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We will have a lot more data in the near future.
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CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

o We will have 20-25x more data.

= We want to understand every aspect of it based on 15t principles
(and find New Physics)!
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Simulation bridges Theory and Experiment.

forward N

scattering decay ISR/SFR shower

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460]
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Simulation bridges Theory and Experiment.
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Simulation bridges Theory and Experiment.

Phase Space Sampling
= sample according to do

Detector Simulation
= sample from p(showers|E)

End-to-End Simulation
= sample from p(events)
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Machine Learning and LHC Event Generation, A. Butter et al.
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Deep Generative Models are Random Number Generators.

We have a distribution p(x) and want to sample ( “generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- or -
given: f(x) want: x ~ f(x)/ [ f(x)
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Deep Generative Models are Random Number Generators.

( . . . “ ” )
We have a distribution p(x) and want to sample ( “generate”) new elements that follow it.

given: {x;} want: x ~ p(x)
- Or -
given: f(x) want: x ~ f(x)/ [ f(x)

@ Deep Generative Models have seen a lot of progress
in recent years.

@ They can generate text, speech, images, ...

@ In HEP, we have seen GANs, VAEs, Normalizing
Flows, Diffusion Models, and their derivates.

“Calorimeter Simulation” via midjourney.com
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midjourney.com

The first models in use were GANs and VAEs.

Variational Autoencoder (VAE): Information is encoded and decoded through a
bottleneck.
o Trade-off between generalizability and quality (S-term in the loss)

@ Physics is not always compressible.

@ Precision not competitive to other generative models.
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The first models in use were GANs and VAEs.

(Variational Autoencoder (VAE): Information is encoded and decoded through a
bottleneck.

o Trade-off between generalizability and quality (S-term in the loss)

@ Physics is not always compressible.

@ Precision not competitive to other generative models. )

(Generative Adversarial Network (GAN): A generator and a critic play a game against each )
other.

@ Delicate optimization on a saddlepoint.

Suffer from mode-collapse and other artefacts.

o
@ Model selection is difficult.
@ Hard to get the distributions to agree at the %-level.
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Normalizing Flows learn a coordinate transformation.

“easy” base
distribution <

“target”

bijective
= distribution

transformation

A plx) = m(f(x))|det 292

density estimation, p(x)

sample generation

Having access to the log-likelihood (LL) allows several training options:

= Based on samples: via maximizing LL(samples).
= Based on target function f(x): via matching p(x) to f(x).
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How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

o Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.
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How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

o Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.

Initial sample from N(0, 1)

https://engineering.papercup.com/posts/normalizing-flows-part-2/
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How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

o Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

@ Require a triangular Jacobian for faster evaluation.

= The parameters 0 depend only on a subset of all other coordinates.

Initial sample from N(0, 1) After layer 1 After layer 2 After layer 3

https://engineering.papercup.com/posts/normalizing-flows-part-2/
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The Bijector is a chain of “easy” transformations.

Each transformation
@ must be invertible and have analytical Jacobian

@ is chosen to factorize:
C(X; p) = (Gi(x1i p1), Go(x2i p2)s - -+ CalXni i) T
where X are the coordinates to be transformed and p the parameters of the

transformation.

Durkan et al. [arXiv:1906.04032]
Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

Rational Quadratic Splines:

s 2
Rational Quadratic Spline Transformation

c 202 + aja + a @ numerically easy

" ba? £ bia + by @ expressive

(.

The NN predicts the bin widths, heights, and derivatives that go in a;&b;.

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023

8/53



Triangular Jacobians 1: with Autoregressive Blocks

exi (X./'<i)
MADE Block
( ™
bijector input cond. input |mp|ementation Via masking:
e} o o o 0 O O

@ a single “forward” pass gives all
HX,.(X,'_l 000 X1).
= very fast
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= g @ its “inverse” needs to loop through all
0O00O0O0O0O0D0OO0DO0O0CO0CO00 . .
transformation parameters dimensions.
= very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]
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Triangular Jacobians 2: with Bipartite Blocks

(Oea(x€B) &

GXEB(X € A) ‘

+ Forward and inverse pass are equally fast.

@ Coordinates are split in 2 sets, transforming each other.

— Said to be not as expressive.
Dinh et al. [arXiv:1410.8516]

XA

XB

()

RQS(xg; 0(xa))

Y permutation b—)
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Normalizing Flows are great!

Pros and Cons of Normalizing Flows:

LL optimaztion is more stable than saddlepoint optimization of GANs.
Do not suffer from mode-collapse.
Model selection is straightforward with LL(val-set).

Flows are versatile (train for one thing, use for another).

