Fast and Faithful (Calorimeter) Simulations with Normalizing Flows

— Al and Quantum Information Applications in Fundamental Physics, Konjiam, South Korea —

Claudius Krause

Institute for Theoretical Physics, University of Heidelberg
(and Rutgers, The State University of New Jersey)

February 14, 2023

72 | B RUTGERS

Zukunft. Seit 1386. UNIVERSITY | NEW BRUNSWICK

Based on
[2106.05285, 2110.11377, 2210.14245, 2212.06172] and lots [in preparation]

In collaboration with

David Shih, lan Pang, Matt Buckley, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Imahn Shekhzadeh, Florian Ernst,
Luigi Favaro, Tilman Plehn, Theo Heimel, Ramon Winterhalder, Anja Butter, Joshua Isaacson, Fabio Maltoni, Olivier Mattelaer

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 1/53

We will have a lot more data in the near future.

 Peak luminosity —Integrated luminosity
6.0E+34 — — 3500

CMS \s=7TeV,L=51f"\s=8TeV.L=5.3 "
> Frr T N 5.06434 eol ool fooofol 0
] 3 Unweighted — 2
0 ©1500) A s0 >
1500 3 e aom . g
] H S £
g (11000] z 2000 g
Li»] 000 § 308434 %

[139 E 1500 ©
E m,, (GeV) 20 12 5 now g
= ————— . oBie g
qg; . T 000 =

5001 * Dea o
= — s+BFit & .
—~ [8 Fit Component 1
':f [D#te roes . 500
n | 20 .
= 0 L 1 L 1 | .
@ 10 120 130 140 150 0.0E400 ot — R NN o
m,, (GeV) 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Year

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

o We will have 20-25x more data.

= We want to understand every aspect of it based on 15t principles
(and find New Physics)!

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 2/53

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

Simulation bridges Theory and Experiment.

forward N

scattering decay ISR/SFR shower

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 3/53

Simulation bridges Theory and Experiment.

forward

scattering

PAAAS

decay

_§<

ISR/SFR

e

shower

< [lox| 10

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460]

ATLAS Preliminary

17%

8%
CERN-LHCC-2022-005

2022 Computing Model - CPU: 2031, Conservative R&D
2% Tot: 33.8 MHS06*y

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons.
Data Deriv
MC Deriv
Analysis

CMS Public
Total CPU HL'LHC (2031/No R&D Improvements) fractions

Other: 2%

GEN: 9%

RECO: 35%

Analysis: 4%

CMS-NOTE-2022-008

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

3/53

Simulation bridges Theory and Experiment.

Phase Space Sampling
= sample according to do

Detector Simulation
= sample from p(showers|E)

End-to-End Simulation
= sample from p(events)

| |
forward ' ‘ A
N A
v h
scattering decay ISR/SFR shower

X

| T%es| | 5]

10

Machine Learning and LHC Event Generation, A. Butter et al.

[2203.07460]

ATLAS Preliminary
2022 Computing Model -

.‘ g% . MC-Full(Sim)

C
 CPU: 2031, Conservative R&D
Tot: 33.8 MHS06*y

RECO: 35%

= Data Proc
MC-Full(Rec)

m— MC-Fast(Sim)

m— MC-Fast(Rec)
= EvGen

1%

Heavy lons.

=== Data Deriv

W= MC Deriv
Analysis

C ERN—LHCC—ZOZZ—OOS

MS Public
Total CPU HL'LHC (2031/No R&D Improvements) fractions

Other: 2%
GEN: 9%

sim: 15%

RECOSim: 26%

CMS-NOTE-2022-008

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

3/53

Deep Generative Models are Random Number Generators.

We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- or -
given: f(x) want: x ~ f(x)/ [f(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 4/53

midjourney.com

Deep Generative Models are Random Number Generators.

(. . . “ ”)
We have a distribution p(x) and want to sample (“generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- Or -
given: f(x) want: x ~ f(x)/ [f(x)

@ Deep Generative Models have seen a lot of progress
in recent years.

@ They can generate text, speech, images, ...

@ In HEP, we have seen GANs, VAEs, Normalizing
Flows, Diffusion Models, and their derivates.

“Calorimeter Simulation” via midjourney.com

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 4/53

midjourney.com

The first models in use were GANs and VAEs.

Variational Autoencoder (VAE): Information is encoded and decoded through a
bottleneck.
o Trade-off between generalizability and quality (S-term in the loss)

@ Physics is not always compressible.

@ Precision not competitive to other generative models.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 5/53

The first models in use were GANs and VAEs.

(Variational Autoencoder (VAE): Information is encoded and decoded through a
bottleneck.

o Trade-off between generalizability and quality (S-term in the loss)

@ Physics is not always compressible.

@ Precision not competitive to other generative models.)

(Generative Adversarial Network (GAN): A generator and a critic play a game against each)
other.

@ Delicate optimization on a saddlepoint.

Suffer from mode-collapse and other artefacts.

o
@ Model selection is difficult.
@ Hard to get the distributions to agree at the %-level.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 5/53

Normalizing Flows learn a coordinate transformation.

“easy” base
distribution <

“target”

bijective
= distribution

transformation

A plx) = m(f(x))|det 292

density estimation, p(x)

sample generation

Having access to the log-likelihood (LL) allows several training options:

= Based on samples: via maximizing LL(samples).
= Based on target function f(x): via matching p(x) to f(x).

