight and performant top tagger. This could have
important applications to triggering [67]. For that, a fast
way to calculate EFPs on FPGAs would be required.
Such will be interesting to explore further.

It would also be potentially illuminating to study the
robustness of the selected EFPs under domain shift. For
example, recently ATLAS released an o�cial top tagging
dataset [68]. One could compare the EFPs selected by
DisCo-FFS on the di↵erent top tagging datasets, and see
how one set of EFPs performs on the other dataset. One
could also imagine training this method on a restricted
set of HLFs (EFPs or otherwise) that are deemed to
be “well-modeled” by simulations. This could help with
the calibration and robustness of taggers developed using
simulation and deployed on data.

Overall, we observe the start of a positive feedback loop
between deep learning method development and physics-
motivated feature discovery. Each one drives the other.
Early top taggers [69] started with jet substructure vari-
ables like N -subjettiness. Then it looked like deep learn-
ing was able to go way beyond HLFs and we would
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III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging landscape data
set [1, 54]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [55], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes
[56], with the ATLAS detector card. FastJet [57] is
used to create jets using the anti-kT algorithm [58] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only
kinematic information, in the form of energy-momentum
four-vectors of all the reconstructed particles in each jet,
which are extracted using the Delphes energy-flow algo-
rithm. No additional tracking information or particle
information is included.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with

Finitial = F3 = {mJ , pT , mW�candidate} (4)

where mJ is the mass of the jet, pT is the transverse
momentum of the jet and mW�candidate is the mass of
the W -candidate in the jet, calculated with a very sim-
ple method: we recluster each fat jet using the exclusive
kT algorithm with R = 0.3 into exactly three subjets.
Then we pick the pair of subjets whose invariant mass
comes closest to mW . This pair of subjets gives us the
W -candidate and their mass is mW�candidate. The dis-
tributions of the initial features are illustrated in Fig. 3.

We then apply feature selection algorithms to a large
set of Energy Flow Polynomials (EFPs)[31]. EFPs are
functions of energy fractions and angular separation of
jet constituents:

z()a =
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where pT a is the transverse momentum of the ath jet
constituent, and the denominator in za is summed over
all jet constituents in a jet J . EFPs have a one-to-one
correspondence with a graph G:
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The original EFPs [31] were introduced as IRC-safe
observables, with  = 1. However in our feature space
we are motivated by [30] to consider other values of 
as well. Following [30],2 we use Energy Flow Polynomi-
als with all combinations of d  7, � = [0.5, 1, 2] and
 = [�1, 0, 0.5, 1, 2], which form a space of 7,320 unique
features.

C. Results

1. Ab initio feature selection using truth labels

First, we consider the ab initio feature selection task,
using the truth labels to guide the algorithms so as to
yield the best-possible classifier.

We apply the truth-guided DisCo-FFS and DO-ADO-
FFS3 to the training and validation set, and use the test
set only for evaluating the performance. (Network archi-
tectures and hyperparameters used in this section are de-
scribed in Appendix B.) The performance metric choosen
for top-tagging is R30 (the QCD rejection factor at 30%
top-tagging e�ciency). It allows a better separation of
di↵erent methods as area under curve (AUC) saturates
and is more indicative of the performance at a potential
working point.

As shown in Fig. 4, the R30 value increases as more fea-
tures are added using the two feature selection methods.
This shows that both DisCo-FFS and DO-ADO-FFS are
selecting useful features. After 9 features the perfor-
mance of the features added using the DisCo method
saturates with R30 ⇡ 1250. We also see that our pro-
posed method outperforms DO-ADO-FFS and achieves
a higher R30 at each step.

Any worthwhile feature selection algorithm should do
better than randomly selecting features. To test this, we
randomly select each number of features 10 times, and
use the average and standard deviation of the R30 as our
“random baseline” shown in Fig. 4. Interestingly we see
that the randomly selecting EFPs can also give better
performance, as we add more and more features, but not
as good as the FFS methods.

2With one exception – we don’t include additional features from
d = 8 with c = 4, as [30] do in their analysis. These features
were initially omitted due to di�culties in their calculation. It was
later verified that their inclusion does not significantly alter the
performance of DisCo-FFS.

