A Review of Machine Learning
Applications on Jet Tagging

Konkuk University
Daohan Wang
2023.2.13

Brief motivation of ML in Jet Tagging

¢/
{A
Y
)
collision point /

<
\4
proton beams
An

C collision event H jet reconstructinn)—»(jet tagging

\¢
k z Jet initiated by differ

exhibit different char

outgoing particles
7Y/
A\t

A

Distinguishing boosted heavy
particle jets from QCD initiated
quark/gluon jet

(W/H/Z/top jets, photon-jets

Jet
Tagging

How to represent a jet
How to analyze the representation

A jet is a spray of particles, produced by
the hadronization of a quark/gluon or originate

[Image-based
representation

Convolutional Neural Network

ent particles

acteristics. ~ Simple Dense Network

Particle-based
representation

)

Recurrent Neural Network

L 1D Convolutional Neural Network

Tree-based
representation

— Recursive Neural Network

— Deep Set framework

ParticleNet
Point cloud ' ABCNet
representation

LorentzNet

Point Cloud Transformer

from the decay of high-momenta heavy particles.

Transformer {
- Particle Transformer

1/30

Simulation Details

ssoron :>-:>
Generate ‘ Simulation —

l}{ladti@[m -

v \ v

We can use Deep learning to analyze low-level LHC data
without constructing high-level observables !

Propagating particles

\ 4

Create tracks of
electrons, muons and
charged hadrons

|

Pass through ECAL
and HCAL to create
eflow objects

|

Clustering eflow
objects

2/30

Introduction to Jet-Image

The image-based representation is based on the reconstruction of jets
with calorimeters. A calorimeter measures the energy deposition of a jet
on fine-grained spatial cells. Treating the energy deposition on each cell as
the pixel intensity naturally creates an image for a jet.

When jets are formed by particles reconstructed with the full detector information
a jet image can be constructed by mapping each particle onto the corresponding
calorimeter cell and sum up the energy if more than one particle is mapped to the same cell.

We can construct different channels to characterize more features.
For example, based on energy flow algorithm in Delphes, we can construct 3 channels for
EflowPhoton, EflowNeutralHadron and EflowTracks, respectively.

3/30

Introduction to CNN

Convolution

NS 7 Max Pooling
\If‘ :\}\{ T .;.,.\‘,",',,.‘:
Fully Connected
Convolution

Flattened

Max Pooling
J

Can
repeat
many
times

Advantages:
Fewer parameters

Shift, scale and
distortion invariance

Local weight sharing

hierarchical channels

4/30

CNN Architecture

Conv 5X5
kernel

Conv 5X5
kernel

=

Maxpool2X2 Conv 5X5
Attention kernel kernel 2106.07018

S o

* 5%

Adam optimizer
with learning rate
0.001

Input layer Feature maps

Feature maps Feature maps Feature maps Feature maps
4X40X40 32X 40X 40 32X40X40 32X40X40 32X20X20 32X20X20 Photon-jet label: 0
Single photon label: 1
Maxpool2X2 Conv 5X5 Maxpool2X2 o\ i Fully Fully Fully QCD-jet label:2
kernel kernel kernel connected connected\ connected ®
‘ >) * ‘ “, “"- : .
s g \ I -“
]
Feature maps Feature maps Feature maps Hidden Hidden Hidden Outputs
32X10X10 32X10X10 32X5X5 units units e 3
800 128 32
Shift
Preprocessing Rotation The CNN based on jet images achieve sizable improvement in

performance compared to traditional multivariate methods

Normalization

5/30

Average Jet Images

0

diphoton-jet

10 20 30
n pixels

40

— o

(a) diphoton-jet

le-05

,_.
d)/GeV

le-02

X
le-04 £
le-05

¢ pixels ¢ pixels

¢ pixels

:'.: C
’ '

single photon

10 20 30
n pixels

(b) single photon

¢ pixels ¢ pixels ¢ pixels

¢ pixels

0

QCD-jet

10 20 30 40

10 20 30 40
n pixels

(c) QCD-jet

ee———_ I ————"C W= ——]

Two shortcomings of image-based
representation for jet tagging:

1, Treating jets as images leads to a very
sparse representation.