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

6/53

How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

o Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 7/53

https://engineering.papercup.com/posts/normalizing-flows-part-2/
https://engineering.papercup.com/posts/normalizing-flows-part-2/

How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

o Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.

Initial sample from N(0, 1)

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 7/53

https://engineering.papercup.com/posts/normalizing-flows-part-2/
https://engineering.papercup.com/posts/normalizing-flows-part-2/

How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

o Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.

Initial sample from N(0, 1) After layer 1 After layer 2 After layer 3

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 7/53

https://engineering.papercup.com/posts/normalizing-flows-part-2/
https://engineering.papercup.com/posts/normalizing-flows-part-2/

The Bijector is a chain of “easy” transformations.

Each transformation
@ must be invertible and have analytical Jacobian

@ is chosen to factorize:
C(X; p) = (Gi(x1i p1), Go(x2i p2)s - -+ CalXni i) T
where X are the coordinates to be transformed and p the parameters of the

transformation.

Durkan et al. [arXiv:1906.04032]
Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

Rational Quadratic Splines:

s 2
Rational Quadratic Spline Transformation

c 202 + aja + a @ numerically easy

" ba? £ bia + by @ expressive

(.

The NN predicts the bin widths, heights, and derivatives that go in a;&b;.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

8/53

Triangular Jacobians 1: with Autoregressive Blocks

exi (X./'<i)
MADE Block
(™
bijector input cond. input |mp|ementation Via masking:
e} o o o 0 O O

@ a single “forward” pass gives all
HX,.(X,'_l 000 X1).
= very fast

000000 Q00000
o 23 (23 (23 o]
O- O. o} Q Q o

0 0._ 0. O 0 ©

= g @ its “inverse” needs to loop through all
0O00O0O0O0O0D0OO0DO0O0CO0CO00 . .
transformation parameters dimensions.
= very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

9/53

Triangular Jacobians 1: with Autoregressive Blocks

MADE Block

bijector input

000000

®- (23

O- o

O—_ O

(23
[o}

O..

0O0O0OO0OO0O0O0OO0OO0

transformation parameters

o

c
[e}

o

(o}

cond. input

o o o
ccoo0o
o o

o o
o o
SN

exi()(j<i)

Implementation via masking:
@ a single “forward” pass gives all
HX,.(X,'_l 000 X1).
= very fast

@ its “inverse” needs to loop through all
dimensions.
= very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023

9/53

Triangular Jacobians 1: with Autoregressive Blocks

MADE Block

bijector input

000000

[} (23

o o

O~ O

(3

o

O

(]

o

o

cond. input
o O O O

000000
] @
Q (o)
o o

O0O0OO0OO0O0DO0ODO0ODOOO0OO0OO0OO0
transformation parameters

exi()(j<i)

Implementation via masking:

@ a single “forward” pass gives all
HX,.(X,'_l 000 X1).
= very fast

@ its “inverse” needs to loop through all
dimensions.
= very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023

9/53

Triangular Jacobians 2: with Bipartite Blocks

(Oea(x€B) &

GXEB(X € A) ‘

+ Forward and inverse pass are equally fast.

@ Coordinates are split in 2 sets, transforming each other.

— Said to be not as expressive.
Dinh et al. [arXiv:1410.8516]

XA

XB

()

RQS(xg; 0(xa))

Y permutation b—)

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023

10/53

Normalizing Flows are great!

Pros and Cons of Normalizing Flows:

LL optimaztion is more stable than saddlepoint optimization of GANs.
Do not suffer from mode-collapse.
Model selection is straightforward with LL(val-set).

Flows are versatile (train for one thing, use for another).

+ 4+ + +

Empirically: better at learning distributions to the %-level

— They scale bad with the dimensionality of the problem.
— Some architectures might be slow.

— There are topological constraints.

— Sparse data is hard to learn.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 11/53

Evaluating Generative Models is a hard task.

We want to know if Pgenerated = Ptraining data (: ptruth?)

o If we have access to p(x), we can compute f-divergences.

L, Example: KL-divergence [dx p(x) Iog%

@ Alternatively, we could use Integral Probability Metrics.

L Example: Wasserstein distance
@ In Computer Science, one uses the Frechét Inception Distance.

@ In HEP, we usually look at histograms.

See also: Kansal et al. [arXiv:2211.10295]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 12 /53

A Classifier provides the “ultimate metric”.

(o
According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish the two samples.

@ A powerful classifier trained to distinguish the samples should therefore learn (something

monotonically related to) thIS.

o If this classifier is confused, we conclude pGranra(X) = Pgenerated(X)

4

This captures the full phase space incl. correlations.

4

However, it is sufficient, but not neccessary.

? But why wasn't this used before?

= Previous deep generative models were separable to almost 100%!