3We note that in [30], the DO with truth-labels was referred
to as TO (for “truth-ordering”) and it was pointed out that ADO
with truth-labels reduces to the usual AUC metric.
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FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-
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<latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit>

GNM
<latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit>

. . .
<latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit>G1

<latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>
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Unshared, deep GN stack

Shared, recurrent GN stack

(b)

Figure 4. (a) A GN block (from [13]). An input graph, G = (u, V, E), is processed
and a graph with the same edge structure but di↵erent attributes, G

0 = (u0
, V

0
, E

0),
is returned as output. The component functions are described in Equation 1. (b) GN
blocks can be composed into more complex computational architectures. The top row
shows a sequence of di↵erent GN blocks arranged in series, or depth-wise, fashion. The
bottom row replaces the distinct GN blocks with a shared, recurrent, configuration.

Some key benefits of GNs are that they are generic: if a problem can be expressed

as requiring a graph to be mapped to another graph or some summary output, GNs

are often suitable. They also tend to generalize well to graphs not experienced during

training, because the learning is focused on the edge- and node-level—in fact if the global

block is omitted, the GN is not even aware of the full graph in any of its computations,

as the edge and node blocks take only their respective localities as input. Yet when

multiple GN blocks are arranged in deep or recurrent configurations, as in Figure 4b,

information can be processed and propagated across the graph’s structure, to allow more

General message-passing 
graph block

Das, GK, Shih 2212.00046; Qu, Gouskos 1902.08570; Qu et al 2202.03772; Gong et al  
2201.08187; Shlomi et al 2007.13681;
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Deep Sets

Zaheer et al 1703.06114; Komiske, Metodiev, Thaler 1810.05165

Permutation invariance for a tagger 
is ‘easy’: Use a permutation invariant 
aggregation function


Can extend to generation?
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Figure 1: Equivariant Point Cloud (EPiC) layer structure. The global function � g

and point function �p are learned by neural networks. The � symbol indicates the
aggregation function ⇢p!g with both element-wise summation and average pooling.

the number of points. We find that EPiC-GAN provides fidelity of generated distributions on
par with MP-GAN, yet offers a significant speed-up in generation time and much better scal-
ing to large point cloud multiplicities. Additionally, the global attributes associated with each
EPiC-GAN layer provide an interpretable latent space that can be correlated to known physical
observables.

As a proof-of-principle case study, we apply EPiC-GAN to generate jets trained on the JetNet
benchmark dataset [17]. In comparison to earlier permutation equivariant set-based gener-
ative models [24–26], the EPiC-GAN utilizes a continuously updated global attribute vector
that allows for inter-point communication without the computational overhead of a full graph
model. A model relying on such global attributes works well for modeling particle jets, which
are defined by a number of per-jet (i.e. global) physical observables such as mass and trans-
verse momentum. The fidelity reached on such complex physical distributions suggests that
this model could also perform well for tasks like fast calorimeter simulation.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the EPiC-
GAN architecture and associated loss functions. We present a case study using EPiC-GAN for
generating jets at the LHC in Sec. 3 and draw our conclusions in Sec. 4.

2 Equivariant Point Cloud GAN

In this section, we introduce equivariant point cloud (EPiC) layers, which are the founda-
tion for our generative model. By stacking multiple EPiC layers, we build our generator and
discriminator architectures. To the best of our knowledge, these architectures are a novel con-
tribution to the generative modeling literature, not just in HEP. We implement EPiC-GAN in
Pytorch [27] and the code is available on GitHub.1

2.1 EPiC Layers

Following the notation in Ref. [28], we define a 2-tuple point cloud C = (g , P) as a graph
without edges. The global attributes of the point cloud are represented by g . The set of points
are represented by P = p i=1:N , where p i are the attributes of point i and N is the set cardinality
(in jet physics terms: particle multiplicity).

1https://github.com/uhh-pd-ml/EPiC-GAN

3

EPiC

Equivariant Point Cloud interaction (EPiC) block: 
Similar to deep sets, but with additional global 
information exchange. 