+ 4+ + +

Empirically: better at learning distributions to the %-level

— They scale bad with the dimensionality of the problem.
— Some architectures might be slow.

— There are topological constraints.

— Sparse data is hard to learn.
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Evaluating Generative Models is a hard task.

We want to know if Pgenerated = Ptraining data (: ptruth?)

o If we have access to p(x), we can compute f-divergences.

L, Example: KL-divergence [ dx p(x) Iog%

@ Alternatively, we could use Integral Probability Metrics.

L Example: Wasserstein distance
@ In Computer Science, one uses the Frechét Inception Distance.

@ In HEP, we usually look at histograms.

See also: Kansal et al. [arXiv:2211.10295]
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A Classifier provides the “ultimate metric”.

( o
According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish the two samples.

@ A powerful classifier trained to distinguish the samples should therefore learn (something

monotonically related to) thIS.

o If this classifier is confused, we conclude pGranra(X) = Pgenerated(X)

4

This captures the full phase space incl. correlations.

4

However, it is sufficient, but not neccessary.

? But why wasn't this used before?

= Previous deep generative models were separable to almost 100%!

L DCTRGAN: Diefenbacher et al. [2009.03796, JINST] J
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Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.
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Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.
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Different Datasets come with different challenges

PartI:  The CALOGAN Dataset
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I: We use the same calorimeter geometry as CALOGAN

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x 96,12 x 12, and 12 x 6

Geantd, Pb Absorber, IAr Gap, 10 GeV e~
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g
2 .
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= >
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] 15
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CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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I: We use the same calorimeter geometry as CALOGAN

o The GEANT4 configuration of CALOGAN is available at
https://github.com /hep-lbdl/CaloGAN

We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]

Showers of e™,~, and 7 (100k each)

All are centered and perpendicular

Einc is uniform in [1,100] GeV and given in addition to the energy deposits per voxel:
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CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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I: CALOFLOW uses a 2-step approach to learn p(f\EmC).

p N
Flow |
o learns py(Eo, E1, E2|Einc)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

e 2
Flow I

@ learns pg(f|E07 Ei, By, Einc) of normalized showers
@ in CALOFLOW vl (2106.05285 — called “teacher”):
e

@ Masked Autoregressive Flow trained with log-likelihood

@ Slow in sampling (= 500x slower than CALOGAN)

-

e in CALOFLOW v2 (2110.11377 — called “student”):
(

@ Inverse Autoregressive Flow trained with Probability Density Distillation
from teacher (log-likelihood prohibitive), vl el Dl Gt el Bl et

i.e. matching IAF parameters to frozen MAF

@ Fast in sampling (= 500x faster than CALOFLOW v1)

- /
.
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation

student |AF

slow: density estimation, p(x)

fast: sample generation

Loss = MSE(z,z’) + MSE(x, x") + MSE(z;, z!)
+ MSE(x;, x{) + MSE(pz, p,) + MSE(px, py)
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I: Probability Density Distillation passes the information from
the teacher to the student

teacher MAF, trained with LL, weights frozen

fast: density estimation, p(x)

slow: sample generation
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slow: density estimation, p(x)

fast: sample generation
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I: Probability Density Distillation passes the information from
the teacher to the student

s N
e o 5 - N
teacher MAF, trained with LL, weights frozen
. fast: density estimation, p(x)
slow: sample geperation
I\ ~ ~ J
— R R N
AN J\-uucllL’\l AN
slow: density estinfption, p(x)
fast: sample generation
N\ J
. J
( )
Loss = MSE(z,z’) + MSE(x, x") + MSE(z;, z/)
L + MSE(x;, x!) + MSE(p., p,) + MSE(px, py) |
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I: Probability Density Distillation passes the information from
the teacher to the student

s M)
( teacher MAF, trained with LL, weights frozen )
fast: density estimation, p(x)
le generation
L D 2 D 2 J
— MSE(x;, x!) + MSE(py, p.) ﬁﬁ
AN ot TTC I \T AN
slow: densi;Testimation, p(x)
fast: sample generation
L J
& J
( Loss = MSE(z,z') + MSE(x, x") + MSE(z;, z/ )
L + MSE(x;, x/) + MSE(pz, p.) + MSE(px, pL) ]
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|: CALOFLOW passes the “ultimate metric” test.