L DCTRGAN: Diefenbacher et al. [2009.03796, JINST] J

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 13/53

Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.

forward

N
v

scattering decay

[

ISR/SFR

e

shower

%

18)

Machine Learning and LHC Event Generation

. A. Butter et al. [2203.07460]

710'7Gev
1: Calorimeter Simulation * hoocer
1074 GeV

2: Phase Space Integration R

P g M e

=TI

200 o [G:\(l)]() 600

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

14 /53

Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.

forward

scattering decay ISR/SFR shower i
Nl

Machine Learning and LHC Event Generation, A. Bu

~12203.07460]
a‘*\ow) [so-2cev
1: Calorimeter Simulation — ol 0-2cev
o-tcev

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 14 /53

Different Datasets come with different challenges

PartI: The CALOGAN Dataset

©
@
e

v [cells]

Part Il: The ILD Dataset

Part Ill: The CaloChallenge 2022

0 0
30 (ot
Yo
) D

th
—10 0 ¥

-10‘ 0 .
2 ("Uu/ -20
Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023 15/53

I: We use the same calorimeter geometry as CALOGAN

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x 96,12 x 12, and 12 x 6

Geantd, Pb Absorber, IAr Gap, 10 GeV e~

= 30
E =S
£ H
§ =
g
2 .
° a
= >
s
20 2
&
3
g
s

] 15
< - = 10
e s o
L | | I o A
0 50 100 150 200
Depth from Calorimeter Center [mm]

n

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 16 /53

I: We use the same calorimeter geometry as CALOGAN

o The GEANT4 configuration of CALOGAN is available at
https://github.com /hep-lbdl/CaloGAN

We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]

Showers of e™,~, and 7 (100k each)

All are centered and perpendicular

Einc is uniform in [1,100] GeV and given in addition to the energy deposits per voxel:

10°
102
)
10t =
3
-
100
2| N 1
10 1

10 20 30 40 50 60 70 80 90
ncellld

°
Energy (MeV)

Energy (MeV)
Energy (MeV)

¢ Cell ID

¢ Cell ID
EBvovouswnro

3
7 Cell ID

nCeld

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 17 /53

I: CALOFLOW uses a 2-step approach to learn p(f\EmC).

p N
Flow |
o learns py(Eo, E1, E2|Einc)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

e 2
Flow I

@ learns pg(f|E07 Ei, By, Einc) of normalized showers
@ in CALOFLOW vl (2106.05285 — called “teacher”):
e

@ Masked Autoregressive Flow trained with log-likelihood

@ Slow in sampling (= 500x slower than CALOGAN)

-

e in CALOFLOW v2 (2110.11377 — called “student”):
(

@ Inverse Autoregressive Flow trained with Probability Density Distillation
from teacher (log-likelihood prohibitive), vl el Dl Gt el Bl et

i.e. matching IAF parameters to frozen MAF

@ Fast in sampling (= 500x faster than CALOFLOW v1)

- /
.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 18 /53

I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student |AF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,z’) + MSE(x, x") + MSE(z;, z!)
+ MSE(x;, x{) + MSE(pz, p,) + MSE(px, py)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 19/53

the teacher to the student

I: Probability Density Distillation passes the information from

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student |AF

slow: density estimation, p(x)

fast: sample generation

-

Loss = MSE(z,z") + MSE(x, x") + MSE(z;, z/

i

+ MSE(x;, x{) + MSE(pz, p,) + MSE(px, py)

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

19/53

the teacher to the student

I: Probability Density Distillation passes the information from

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student |AF

slow: density estimation, p(x)

fast: sample generation

-

Loss = MSE(z,z") + MSE(x, x") + MSE(z;, z/

i

+ MSE(x;, x{) + MSE(pz, p,) + MSE(px, py)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation

February 14, 2023

19/53

the teacher to the student

I: Probability Density Distillation passes the information from

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student |AF

slow: density estimation, p(x)

fast: sample generation

-

Loss = MSE(z,z') + MSE(x, x") + MSE(z;, z/

+ MSE(x;, x{) + MSE(pz, p,) + MSE(px, py)

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

19/53

I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student |AF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,z') + MSE(x, x") + MSE(z;, z/
+ MSE(x;, x{) + MSE(pz, p,) + MSE(px, py)

. J

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 19/53

I: Probability Density Distillation passes the information from
the teacher to the student

s N
e o 5 - N
teacher MAF, trained with LL, weights frozen
. fast: density estimation, p(x)
slow: sample geperation
I\ ~ ~ J
— R R N
AN J\-uucllL’\l AN
slow: density estinfption, p(x)
fast: sample generation
N\ J
. J
()
Loss = MSE(z,z’) + MSE(x, x") + MSE(z;, z/)
L + MSE(x;, x!) + MSE(p., p,) + MSE(px, py) |
Normalizing Flows for Simulation

February 14, 2023 19/53

I: Probability Density Distillation passes the information from
the teacher to the student

s M)
(teacher MAF, trained with LL, weights frozen)
fast: density estimation, p(x)
le generation
L D 2 D 2 J
— MSE(x;, x!) + MSE(py, p.) ﬁﬁ
AN ot TTC I \T AN
slow: densi;Testimation, p(x)
fast: sample generation
L J
& J
(Loss = MSE(z,z') + MSE(x, x") + MSE(z;, z/)
L + MSE(x;, x/) + MSE(pz, p.) + MSE(px, pL)]
February 14, 2023 19/53

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation

|: CALOFLOW passes the “ultimate metric” test.