Without considering the pileup effects, a
typical jet has O(10) to O(100) particles, while
a jet image typically needs O(1000) pixels
(eg.32%x32) in order to fully contain the jet,
more then 90% of the pixels are blank.

2, How to incorporate additional information
of the particles is unclear.

As it involves combining nonadditive

quantities (e.g., the particle type)
of multiple particles entering the same cell.

6/30

Introduction to Particle-based Representation

We organize a jet’s constituent particles into an ordered structure (sequence or tree) based on the p7.

Dense Network

We start with N pr-sorted particles per jet, the arguably simplest deep network architecture is a
dense network taking all (pr, 1, ¢) information as a fixed set. We again improve the training

through physics-motivated pre-processing.

hidden layer 1 hidden layer 2 hidden layer 3

- VY
= . =
&= = RS output layer
\)_
AE
3
— o
: :
e
2 77 =
= Y S \
B U/

7/30

Introduction to Particle-based Representation

Input signal
1D

Convolution

iD
Convolution

Output

‘

P-CNN

The particle-level convolutional neural network (P-CNN) is a customized 1-dimensional CNN for jet
tagging. Each input jet is represented as a sequence of constituents with a fixed length of N,
organized in descending order of pr. For each constituent, several input features are computed
from the 4-momenta of the constituent and used as inputs to the network. The P-CNN is similar to
CNN, but only uses a 1-dimensional convolution instead of 2-dimensional convolutions.

8/30

Introduction to Particle-based Representation

Two shortcomings of particle-based representation for jet tagging:
1, The jet length are variable.

As each jet may contain a different number of particles.

2, The particles are needed to be sorted in some way.

The constituent particles in a jet have no intrinsic order;

thus, the manually imposed order may turn out to be suboptimal
and impair the performance.

9/30

Introduction to Particle Cloud

We consider a jet as an unordered set of its constituent particles.

more natural !

[]

Deep Sets
Framework

IRC-safe Energy Flow network

IRC-not-safe Particle Flow network

ParticleNet

Typical
Architectures ABCNet

LorentzNet

Transformer 10/30

Introduction to Deep Set framework

The Deep Sets framework was adapted and specialized to particle physics in 1810.05165

The Deep Sets framework for point clouds demonstrates how permutation-invariant functions
of variable-length inputs can be parametrized in a fully general way and it enables a natural
visualization of the learned latent space, providing insights as to what exactly the NN is learning.

Observable Decomposition. An observable O can be approximated arbitrarily well as:

M
O({p1,...,pm}) = F <Z ¢(P¢)> ; (1.1)
i=1
where ® : R — RE is a per-particle mapping and F : R — R is a continuous function.

IRC safety corresponds to robustness of the observable under collinear
splittings of a particle or additions of soft particles.

IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated
arbitrarily well as:

M
zi=pri/d;prj O{p,....,pm}) =F (Z Ziq)(ﬁi))) (1.2)
i=1
where z; s the energy (or pr) and p; the angular information of particle i.
M M
EFN: F (Z zicp(pi)) , PFN: F (Z @(pi)>
i=1 i=1

Permutation-invariant & Variable lengths

11/30

Introduction to Deep Set framework

Many common observables are naturally constructed by simple choices
of ® and F. Furthermore, ® and F can be parametrized by NN layers,
capable of learning essentially any function, in order to explore more

complicated observables.

Latent space M
O({p1,...,pm}) = F (Z <I><pz->) ,
i=1

where ® : R? — R is a per-particle mapping and F' : R¢ — Y is a continuous function.

/ Each component of the particle mapping is a filter

Particle features
Summing @(p;) over particles induces a latent description

of entire jet, which is mapped by F to the value of observable.

12/30

Network Implementation

M
O ({pi}il,) =F (Z z¢¢(ﬁ¢)>

=1

\/
/‘?w,., e
? W ’N ; ’l\
\ ‘.’ ’ i
." é ‘\‘ ' 4\\\\ t”. (:DB (93 .‘4: ‘2;’: ?\l I‘ '\' l'! \‘.
"/ ‘(" .‘\0,. q)4 (94 ./0/"4 "‘ 'V “

/ \

/
\ PID .’\

(a) (b)

PFN-ID

Figure 4. The particular dense networks used here to parametrize (a) the per-particle mapping
® and (b) the function F, shown for the case of a latent space of dimension ¢ = 8. For the
EFN, the latent observable is O, = ", 2; ®,(y;, ¢;). For the PFN family, the latent observable is
Oa =Y; ®a(¥s, ¢i, 2, PID;), with different levels of particle-ID (PID) information. The output of
F is a softmaxed signal (S) versus background (B) discriminant.