Still permutation equivariant

Buhmann, GK, Thaler 2301.08128;
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Figure 2: Architecture implementation of the EPiC GAN. Both the (a) generator and
(b) discriminator consist of multiple EPiC layers from Fig. 1 as well as (shared) neu-
ral networks for input/output dimensionality expansion/reduction. The � symbol
represents the aggregation function ⇢p!g with both element-wise summation and
average pooling. Though not shown, there are additional residual connections be-
tween EPiC layers described in the text.

5

Can use to build 
generator and 
discriminator blocks 
for classical GAN 
architecture, but  
fully respecting  
permutation symmetry.

Buhmann, GK, Thaler 2301.08128;
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Results

Good fidelity of 
distributions, very fast and 
linear scaling with number 
of particles

Buhmann, GK, Thaler 2301.08128;



Where to go from here?

• Extend to larger point clouds


• Increase fidelity


• GANs work, what about other architectures 
(VAEs, flows, diffusion)?



Finding new physics
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Motivation

• Theoretical and experimental reasons to 
expect new physics beyond the 
Standard Model


• However, so far only negative results in 
direct (model driven) searches


• Two discovery strategies:


• Model-specific


• Model independent


• Machine learning plays a key 
role in both — focus on  
anomaly detection now



Strategies
• Orthogonal strategy to model 

specific searches:


• Discover new physics 
with making minimal assumptions


• Less sensitive to one specific model, broader coverage

ML-assisted global comparison 
• Systematically compare simulation to 

recorded data, look for differences

• Con: Rely on imperfect simulation, 

maximally background model 
dependent


• Pro: Sensitive to all types of 
anomalies


Resonant anomaly detection /  
Enhanced bump hunts 
• Estimate background in-situ from 

data

• Con: Need to make assumptions 

about signal shape

• Pro: Data-driven on background 

model

41GK et al 2101.08320; Arrested et al 2105.14027; 
CMS 2010.02984; ATLAS 1807.07447



Resonant Anomaly Detection

÷
background
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+ additional dimensions

( in general correlated with m)

43

Resonant Anomaly Detection



n

#⑧
*

¥
m

>

look for a smell signal,
localised in M

,
and different

shape in other features

Need to find a feature 
in which signal is resonant 
and background smooth.


No assumptions in other  
features.


Further generalisation as 
open issue.
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Resonant Anomaly Detection



^

RW - Rc

¥0#Signal

>
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E-nh.no#p-hustiUseML
to build classifier RK) so that

selecting RH -c enhances signal
fraction

No worry, will come back 
to HOW 
this is done is a moment
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Resonant Anomaly Detection
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Resonant Anomaly Detection



Autoencoders

X’
Encoder 

fɸ(x)
Decoder 

gθ(x’)
Compressed 
representation 
Latent space

Autoencoders:

Learn-compression/
decompression on signal free 
sample and use loss as 
anomaly score

L(x) = ||x� g✓(f�(x))||2
a(x) = L(x)

Heimel, GK, et al 1808.08979; Farina et al 1808.08992; …
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m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Figure 1. Feynman diagram for signals of R&D dataset and Black Box 1.

Setting R&D BB1 BB3

Tune:pp 14 3 10

PDF:pSet 13 12 5

TimeShower:alphaSvalue 0.1365 0.118 0.16

SpaceShower:alphaSvalue 0.1365 0.118 0.16

TimeShower:renormMultFac 1 0.5 2

SpaceShower:renormMultFac 1 0.5 2

TimeShower:factorMultFac 1 1.5 0.5

SpaceShower:factorMultFac 1 1.5 0.5

TimeShower:pTmaxMatch 1 2 1

SpaceShower:pTmaxMatch 0 2 1

Table 1. Pythia settings for the di↵erent datasets. For R&D the settings were the Pythia defaults
while for BB1 and BB3 they were modified. BB2 is not shown here because it was produced using
Herwig++ with default settings.

2.2 Black Box 1

This box contained the same signal topology as the R&D dataset (see Fig. 1) but with

masses mZ0 = 3.823 TeV, mX = 732 GeV and mY = 378 GeV. A total of 834 signal

events were included (out of a total of 1M events in all). This number was chosen so

that the approximate local significance inclusively is not significant. In order to emulate

reality, the background events in Black Box 1 are di↵erent to the ones from the R&D

dataset. The background still uses the same generators as for the R&D dataset, but

a number of Pythia and Delphes settings were changed from their defaults. For the
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 � significance values.