rAccording to the Neyman-Pearson Lemma we have: pgpanra(X) = Pgenerated(X) if a
Lclassifier cannot distinguish data from generated samples.
p
GEANT4 vs. | GEANT4 vs. (teacher) | GEANT4 vs. (student)
AUC CALOGAN CaLoFrLow vl CALOFLOW v2
unnorm. 1.000(0) 0.859(10) 0.786(7)
et norm. 1.000(0) 0.870(2) 0.824(4)
high-level | 1.000(0) 0.795(1) 0.762(3)
unnorm. 1.000(0) 0.756(48) 0.758(14)
0 norm. 1.000(0) 0.796(2) 0.760(3)
high-level | 1.000(0) 0.727(2) 0.739(2)
unnorm. 1.000(0) 0.649(3) 0.729(2)
7" | norm. 1.000(0) 0.755(3) 0.807(1)
high-level | 1.000(0) 0.888(1) 0.893(2)
AUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

20/53

I: Sampling Speed: The Student beats the Teacher!

CALOFLOW™

teacher | student

CALOGAN* | GeanT4!

| training

| 22482 min | + 480 min

210 min 0 min

generation time

per shower

36.2 ms

0.08 ms

0.07 ms 1772 ms

*: on our TITAN V GPU, . on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

Claudius Krause (ITP Heidelberg)

i

101
10°
108
10
10°
10"

10°

—— GEANT 4
—— CaloFlow v1
—— CaloFlow v2
—— CaloGAN

/ 0

107

10°

10°

10°

10* 10t 10°

Normalizing Flows for Simulation

10° 107 10%

Generated Showers

10° 10%0

February 14, 2023

21/53

CaloFlow teacher

¢ Cell ID
ESowvauswneo

CaLoFLow
teacher

Layer 0

o

2

0 10 20 30 40 50 60 70 80 90
ncell D

Layer 1

0123456 7891011
nCell D

Layer 2

2 3
ncell o

Claudius Krause (ITP Heidelberg)

|: CALOFLOW: Comparing Shower Averages: e™

]
Energy (MeV)

Energy (Mev)

Energy (MeV)

CaloFlow student

¢ Cell D

CAaLOFLOW
student

Layer 0

010 20 30 40 50 60 70 80 30
fCell 1D

Layer 1

Layer 2

2 3
nCell ID

0123456 7891011
1 Cell D

Energy (MeV)

GEANT4

" Energy (Mev)

Energy (Mev)

éCell ID

Normalizing Flows for Simulation

GEANT4

Layer 0

0 10 20 30 40 50 60 70 80 90
ncell D

Layer 1

01234567 8091011
n Cell ID

Layer 2

2 3
ncell D

" Energy (MeV)

Energy (MeV)

Energy (MeV)

CaloGAN

CALOGAN

Layer 0

o
3
S
-
0 10 20 30 40 50 60 70 80 90
ncell D
Layer 1
o
3
S
-
01234567 891011
nCell D
Layer 2
-]
S
-

2 3
ncellip

February 14, 2023

Energy (MeV)

Energy (Mev)

Energy (MeV)

22/53

|: CALOFLOW: histograms: e™

10t 10t 10t 107t
100 100 100
1072
10-1 107 10
1072 1072 102 10-2
10- 1073 10
107 107 107 107
10° 1075 105 i
: il 10]
1075 10~ 00 10 107 5=1 10° 107 P T Ty 1o T L T 0 25 50 75 100 125
Eo (GeV) E: (GeV) E; (GeV) Fo (GEV)
100 10! : 10°
)0 102
10 100
10!
107!
101 10°
1072 101
103 1072 10-2
-3
1074 " 10
07 107 0T K 10 163 10T 10
Eo/Eror Er/Eror Ez/Eror
+ R +
e* GEANT L=.1 e™ CaloFlow teacher
-——— At +
~-"7 e’ CaloGAN [e™ CaloFlow student

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023

23/53

|: CALOFLOW: histograms: e™

7 7
6 6
5 5
4 4
3 3
2 2
1 1
ol=2= 0
0.5 1.0 15 2.0 0.0 0. K 0.6 0.8
Shower Depth s4 Shower Depth Width o,
8 30|
5
25
6 4
2.0
3
4 15) |
2 1.0
2
1 0.5
“0.00 ’6.25 0.50 0.75 1.00 C'0.00 025 050 0.75 1.00 l]'00.'00 025 050 0.75 1.00
Sparsity in Layer 0 Sparsity in Layer 1 Sparsity in Layer 2

et GEANT =1 e* CaloFlow teacher

CZZ3 e* CaloGAN [e™ CaloFlow student
Normalizing Flows for Simulation February 14, 2023 24 /53

I: What about other architectures?

Work in progress with Florian Ernst, Luigi Favaro, Tilman Plehn, David Shih:

= We compare the performance of a completely different architecture on the same
dataset.

@ Replace the autoregressive flow with a coupling layer based one.
@ Do it in one step: learn p(Zo, 11,22, Eo, E1, Ea|Eine) (507-dim.)

© Make it Bayesian to
» see where the model is uncertain
> have it regularized
» have some kind of dropout Bellagente, HauBmann, Luchmann, Plehn [2104.04543, SciPost]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

25/53

I: What about other architectures?

Work in progress with Florian Ernst, Luigi Favaro, Tilman Plehn, David Shih:

= We compare the performance of a completely different architecture on the same
dataset.