rAccording to the Neyman-Pearson Lemma we have: pgpanra(X) = Pgenerated(X) if a
Lclassifier cannot distinguish data from generated samples.
p
GEANT4 vs. | GEANT4 vs. (teacher) | GEANT4 vs. (student)
AUC CALOGAN CaLoFrLow vl CALOFLOW v2
unnorm. 1.000(0) 0.859(10) 0.786(7)
et norm. 1.000(0) 0.870(2) 0.824(4)
high-level |  1.000(0) 0.795(1) 0.762(3)
unnorm. 1.000(0) 0.756(48) 0.758(14)
0 norm. 1.000(0) 0.796(2) 0.760(3)
high-level |  1.000(0) 0.727(2) 0.739(2)
unnorm. 1.000(0) 0.649(3) 0.729(2)
7" | norm. 1.000(0) 0.755(3) 0.807(1)
high-level | 1.000(0) 0.888(1) 0.893(2)
AUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused
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I: Sampling Speed: The Student beats the Teacher!

CALOFLOW™

teacher | student

CALOGAN* | GeanT4!

| training

| 22482 min | + 480 min

210 min 0 min

generation time

per shower

36.2 ms

0.08 ms

0.07 ms 1772 ms

*: on our TITAN V GPU, . on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]
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CaloFlow teacher
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|: CALOFLOW: histograms: e™
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|: CALOFLOW: histograms: e™
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I: What about other architectures?

Work in progress with Florian Ernst, Luigi Favaro, Tilman Plehn, David Shih:

= We compare the performance of a completely different architecture on the same
dataset.

@ Replace the autoregressive flow with a coupling layer based one.
@ Do it in one step: learn p(Zo, 11,22, Eo, E1, Ea|Eine)  (507-dim.)

© Make it Bayesian to
» see where the model is uncertain
> have it regularized
» have some kind of dropout Bellagente, HauBmann, Luchmann, Plehn [2104.04543, SciPost]
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I: What about other architectures?

Work in progress with Florian Ernst, Luigi Favaro, Tilman Plehn, David Shih:

= We compare the performance of a completely different architecture on the same
dataset.

@ Replace the autoregressive flow with a coupling layer based one.

@ Do it in one step: learn p(YA,'o,fl,YAjz7 Eo, E1, E>|Eine)  (507-dim.)

Replace NN weights 6 with

© Make it Bayesian to Gaussians and learn their mean
» see where the model is uncertain and width.
> have it regularized
L » have some kind of dropout Bellagente, HauBmann, Luchmann, Plehn [2104.04543, SciPost]
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[: Tails are more uncertain.
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I: Comparing preliminary 7" histograms
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Different Datasets come with different challenges

PartI:  The CALOGAN Dataset

©
@
e

v [cells]

Part Il:  The ILD Dataset

Part Ill:  The CaloChallenge 2022
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[I: How does it scale to more voxels?

Work in Progress with Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka,
Imahn Shekhzadeh, David Shih:

@ We consider a the prototype of the ILD:

alternating layers of tungsten and silicon
@ We consider photon showers with E, € [10,100] GeV

@ We discretize the data to 30 x 30 x 30 voxel and focus on the central 10 x 10 x 30

1072GeV
v
8
>
1073 GeV
D%
( 1074 GeV
RNV 2

E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Kriiger [2005.05334, Comput.Softw.Big Sci.]
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lI: We also use a 2-step approach to learn p(f\Eillc), like CALOFLOW.

Step I: Energy Distribution Flow
@ learns p(E()7 El, Ez, 5o00g Ezg‘EinC)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

Step II: Causal Flows
@ use one Flow for each calorimeter layer (30 in total)
learn pi(Z;|Z;—

° ,Zi—1, Eo, . .., Esg, Einc) of normalized showers.
@ use an embedding net to condense the information of Z;_,_.,...,Zi_1.
("]
("]

Neond? * * *

are Masked Autoregressive Flows, optimized using the log-likelihood.

can be parallelized on 30 machines in training.
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II: L2LFlows: preliminary results

—— GEANT4 Layer 2  GEANT4 ayer 8|
BIB-AE — BIB-AE 1200 —— GEANT4
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P 1000 — L2LFlows
g g % 500
102 9 10? <
5 E £ 600
8 g 3 50 Gev
10t 10! © 400 80 Ge
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1004 0 1004 | o N
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< L2LFlows —— L2LFlows 1200 20 Gev —— BIB-AE
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e} © 0t ©
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Classifier AUCs:
BIB-AE: 0.995(3) L2LFlows:  0.852(4)
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Different Datasets come with different challenges

PartI:  The CALOGAN Dataset

©
@
e

v [cells]

Part Il:  The ILD Dataset

Part Ill:  The CaloChallenge 2022

0 0
30 (ot
Yo
) D

th
—10 0 ¥

-10‘ 0 .
2 ("Uu/ -20
Claudius Krause (ITP Heidelberg)

Normalizing Flows for Simulation February 14, 2023 32/53



IIl: Going the next step: towards deployment in FastSimulation

[:> need a survey of current approaches

on a common dataset!