• Both Cathode and Anode need to learn the
smoothly varying background. However, Anode
must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” den-
sity estimator trained on the SR). This results in
a degradation of the Anode anomaly detection
method and worse performance than Cathode and
CWoLa Hunting.

• As for how Cathode is able to outperform CWoLa
Hunting, there are two reasons. Firstly, there is a
correlation at the percent level between the cho-

sen features in x within the original LHCO R&D
dataset with the search variable (mJJ). Since
CWoLa Hunting is very sensitive to correlations,
this small correlation is su�cient to degrade the
performance compared to that of Cathode. De-
tails of the correlation study can be found in
Sec. IVC. Secondly, CWoLa Hunting is limited to
only using the events within the sidebands to train
the classifier (approximately 65,000 events), while
Cathode is able to oversample events from the
background model (here 200,000 events are used).
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 � significance values.

• Both Cathode and Anode need to learn the
smoothly varying background. However, Anode
must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” den-
sity estimator trained on the SR). This results in
a degradation of the Anode anomaly detection
method and worse performance than Cathode and
CWoLa Hunting.

• As for how Cathode is able to outperform CWoLa
Hunting, there are two reasons. Firstly, there is a
correlation at the percent level between the cho-

sen features in x within the original LHCO R&D
dataset with the search variable (mJJ). Since
CWoLa Hunting is very sensitive to correlations,
this small correlation is su�cient to degrade the
performance compared to that of Cathode. De-
tails of the correlation study can be found in
Sec. IVC. Secondly, CWoLa Hunting is limited to
only using the events within the sidebands to train
the classifier (approximately 65,000 events), while
Cathode is able to oversample events from the
background model (here 200,000 events are used).

Cut on output to 
enhance possible anomalies

• Most sensitive current resonant 
anomaly detection technique


• Stability improvement: coming 
next


• Currently preparing application 
on CMS data
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signal region, it’s extrapolation 
is not well-defined


• Potential problem for bump-
hunt if it shapes distributions
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FIG. 2. Flow chart describing the di↵erent steps of the proposed LaCathode method. First, one maps the data in the SR
(denoted by the vertical gray band) to the latent space (I), and trains a classifier R(z) to distinguish data from the background
which follows the normal distribution (II). Then one maps all the data (in both SR and SB) to the latent space (III) and passes
this through R(z), selecting only those events above some threshold R(z) > Rc (IV). Finally, one plots the m distribution of
the surviving events, and looks for a bump in the SR that would signify the presence of new physics (V).

FIG. 3. Uniform distribution of m, with signal region indi-
cated in the darker band.

The features x will be sampled from N (µ = c⇥m,� =
1)2. The parameter c controls the amount of correlation
between x and m. We will consider c 2 {0.001, 0.1}.

We generate two such sets, one “data”, one “sample”.
Of the 1 million events generated in each set, half are re-
served for training, 1/6 for validation, and the remaining
events are used to evaluate the trained classifier.

A binary classifier is trained in the SR to distinguish
“data” from “samples” in x space.4 We find the cut

4The classifier is implemented using Keras [15] with a Tensor-

values R(x) > Rc that keep only the 1% most anomalous
events in the SR.
Although only trained in the SR, data on the entire

interval m 2 [�10, 10] are passed through the classifier
and subject to the cut R(x) > Rc. If the classifier is not
sculpting, it should return an m distribution that looks
uniform.
However, in the correlated case this is not necessar-

ily what happens. Shown in the right column of Fig. 4
are the m distributions after cuts on the classifier, for
di↵erent values of the correlation c and for three inde-
pendently trained classifiers on the same toy dataset. If
the correlation is very small (c = 0.001), no sculpting
is seen. Meanwhile, if the correlation is su�ciently large
(c = 0.1), we see a severe sculpting in m. In this case, the
x distributions in the SB can be OOD relative to those
in the SR, as seen in the left column of Fig. 4. This can
lead to unpredictable e↵ects on the m distribution after
a cut on R(x) > Rc.
Next we turn to the latent space, which will be an il-

lustration of the LaCathode concept using this analytic
toy model. Here we assume a perfect normalizing flow,