@ Replace the autoregressive flow with a coupling layer based one.

@ Do it in one step: learn p(YA,'o,fl,YAjz7 Eo, E1, E>|Eine) (507-dim.)

Replace NN weights 6 with

© Make it Bayesian to Gaussians and learn their mean
» see where the model is uncertain and width.
> have it regularized
L » have some kind of dropout Bellagente, HauBmann, Luchmann, Plehn [2104.04543, SciPost]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 25 /53

[: Tails are more uncertain.

I — INN
in 1! —— Train
100
:Té 10!
H
102
2o T TTTETER S T ION PR
ERaE e = e e
L R 2 o
£ WJH 7 A il
= i Ll 1 0
10t 100 w0 1072 107" 107
E\/Eo Es/Eior

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 26 /53

I: Comparing preliminary 7" histograms

3.0

2.5

2.0

15

1.0

0.5

0.0

0.00 0.25 0.50 0.75 1.0¢
E1. brightest, layero

M0 02 04 06 08 10

1. brightest voxel in layer 0

Claudius Krause (ITP Heidelberg)

3.0

2.5

2.0

15

1.0

0.5

0.0,

0.00 025 0.50 0.75

Eratio, 1

1.0¢

0.0 0.2 0.4 0.6 0.8
ratio Ey

Normalizing Flows for Simulation

1.0

0.00

0.25 0.50 0.75
Sparsity in Layer 2

1.00

0.0

02 04 06 08
sparsity layer 2

February 14, 2023

27/53

Different Datasets come with different challenges

PartI: The CALOGAN Dataset

©
@
e

v [cells]

Part Il: The ILD Dataset

Part Ill: The CaloChallenge 2022

0 0
30 (ot
Yo
) D

th
—10 0 ¥

-10‘ 0 .
2 ("Uu/ -20
Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023 28 /53

[I: How does it scale to more voxels?

Work in Progress with Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka,
Imahn Shekhzadeh, David Shih:

@ We consider a the prototype of the ILD:

alternating layers of tungsten and silicon
@ We consider photon showers with E, € [10,100] GeV

@ We discretize the data to 30 x 30 x 30 voxel and focus on the central 10 x 10 x 30

1072GeV
v
8
>
1073 GeV
D%
(1074 GeV
RNV 2

E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Kriiger [2005.05334, Comput.Softw.Big Sci.]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation

February 14, 2023 29 /53

lI: We also use a 2-step approach to learn p(f\Eillc), like CALOFLOW.

Step I: Energy Distribution Flow
@ learns p(E()7 El, Ez, 5o00g Ezg‘EinC)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

Step II: Causal Flows
@ use one Flow for each calorimeter layer (30 in total)
learn pi(Z;|Z;—

° ,Zi—1, Eo, . .., Esg, Einc) of normalized showers.
@ use an embedding net to condense the information of Z;_,_.,...,Zi_1.
("]
("]

Neond? * * *

are Masked Autoregressive Flows, optimized using the log-likelihood.

can be parallelized on 30 machines in training.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 30/53

II: L2LFlows: preliminary results

—— GEANT4 Layer 2 GEANT4 ayer 8|
BIB-AE — BIB-AE 1200 —— GEANT4
103 {— L2LFlows 104 [5Flows 20 Gev —— BIB-AE
P 1000 — L2LFlows
g g % 500
102 9 10? <
5 E £ 600
8 g 3 50 Gev
10t 10! © 400 80 Ge
200 (
1004 0 1004 | o N
1074 1073, 1072 107* 102 10%2 1071 0.0 02 04 06 08 1.0, 12 14 1.6
Energy perilayer [GeV] Energy per layer [GeV] Total energy“deposition [GeV]
o] Layer 14 Layer 26 GEANT4 1400
10 _ g g,f::g‘ 10° 4 BIB-AE —— GEANT4
< L2LFlows —— L2LFlows 1200 20 Gev —— BIB-AE
10% — L2LFlows
8 g g 1000
2
g g
g g 5
s "] g 600
e} © 0t ©
10! 400
200
10° 104 0
107* 1073 1072 107! 104 1073 1072 107t 200 400 600 800 1000
Energy per layer [GeV] Energy per layer [GeV] Non-zero hits per shower

Classifier AUCs:
BIB-AE: 0.995(3) L2LFlows: 0.852(4)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 31/53

Different Datasets come with different challenges

PartI: The CALOGAN Dataset

©
@
e

v [cells]

Part Il: The ILD Dataset

Part Ill: The CaloChallenge 2022

0 0
30 (ot
Yo
) D

th
—10 0 ¥

-10‘ 0 .
2 ("Uu/ -20
Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023 32/53

IIl: Going the next step: towards deployment in FastSimulation

[:> need a survey of current approaches

on a common dataset!

)

= Fast Calorimeter Challenge 2022

front view

3d view

Ao

@ Dataset 1: AtlFast3 trainig data
@ Dataset 2: simulated detector
@ Dataset 3: simulated detector

https://calochallenge.github.io/homepage/

Michele Faucci Giannelli, Gregor Kasieczka, CK,
Ben Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

(y: 368, m: 533 voxels)
[2109.02551, Comput.Softw.Big Sci.]