PrT,i

Preprocessing Pri = Spry YT Vi Vi b =P — ¢;
j PT,
13/30

Introduction to ParticleNet (DGCNN) 1902.08570

Point cloud Graph

Irregular Distribution

Object of convolution m——) [

] Points Vertices

Connections between

Permutation Invariant : .
Edges each point and its k nearest
neighboring points
/ E Similar t | luti t
X, = |:| h X: x Imiiar to regulagconvolution operates
The EdgeConv parameters ! j=1 ®(b ll) on square patchgé of images.

are shared for all points ! ,
RFxRF - RF

Local Patches

Advantages:
Easily stacked. A deep network can be built with many EdgeConv operations
to learn features of point cloud hierarchically.

The graph describing the point clouds are dynamically updated
to reflect the changes in the edges, i.e., the neighbors of each point.

14/30

Introduction to ParticleNet (DGCNN)

(

o Gl

G o)

Based on
= = EdgeConv Block EdgeConv Block
G‘NNIndlcas n— (l) Space| k=16,C=(64,64,64) k=7, C=(32 32, 32)
Linear I
EdgeConv Block
[BatchNorm Based on k=16, C = (128, 128, 128) ‘ EdgeConv Block }
v k=7, C = (64, 64, 64)
T latent space™ ——]
l EdgeConv Block l
Linear k =16, C = (256, 256, 256) { Global Average Pooling }
| BatchNorm ¥ k l
12 5
FelU Global Average Pooling }
| 17 ‘ Fully Connected ‘
Linear Fully Connected 128, ReL.U, Dropout = 0.1
256, ReLU, Dropout = 0.1 l
| BatchNorm ¥
12
ReLU Fully Connected ‘ EUly Cc:oznnected ‘
! 2
Aggregation] v l
‘ Softmax ‘ ‘ Softmax ‘
ReLU
l (a) (b)

FIG. 2. The architectures of the (a) ParticleNet and the

FIG. 1. The structure of the EdgeConv block. (b) ParticleNet-Lite networks.

The “edge features” are constructed from the “features” input using the indices of k nearest
neighboring particles. The EdgeConv operation is implemented as a 3-layer MLP.

After the EdgeConv blocks, a channel wise global average pooling operation is applied to
aggregate the learned features over all particles in the cloud.

15/30

Introduction to ABCNet 2001.05311

The attention-based cloud net (ABCNet) treats each collider event as an
unordered set of points that defines a point cloud. To enhance the extraction
of local information, an attention mechanism is used. The main difference
between ABCNet and ParticleNet is that ABCNet takes advantage of attention
mechanisms to enhance the local feature extraction, allowing for a more
compact and efficient architecture. To capture the global information, direct
connections for global input features can be directly added.

Key part: GAPLayer (Graph Attention Pooling Layer)

The point cloud is first represented as a graph with vertices represented by the points themselves.
The edges are constructed by connecting the points to their k-nearest neighbors, while the edge
features, y;; = (x; — x;;), are taken as the difference between features of each point x; and

its k-neighbors x;;.

16/30

A GAPLayer is constructed by first encoding each point and edge to a higher-level feature space of
dimension F using a single-layer neural network (NN), with learnable parameters 8, in the following form:

Point Feature :p;

h(wzaezaF)
Edge Feature yz‘j = h(yij, ez’j, F) yij = (xi - xij)

Attention coefficient ¢;; = LeakyRelu(h(x}, 0;, 1) + h(y;;,0;;,1))

1) V1) YK

A single attention feature for each pointis Z; = Relu Zcijygj
J

The outputs of each GAPLayer consist of attention features (X;) and graph
features (yl-'j). The graph features are further aggregated in the form:

yig = maz(yi;)

17/30

Input cloud Global features

(Nx8) (Nx2)
AR = \/An? + Ag? ((;kA: 1'3"’:'1312)} Fully connected {16}
Attention features Graph features

!