Flow [16] backend. It has three hidden layers with 64 nodes each
and uses the optimizer Adam [17] with a learning rate of 10�3.
Binary cross entropy is used for the loss function. It is trained for
50 epochs with a batch size of 128. The predictions of the 5 epochs
with the lowest validation loss are ensembled to form an average
prediction.
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LaCATHODE

• If R(x) is only calculated in 
signal region, it’s extrapolation 
is not well-defined


• Potential problem for bump-
hunt if it shapes distributions


• Instead, train classifier in 
latent space to achieve  
flat distributions
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


• However, still can be sensitive to choice of input features

• Here shown: idealised anomaly detector (perfect DE)


No noisy features Two noisy features
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Comments on anomaly 
detection

• As CATHODE approximates a likelihood ratio, it should be robust 
compared to methods that only use pBackground (e.g. autoencoders)


• However, still can be sensitive to choice of input features


• Need also consider 

• Higher dimensional input data

• Stable training

• Holistic ‘end-to-end’ setups
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Conclusions
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• Large potential and wide range of 
applications of machine learning in  
particle physics 

• Key issue of including physics knowledge in 
ML training:  
- Either by starting from physics 
observables and constructing efficient 
selections  
- or by building architectures that are 
invariant/equivariant under relevant 
symmetries 

• Recent progress in anomaly detection —  
but scaling stable techniques to more 
complex data representations still unsolved

Thank you!
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12

powerful than that – it can also measure statistical de-
pendence of multivariate distributions, a powerful prop-
erty that enables the forward feature selection algorithm
described in this work.

For our case, ~X = ytruth is a 1-D vector, and ~Y =
(fi1 , fi2 , . . . , fin) is an n-dimensional feature vector. The
population value of squared distance covariance of ~X and
~Y is given by

dCov2( ~X, ~Y ) := E[k ~X � ~X 0k k~Y � ~Y 0k]+
E[k ~X � ~X 0k] E[k~Y � ~Y 0k]
� 2 E[k ~X � ~X 0k k~Y � ~Y 00k].

(C1)

Distance correlation is given by

dCor2( ~X, ~Y ) =
dCov2( ~X, ~Y )q

dCov2( ~X, ~X) dCov2(~Y , ~Y )
, (C2)

which is normalized between 0 and 1.

Finally, using the covariance matrices ⌃X , ⌃Y , a�ne-
invariant distance correlation is simply

dCor
2
( ~X, ~Y ) = dCor2(⌃�1/2

X
~X, ⌃�1/2

Y
~Y ). (C3)

In this work, we use the dcor package [70] for the com-
putation of distance correlation and a�ne-invariant dis-
tance correlation.
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powerful than that – it can also measure statistical de-
pendence of multivariate distributions, a powerful prop-
erty that enables the forward feature selection algorithm
described in this work.

For our case, ~X = ytruth is a 1-D vector, and ~Y =
(fi1 , fi2 , . . . , fin) is an n-dimensional feature vector. The
population value of squared distance covariance of ~X and
~Y is given by

dCov2( ~X, ~Y ) := E[k ~X � ~X 0k k~Y � ~Y 0k]+
E[k ~X � ~X 0k] E[k~Y � ~Y 0k]
� 2 E[k ~X � ~X 0k k~Y � ~Y 00k].

(C1)

Distance correlation is given by

dCor2( ~X, ~Y ) =
dCov2( ~X, ~Y )q

dCov2( ~X, ~X) dCov2(~Y , ~Y )
, (C2)

which is normalized between 0 and 1.

Finally, using the covariance matrices ⌃X , ⌃Y , a�ne-
invariant distance correlation is simply

dCor
2
( ~X, ~Y ) = dCor2(⌃�1/2

X
~X, ⌃�1/2

Y
~Y ). (C3)

In this work, we use the dcor package [70] for the com-
putation of distance correlation and a�ne-invariant dis-
tance correlation.
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