(e~: 6480 voxels)

(e~: 40500 voxels)

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

33/53

https://calochallenge.github.io/homepage/

IIl: Going the next step: towards deployment in FastSimulation

[:> need a survey of current approaches on a common dataset!)

https://calochallenge.github.io/homepage/

= Fast Calorimeter Challenge 2022

front. view Michele Faucci Giannelli, Gregor Kasieczka, CK,
Ben Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

3d view

Ao

@ Dataset 1: AtlFast3 trainig data (v: 368, m: 533 voxels)
[2109.02551, Comput.Softw.Big Sci.]

L Applied CALOFLOW with lan Pang and David Shih

o Dataset 2: simulated detector (e~: 6480 voxels)
L Work in progress with Matt Buckley, lan Pang and David Shih

o Dataset 3: simulated detector (e~: 40500 voxels)
s Work in progress with Matt Buckley, lan Pang and David Shih

February 14, 2023 33/53

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation

https://calochallenge.github.io/homepage/

lIl: Reminder: CALOFLOW uses a 2-step approach to learn p(f\EmC).

p
Flow |
o learns pi(Eo, E1, Ea, - . . |Einc)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

(Flow Ii
@ learns pg(%|E07 Ei, Ey, ..., Enc) of normalized showers
° ip CALOFLOW vl (called “teacher”): .
@ Masked Autoregressive Flow trained with log-likelihood
@ Slow in sampling
- J

@ in CALOFLOW v2 (called “student”):

@ Inverse Autoregressive Flow trained with Probability Density Distillation
from teacher (log-likelihood prohibitive), vl el Dl Gt el Bl et

i.e. matching IAF parameters to frozen MAF
@ Fast in sampling (= 300 — 500 faster than CALOFLOW v1)

-

v

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

34/53

0

0t

0

107

10

0
104
0%
0

107

100

00

10

100

[1l: CALOFLOW

on CaloChallenge dataset 1: «

C.K., lan Pang, David Shih [2210.14245]

E= 102

eV

09

10 0.95 100
Etor/ Eine

E = 1311 G

ANTY
[+ CaloFlow

X2/NDF = 117

10
[=
—\H-LLL" 10 “_"_L
-
\LLHLL‘ 0 N
0 HL
w Y
10+
w0 L
il
10 107 10 10" " 10° 10 10" 10°
Ey [MeV] Ey [MeV]
. -~
LLL‘LL ool | T
10 I‘WLHI
Lrlﬂ”} s L
10 n
"y
o L
0 L
W 7 W W
£ piev] B o]
oy @
e
Y
. »
HIHIH 0
1
|
7 0 W o na—
o [MV]
GEANTY [CaloFlow

Claudius Krause (ITP Heidelberg)

09 09 100
Evoe/ Eune

ATLAS x?/NDF = 13.5,

Normalizing Flows for Simulation

090

0.95
Evoe/ Eune

AtlFast3 [2109.02551, Comput.Softw.Big

February 14, 2023

Sci.]
35/53

[1l: CALOFLOW on

w0
w0 =
0t
w0 w
w0+
W
w0
10 e
w0
W W W W W W W w
B MoV B eV B Moy
100 10
w w0
10s W
10 =
w0 10
w0 w0
100 w0
o o
T TIT n3 i3 W " W W
eV iz [Mev] Eis [MeV
30
20 GEANT4
" * CaloFlow
10
05
N3 B3 W o w1z i

10
Eye [MeV]

Euuf Ene

Claudius Krause (ITP Heidelberg)

C.K., lan Pang, David

CaloChallenge dataset 1: 7"

Shih [2210.14245]

MoV

512 MeV

E

=102 MeV

2.0 GeV'

0

Evot/ Eum

00
0

1 GeV

ATLAS x%/NDF = 12.7,

Normalizing Flows for Simulation

s 0
1/ Eine
T Gov 201GV
0 0 o
0 0 o 0 o0 o7 100
s
E=21TeV E =42 TeV
}/NDF = 1.55
o o
05 os 10 05 09 10
ot/ Eine Evot/Eine

AtlFast3 [2109.02551, Comput.Softw.Big Sci.]

February 14, 2023

36/53

[1: CALOFLOW on CaloChallene dataset 1: numbers

DNN based classifier
AUC
GEANT4 vs. GEANT4 vs.
CALOFLOW (teacher) | CALOFLOW (student)
low-level 0.701(3) 0.739(3)
Y
high-level 0.551(3) 0.556(3)
Lo | Jowlevel 0.779(1) 0.854(2)
high-level 0.698(2) 0.726(3)

Student generation time per event

Particle type Batch size GPU CPU
1 57.23 ms 115.88 ms
v
10000 0.07 ms -
o 1 74.09 ms 126.05 ms
T
10000 0.09 ms -

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

37/53

[Il: Moving on to datasets 2 and 3

CaloChallenge datasets 2 and 3 are much bigger:
o Dataset 2: 144 voxels in 45 layers — 6480 total.

@ Dataset 3: 900 voxels in 45 layers — 40500 total. s

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 38/53

[Il: Moving on to datasets 2 and 3

CaloChallenge datasets 2 and 3 are much bigger:
o Dataset 2: 144 voxels in 45 layers — 6480 total.