Fully connected {128}

oncatenati

Fully connected {128}
Distances in the \ \

transformed GAP layer {64}
feature space k=10,H=2)

/ \ Aggregation —
Attention features Graph features /

1 —_—‘_/v
Fully connected {128}
l

Fully connected {128}

Fully connected {128}
I\veragel pooling
Fully connlected {128}
Dropo£t {0.9}
Fully connlected {256}
Dropo£t {0.6}
Fully conrllected {2}
Softnfax {2

Fig. 1. ABCNet architecture used for quark-gluon tagging. Fully connected layer and encoding node sizes are denoted inside
“{}”. For each GAPLayer, the number of k-nearest neighbours (k) and heads (H) are given.

Input features: An, A¢, log pr, log E, log ;f_T’ log EE, AR, PID
Tj J
Global features: m;, pr;

18/30

Introduction to LorentzNet 2201.08187

LorentzNet, a new symmetry-preserving deep learning model for jet tagging. The
message passing of LorentzNet relies on an efficient Minkowski dot product attention.

Preprocessing cannot achieve full invariance to arbitrary Lorentz transformations.

LorentzNet directly scalarizes the input 4-vectors to realize Lorentz symmetry.

Specifically, they design Minkowski dot product attention, which aggregates the 4-vectors with
weights learned from Lorentz-invariant geometric quantities under the Minkowski metric.

They regard the constituent particles as a point cloud, which is an unordered,
permutation invariant set of particles V = (v4,...,vy) € RV**

Vector Vi = (Ezap_fzmpgz,apé)
Input Scalar si = (81,85, * , Sq)
Graph G = (V, E) where V is the set of nodes and F is the set of edges.

19/30

Let @ be the Lorentz transformation, the Lorentz equivariance of ¢(-) means:

$(Qu), for ¢(v) € RY; (2.2)
$(v) = p(Qu), for ¢(v) € R. (2.3)

O

=

N
I

The construction of the LorentzNet is based on the following universal
approximation theorem for the Lorentz group equivariant continuous function.

Proposition 3.1. [6/] A continuous function ¢ : (RVN>*4) — R* is Lorentz-equivariant if

and only if

N
¢(U1> V2, >UN) - Zgi(<v’i? ”ﬁ%‘:l)”ia (31)

i=1

where g; are continuous Lorentz-invariant scalar functions, and (-,-) is the Minkowski inner

product.

20/30

probatbility

Softmax)

f

f

Dropout]

e —

)
Average Pooling h* = Z hL
T h* zE[N
LGEB
I pL-1 T xL-1
LGEB XL—-1

h° x°
Embedding
S MLP (] Sum Pooling @ Minkowski Norm & - '

Inner Product T
Scalars 4-momentum

Lorentz Group Equivariant Block (LGEB) LorentzNet

Figure 1. (left): the structure of the Lorentz Group Equivariant Block (LGEB). (right): the
network architecture of the LorentzNet.

The inputs include the PID, mass and the 4-momenta of each particles.

They use h! = (hi, h, ..., hk) to denote the node embedding scalars and x! = (x4, x%, ..., x§) to
denote the coordinate embedding vectors in the I-th LGEB layer.

Edge message: mi; = g (bl b, w(llal — oh1), w((ah,2})) () = sgn() log(]-|+1)

Decoding] Two fully connected layers

Minkowski dot product attention: 24! =gl ¢ 3 ¢,(ml) - o h§+1:h§+¢h() wumﬁj) wi; = ¢m(mij) € [0,1],

JE[N] JE[N]

bx) Pn, Do, O are all scalar functions modeled by NN (linear layers).

The I-th message passing step on the graph can be described as

mitt = Y My(hi, b} ei)
JEN(3)

h’£+1 = Ul(h£7 mé_H);

21/30

Introduction to Transformer

Output

Probabilities

-
Add & Norm
Feed
Forward
e | \ l Add & Norm z
AL S Multi-Head
Feed Attention
Forward D) Nx
 W—
Nix Add & Norm
/->| Add & Norm | e
Multi-Head Multi-Head
Attention Attention
1t 1t
G J —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Encocer Decocer

The original Transformer as well as its
variants have refreshed the performance
records in various tasks, from NLP to CV.