)

= Fast Calorimeter Challenge 2022

front view

3d view

Ao

@ Dataset 1:  AtlFast3 trainig data
@ Dataset 2: simulated detector
@ Dataset 3:  simulated detector

https://calochallenge.github.io/homepage/

Michele Faucci Giannelli, Gregor Kasieczka, CK,
Ben Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

(y: 368, m: 533 voxels)
[2109.02551, Comput.Softw.Big Sci.]

(e~: 6480 voxels)

(e~: 40500 voxels)

Claudius Krause (ITP Heidelberg)
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IIl: Going the next step: towards deployment in FastSimulation

[:> need a survey of current approaches on a common dataset! )

https://calochallenge.github.io/homepage/

= Fast Calorimeter Challenge 2022

front. view Michele Faucci Giannelli, Gregor Kasieczka, CK,
Ben Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

3d view

Ao

@ Dataset 1:  AtlFast3 trainig data (v: 368, m: 533 voxels)
[2109.02551, Comput.Softw.Big Sci.]

L Applied CALOFLOW with lan Pang and David Shih

o Dataset 2:  simulated detector (e~: 6480 voxels)
L Work in progress with Matt Buckley, lan Pang and David Shih

o Dataset 3:  simulated detector (e~: 40500 voxels)
s Work in progress with Matt Buckley, lan Pang and David Shih
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lIl: Reminder: CALOFLOW uses a 2-step approach to learn p(f\EmC).

p
Flow |
o learns pi(Eo, E1, Ea, - . . |Einc)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

(Flow Ii
@ learns pg(%|E07 Ei, Ey, ..., Enc) of normalized showers
° ip CALOFLOW vl (called “teacher”): .
@ Masked Autoregressive Flow trained with log-likelihood
@ Slow in sampling
- J

@ in CALOFLOW v2 (called “student”):

@ Inverse Autoregressive Flow trained with Probability Density Distillation
from teacher (log-likelihood prohibitive), vl el Dl Gt el Bl et

i.e. matching IAF parameters to frozen MAF
@ Fast in sampling (= 300 — 500 faster than CALOFLOW v1)

-

v

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023
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[1l: CALOFLOW on
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[1: CALOFLOW on CaloChallene dataset 1: numbers

DNN based classifier
AUC
GEANT4 vs. GEANT4 vs.
CALOFLOW (teacher) | CALOFLOW (student)
low-level 0.701(3) 0.739(3)
Y
high-level 0.551(3) 0.556(3)
Lo | Jowlevel 0.779(1) 0.854(2)
high-level 0.698(2) 0.726(3)

Student generation time per event

Particle type Batch size GPU CPU
1 57.23 ms 115.88 ms
v
10000 0.07 ms -
o 1 74.09 ms 126.05 ms
T
10000 0.09 ms -

Claudius Krause (ITP Heidelberg)
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[Il: Moving on to datasets 2 and 3

CaloChallenge datasets 2 and 3 are much bigger:
o Dataset 2: 144 voxels in 45 layers — 6480 total.

@ Dataset 3: 900 voxels in 45 layers — 40500 total. s
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[Il: Moving on to datasets 2 and 3

CaloChallenge datasets 2 and 3 are much bigger:
o Dataset 2: 144 voxels in 45 layers — 6480 total.

@ Dataset 3: 900 voxels in 45 layers — 40500 total. -

iCALOFLOW: Split learning p(f|EinC) into 3 steps, leveraging the regular detector

geometry.
Q learns pi(Ey, Bz, Es, . . ., Ess|Einc) — how energy is distributed among layers.
@ learns py(Z1|E1, Eine) — how the shower in the first layer looks like.

9 learns p3(In|In—la n, Ena En—la Einc)
— how the shower in layer n looks like, given layer n — 1

Flow 1: pi (Ei| Ein, )'|= T

1 Work in progress with

| | |
r ? ? ? E”F E1 Ef Matt Buckley, lan Pang, David Shih
b Ao 4

Flow 2: po(Z1|Eine E])
Flow 3: p3(Zn|Zn-1, Bn, En-1, Binc, n)
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[1l: iICALOFLOW: results

Layer 1 Layer 10 Layer 20 Layer 45

10 — Dataset 2 10t —— Dataset 2 10t —— Dataset 2 10t — Dataset 2
. iCaloFlow = —— iCaloFlow = iCaloFlow . iCaloFlow
T T T T
% 10 2 109 Z 10 Z 10
= 2 2 2
S S0 S g
= = = =
< = = =