@ Dataset 3: 900 voxels in 45 layers — 40500 total. -

iCALOFLOW: Split learning p(f|EinC) into 3 steps, leveraging the regular detector

geometry.
Q learns pi(Ey, Bz, Es, . . ., Ess|Einc) — how energy is distributed among layers.
@ learns py(Z1|E1, Eine) — how the shower in the first layer looks like.

9 learns p3(In|In—la n, Ena En—la Einc)
— how the shower in layer n looks like, given layer n — 1

Flow 1: pi (Ei| Ein,)'|= T

1 Work in progress with

| | |
r ? ? ? E”F E1 Ef Matt Buckley, lan Pang, David Shih
b Ao 4

Flow 2: po(Z1|Eine E])
Flow 3: p3(Zn|Zn-1, Bn, En-1, Binc, n)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 38/53

[1l: iICALOFLOW: results

Layer 1 Layer 10 Layer 20 Layer 45

10 — Dataset 2 10t —— Dataset 2 10t —— Dataset 2 10t — Dataset 2
. iCaloFlow = —— iCaloFlow = iCaloFlow . iCaloFlow
T T T T
% 10 2 109 Z 10 Z 10
= 2 2 2
S S0 S g
= = = =
< = = =

10 1077 100 10

07 g i o 07 i 07 i0F 10 g e oy 107 T 1 T
Ty (MeVy) Ty, (Me\)) Ty MeWy T (MeV)
Dayer 1 Layer 10 Layer 20 Layer 45

102 —— Dataset 3 1o —— Dataset 3 s —— Dataset 3 o —— Dataset 3
! iCaloFlow iCaloFlow)\ iCaloFlow S iCaloFlow
T 1 7 T
Z 10 < 10| = 107 Z 07
2 = Z
= =
S ~=

1077 1077 107

107 g g oy 07 g it o 107 i i o 107 g oy o
Tia (MeV) Tioa (MeV) Tona (MeV) Lisa (MeV)

dataset 2, low: 0.797(5) dataset 2, high: 0.798(3)
dataset 3, low: 0.911(3) dataset 3, high: 0.941(1)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 39/53

Classifier AUCs:

Conclusions Part 1: Calorimeter Simulations

= Normalizing Flows are able to generate high-quality showers, outperforming other
generative models.

= Training and model-selection is usually more stable.

= The naive scaling to higher dimensions requires a lot of compute. But some
assumptions on the underlying physics can help reduce the needed ressources.

Open issues / points of discussion:
@ Is learning at the voxel-level the best choice?

@ How can we scale this to a full detector simulation?

@ Can we run everything batch-wise?

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 40 /53

Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.

forward

N
v

scattering decay

[

ISR/SFR

e

shower

%

18)

Machine Learning and LHC Event Generation

. A. Butter et al. [2203.07460]

710'7Gev
1: Calorimeter Simulation * hoocer
1074 GeV

2: Phase Space Integration R

P g M e

=TI

200 o [G:\(l)]() 600

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation

February 14, 2023

41/53

Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.

scattering

X

decay ISR/SFR shower

JEEE

ine Learning and LHC Event Generation, A. Butter et al. [2203.07460]

Claudius Krause (ITP Heidelberg)

2: Phase Space Integration

Normalizing Flows for Simulation

February 14, 2023

41/53

Phase Space integration uses Importance Sampling.

1
N i mc, 1 o S :
/ :/0 f(X) dx — W Z f(X) X; ... uniform, omc(/) ~ ﬁ

L X —
9 q@ax e LR o
- % N [oo
/0 q(>'<’) q(X)dX importance sampling N Z]: q()?l) 2 q(X)v
In the limit g(X) o< f(X), we get o5(/) = 0

—»

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,9;, and ¢; according to do(p;, Vi, i)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 42 /53

Phase Space integration uses Importance Sampling.

1
o — = MC 1 = = . 1
I = /0 f(X) dx — N Z f(X;) X;...uniform, omc(/) ~ 75

1 — =
f<) .- MC 1 f(xi) . .
= _— — . ,
/0 q()?) q(X)dX importance sampling N z,: q()?;) . q(X)
L In the limit g(X) o f(X), we get o1s(/) = 0]
s 0

—

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,¥;, and ¢; according to do(p;,¥;, ;)

We need both samples x and their probability g(x).
= We use a bipartite, coupling-layer-based Flow.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 42/53

i-flow: Numerical Integration with Normalizing Flows.

How it works:

. _) f(X)

—>

T% ADAM optimizer }—‘

i-flow: C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
gitlab.com/i-flow/i-flow

i-flow

Statistical Divergences are used as loss functions:
° KuIIback Leibler (KL) divergence:

fpx)logp()dx = NZZ&’)I %, Xi ... q(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

43/53

i-flow adapts better, but needs more iterations.

4-dimensional Gaussian

100
— iflow
> — VEGAS
5 g] —— foam
5
5
T
g0
@
-3
100 10° 10°

Evaluations in training

Claudius Krause (ITP Heidelberg)

Total relative integral uncertainty

10°

5
L

s

2

2

4-dimensional Camel

10° 10° 10°
Evaluations in training

Normalizing Flows for Simulation

Total relative integral uncertainty

2

2

2

2

Scalar Top Loop

— i-flow
— VEGAS
—— FOAM

10° 10°
Evaluations in training

February 14, 2023

4453

Event Generators need a high-dimensional integrator.