Inputs encoding + Positional encoding

Self-Attention Layers

Query, Key and Value vectors

Matching Q and K

. <Qﬁ>
Attentlon(Q, K, V) = softmax \%
Vi

SA LAYER

KEY (daxN)
INPUT — ConviD

ConviD
Il
)
8
|
<
Z

QUERY (Nxda)

VALUE (Nxdou)

Matrix multiplication

l Matrix subtraction

Matrix addition

22/30

Weighted sum of V and attention weights

Introduction to Point Cloud Transformer 2102.05073

Point Cloud Transformer incorporates the advantages of the Transformer architecture to an unordered
set of particles resulting from collision events, which means that the Transformer structure has to be
modified to define a self-attention operation that is invariant to permutations of the inputs.

INPUT DATASET
(Nxdln)
v

FEATURE EXTRACTOR ; N xdj, N xdou
(Nxdou) Fin € R m— F. € R t

v
SA LAYERS Provide the relationship between all particles

(Nxdout) in the set through attention weights.
v
CONCATENATION
./
ConviD
v
Average pooling
v

FULLY CONNECTED

v
OUTPUT

(Ncategories)

Multiple SA layers can be stacked to achieve different levels of abstraction

To complete the general architecture, the SA layers are combined through a simple
concatenation over the feature dimension, followed by a mean aggregation,
resulting in the overall means of each feature across all the particles.

23/30

Introduction to Point Cloud Transformer

FEATURE EXTRACTOR
SPCT PCT (2x)
INPUT INPUT
! v
ConviD EdgeConv Capture Local
! ¥ Information
Conv2D
ConviD '
Conv2D
v
Conv2D
Average pooling
2
OUTPUT OUTPUT

EdgeConv uses a k-nearest neighbors
approach to define a vicinity for
each point in the point cloud.

1st EdgeConv: AR

Off-set Attention: F;, — F,
results in a superior
classification performance

SA LAYER

KEY (daxN)
INPUT —|—— ConviD

a [a)
8 (NxN) 8
QUERY (Nxda) VALUE (Nxdou)
! Matrix multiplication
> ConviD °
l Matrix subtraction
OUTPUT Matrix addition

The output of the feature extractor F, is used as the input of the first SA layer.

Attention weights are created by matching Q and K through matrix multiplication.
These attention weights, after normalization, represent the weighted importance
between each pair of particles. The self-attention is then the result of the
weighted elements of V, defined as the result of the matrix multiplication
between the attention weights and the value matrix.

Q7 K) V = Fe°(Wq7 Wk7 WV)
Q,K € R¥xda y ¢ RV xdout
A = Softmax(Q.K")/N,A € RV*V
Fso = A-V,Fy, € RV*dow
> > 24/30

Introduction to Particle Transformer 2202.03772

Particle Transformer: Incorporating pairwise interactions in the attention mechanism

x? € RN xd L blocks Class token
(Cn)
Particle

Class

-_éo Particle Particle Atention
Particles | 3 Attention Attention fp = ======= Attention Block
'E Block Block L-1 Block 0¢
&) 7y K
@‘
s| U
Interactions —>» § -------- —_— The same U is used for all the
é U € RVxNxd' (a) Particle Transformer particle attention blocks.

Particles form an array of (N, C), each particle has C features.
Interactions form an array of (N, N, C'), each pair of particles has C' features.

Permutation Invariant === No ad-hoc positional encodings

Interactions

- Inm?

- [nA
" A=1+/(Ya—)2 + (da — $b)?,
Inky kr = min(pr,q, p1,p)A,
= min(pT,aapT,b)/(pT,a + pT,b)a
Inz 5 5 5
m* = (Eq + Eb)* — ||Pa + Pbl|*,

25/30

Introduction to Particle Transformer

Key part of particle transformer

Multi-head Attentipn

[P-MHA

(MatMul

Matrix Multiply

shortcut

shortcut

(b) Particle Attention Block

P-MHA(Q, K, V) = SoftMax(QKT /\/dy + U)V,

LTyerNorm

They take U as the

attention mask matrix

GELU: Gaussian Error Linear Unit

GELU (x) ~ 0.5x(1 + tanh(y/2/n(x + 0.044715x"))) ~ x - sigmoid(1.702x)

Xclass

®

Xclass

shortcut

Here they also compute the
attention between a global
class token x ;455 and all
the particles.

(c) Class Attention Block
Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

Q= quclass + bqy

V = Wyz+ by,

where Z = [T, X¥] is the concatenation of the class token

Nxd, Scale: d;, = d; embedding dimension
Q€ R k 1
Ke RNxds Qi=QW2 K, = KWK, V,=VvW}, i=1,---,8
head; = Attention(Q;, K;, V;),
Ve RNXd; MultiHead(Q, K, V') = Concat(head, - - -, headg) W©
block, xZ.
ue RNV*N Wesetd, =d, = d,/h

and the particle embedding after the last particle attention

26/30

Typical evaluation metrics for performance

Accuracy
Perfect poc
classifier curve
AUC (Area under ROC curve) 10e

— 1 o .
Background rejection (E—) at a certain signal efficiency €,
b

. % , \
Top Tagging Acc AUC 1/ep (es=0.5) 1/ep (es =0.3) 2 ot "
ResNeXt-50 [17] 0.936 0.9837 30245 1147458 g 05 N Horse
P-CNN [17] 0.930 0.9803 20144 759424 S oG
PFN [33] - 09819 24743 888+17 = S
ParticleNet-Lite [17] 0.937 0.9844 32545 1262449 /0 7®
ParticleNet [I7] 0.940 0.9858 397+7 1615+93 0.0 ¥
JEDI-net [21] 0.9263 0.9786 - 590.4 0.0 0.5 1.0
JEDI-net with 50 [21] 0.9300 0.9807 ; T74.6 False positive rate
SPCT 0.928 0.9799 201+9 725454
PCT 0.940 0.9855 39247 1533+101 TPATN
LorentzNet 0.942 0.9868 498+18 2195+173 ACC=——"
Gluon/Quark
Discrimination Acc AUC 1/eg (es =0.5) 1/ep (s =0.3) c _rp
ResNeXt-50 [17] 0.821 0.9060 30.9 80.8 STp
P-CNN [17] 0.827 0.9002 34.7 91.0
PFN [33] - 0.9005 34.740.4 : EB:ﬂ
ParticleNet-Lite [17] 0.835 0.9079 37.1 94.5 P
ParticleNet [17] 0.840 0.9116 39.8+0.2 98.6+1.3
ABCNet [18] 0.840 0.9126 42.6+0.4 118.4+1.5
SPCT 0.815 0.8910 31.640.3 93.0+1.2 Taken from 2102.05073
PCT 0.841 0.9140 43.2+0.7 118.042.2
LorentzNet 0.844 0.9156 42.4+0.4 110.2+1.3
ABCNet 0.840 0.9126 42.6+0.4 118.4+1.5

27/30

Possible Improvement

Dual Attention Vision Transformer 2204.03645

Spatial tokens: Particle numbers (Different particles) Local

Self-Attention
Channel tokens: Feature numbers (Different features) Global
OCNNGON NGO ,3)
il 7.5 Y 75 Y 7.5 A Ry 2 &
O e ey S keiaton 4
y S &v“ .5) é\@‘\
spatial dimension spatial dimension
(a) Spatial Window Multihead Self-attention (b) Channel Group Self-attention
. | Proj:cﬁon | N With spatial tokens, the spatial

dimension defines the token
scope, and the channel
dimension defines the token
feature dimension.

: >
Softmax " CyX P

e CyX €

[Q]

AP APXCy 4mCXP

With channel tokens, the channel

,___________________
- e e e e e =

N,x I X C,x P d i !
Transpose & Reshape dimension defines the token scope,
[Projection | and the spatial dimension defines
the token feature dimension.
1
\ PxC e

28/30

Future Outlook

1, Point Cloud based representation and Transformer show excellent performance.
We can explore more novel methods for particle embedding and self attentions
that improve the classification performance and alleviate the computational cost.

2, Point Cloud based representation can be used for other interesting physics problems
such as pileup subtraction, jet grooming and jet energy calibration.

3, Based on the Point Cloud representation and EFN/PFN, we can explore different
variant architectures and try to obtain a natural visualization of the learned latentspace,

providing insights as to what exactly the NN is learning.

4, We can try to incorporate more priors or constraints from physics principles in
the architecture designs.

5, How to evaluate the statistical uncertainties of deep learning in jet tagging?

29/30

Thanks for your attention

30/30