@ compute the matrix element of the process.

= Ndim = 3Nfinal — 4+ Nfipag — 1
—_———— —

kinematics multichannel

Similar statements apply to MadGraph, too.

We use Sherpa (Simulation of High-Energy Reactions of PArticles) to

@ map the unit-hypercube of our integration domain to momenta and angles. To
improve efficiency, Sherpa uses a recursive multichannel algorithm.

https://sherpa.hepforge.org/

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation

February 14, 2023

45 /53

Event Generators need a high-dimensional integrator.

e X . . X X N
We use Sherpa (Simulation of High-Energy Reactions of PArticles) to
@ compute the matrix element of the process.
@ map the unit-hypercube of our integration domain to momenta and angles. To
improve efficiency, Sherpa uses a recursive multichannel algorithm.
= Ndim = 3Nfinal — 4+ Nfinat — 1
—_———— —
kinematics multichannel
\Similar statements apply to MadGraph, too. https:/ /sherpa.hepforge.org/ |

~

(Figure of merit: Unweighting efficiency

@ Unweighting: we need to accept/reject each event with
Al (i)
probability

max f(x)

reproduce the shape of f(x).

. The kept events are unweighted and

@ The unweighting efficiency is the fraction of events that
“survives” this procedure.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 45 /53

An example: ete™ — 3j.

+ cos ¥ of decaying fermion with beam

’hgw < @ of decaying fermion with beam

. Mi(“V’E + cos? of decay

]« @ of decay

5 ﬁ\J <+ propagator of decaying fermion

| Target distribution

< multichannel

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 46 /53

An example: ete™ — 3j.

+ cos ¥ of decaying fermion with beam

I~

3

10

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

47/53

High Multiplicities are difficult to learn in this setup.

unweighting efficiency LO QCD

(W) /Wmax n =0 n=1 n =2 n =3

W+ + njets Sherpa 2.8-107¢ 3.8-1072 7.5-1073 1.5-1073
i-flow 6.1-107¢ 1.2-1071 1.0-1072 1.8-1073
Gain 2.2 3.3 1.4 1.2

W™ + njets Sherpa 2.9.1071 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-107¢ 15-1071 1.1-1072 2.2.1073
Gain 2.4 3.3 1.4 1.1

Z + n jets Sherpa 3.1-107¢ 3.6-1072 1.5-1072 47-1073
i-flow 3.8.107! 1.0-1071 1.4-1072 2.4.1073
Gain 1.2 2.9 0.91 0.51

C. Gao, S. Hoche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 48 /53

High Multiplicities are difficult to learn in this setup.

unweighting efficiency LO QCD
(W) /Wmax n =0 n=1 n =2 n =3
W+ + njets Sherpa 2.8-107¢ 3.8-1072 7.5-1073 1.5-1073
i-flow 6.1-107¢ 1.2-1071 1.0-1072 1.8-1073
Gain 2.2 3.3 1.4 1.2
W™ + njets Sherpa 2.9.1071 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-1071 1.5-107! 1.1-1072 2.2.1073
Gain 2.4 3.3 1.4 1.1
Z + n jets Sherpa 3.1-107¢ 3.6-1072 1.5-1072 47-1073
i-flow 3.8.107! 1.0-1071 1.4-1072 2.4.1073
Gain 1.2 2.9 0.91 0.51
C. Gao, S. Hoche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]
That cries for improvements:
= MadNIS — Neural Multi-Channel Importance Sampling
A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023

48/53

MadNIS learns the channel weights.

ring channel overflow channel

=

)

«
=
3

—
(=3
o

=)
~
v
Normalized
—
=)
Normalized

0.50
0.5
0.25
0.00 0.0
2 1.0
0.8
0.8
1 =
0.6 'Eo
] 0.6'9
= 2
0 : :
0.4 5 0.4 §
= <=
-1 -1 °
0.2 0.2
-2 0.0 -2 0.0

=1 0 . 1 2 . =2 —1 0 .2
A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, h Winterhalder [2212,06172]
Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 49 /53

MadNIS re-uses expensive matrix elements

i @
g 1.0 fixed number of weight updates =1 fixed training time
E g
i=]
%0 0.8 % —ty=1ps
g 4 o
.5 . 10/ te=40us ——t;=10us
B —ty=1ps g thue =30us —— t; =100us
g 0.61 ——t;=10ps o —t;=1ms
> g
%0 — t; =100us &
= ——t;=1ms g
© 0.41 S|
= te=40us £
° tpusr = 30 us =
= 0.2 % 10°4
1 2 3 4 5 6 1 2 3 4 5 6
reduction in training statistics Rg reduction in training statistics Rg

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 50/53

MadNIS: putting everything together, the Z’' example

Normalized

3
0
g~ 1.25]
o ll
g 100
= 80,751
200 400 600
Mgie- [GeV]

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 51/53

Conclusions Part 2: Phase Space Integration

= Normalizing Flows are perfect for Importance Sampling.

= They don't introduce a bias in the result, only increase the uncertainty if not
converged.

= They can be combined with other parts of MadGraph / Sherpa.

Open issues / points of discussion:

@ How is the timing of the full chain?

@ What is missing to be production-ready?

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 52 /53