10 1077 100 10

07 g i o 07 i 07 i0F 10 g e oy 107 T 1 T
Ty (MeVy) Ty, (Me\)) Ty MeWy T (MeV)
Dayer 1 Layer 10 Layer 20 Layer 45

102 —— Dataset 3 1o —— Dataset 3 s —— Dataset 3 o —— Dataset 3
! iCaloFlow iCaloFlow )\ iCaloFlow S iCaloFlow
T 1 7 T
Z 10 < 10| = 107 Z 07
2 = Z
= =
S ~=

1077 1077 107

107 g g oy 07 g it o 107 i i o 107 g oy o
Tia (MeV) Tioa (MeV) Tona (MeV) Lisa (MeV)

dataset 2, low:  0.797(5) dataset 2, high:  0.798(3)
dataset 3, low:  0.911(3) dataset 3, high:  0.941(1)
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Conclusions Part 1: Calorimeter Simulations

= Normalizing Flows are able to generate high-quality showers, outperforming other
generative models.

= Training and model-selection is usually more stable.

= The naive scaling to higher dimensions requires a lot of compute. But some
assumptions on the underlying physics can help reduce the needed ressources.

Open issues / points of discussion:
@ Is learning at the voxel-level the best choice?

@ How can we scale this to a full detector simulation?

@ Can we run everything batch-wise?
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Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.
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Fast and Faithful (Calorimeter) Simulations with Normalizing Flows.

scattering

X

decay ISR/SFR shower

JEEE

ine Learning and LHC Event Generation, A. Butter et al. [2203.07460]

Claudius Krause (ITP Heidelberg)

2: Phase Space Integration
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Phase Space integration uses Importance Sampling.

1
N i mc, 1 o S :
/ :/0 f(X) dx — W Z f(X) X; ... uniform, omc(/) ~ ﬁ

L X —
9 q@ax e LR o
- % N [ oo
/0 q(>'<’) q(X)dX importance sampling N Z]: q()?l) 2 q(X)v
In the limit g(X) o< f(X), we get o5(/) = 0

—»

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,9;, and ¢; according to do(p;, Vi, i)
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Phase Space integration uses Importance Sampling.

1
o — = MC 1 = = . 1
I = /0 f(X) dx — N Z f(X;) X;...uniform, omc(/) ~ 75

1 — =
f<) .- MC 1 f(xi) . .
= _— — . ,
/0 q()?) q(X)dX importance sampling N z,: q()?;) . q(X)
L In the limit g(X) o f(X), we get o1s(/) = 0 ]
s 0

—

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,¥;, and ¢; according to do(p;,¥;, ;)

We need both samples x and their probability g(x).
= We use a bipartite, coupling-layer-based Flow.
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i-flow: Numerical Integration with Normalizing Flows.

How it works:

. _) f(X)

—>

T% ADAM optimizer }—‘

i-flow: C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
gitlab.com/i-flow/i-flow

i-flow

Statistical Divergences are used as loss functions:
° KuIIback Leibler (KL) divergence:

fpx)logp()dx = NZZ&’)I %, Xi ... q(x)

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023
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i-flow adapts better, but needs more iterations.

4-dimensional Gaussian

100
— iflow
> — VEGAS
5 g ] —— foam
5
5
T
g0
@
-3
100 10° 10°

Evaluations in training

Claudius Krause (ITP Heidelberg)

Total relative integral uncertainty

10°

5
L

s

2

2

4-dimensional Camel

10° 10° 10°
Evaluations in training

Normalizing Flows for Simulation

Total relative integral uncertainty

2

2

2

2

Scalar Top Loop

— i-flow
— VEGAS
—— FOAM

10° 10°
Evaluations in training

February 14, 2023

4453



Event Generators need a high-dimensional integrator.

@ compute the matrix element of the process.

= Ndim = 3Nfinal — 4+ Nfipag — 1
—_————  —

kinematics multichannel

Similar statements apply to MadGraph, too.

We use Sherpa (Simulation of High-Energy Reactions of PArticles) to

@ map the unit-hypercube of our integration domain to momenta and angles. To
improve efficiency, Sherpa uses a recursive multichannel algorithm.

https://sherpa.hepforge.org/

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation
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Event Generators need a high-dimensional integrator.

e X . . X X N
We use Sherpa (Simulation of High-Energy Reactions of PArticles) to
@ compute the matrix element of the process.
@ map the unit-hypercube of our integration domain to momenta and angles. To
improve efficiency, Sherpa uses a recursive multichannel algorithm.
= Ndim = 3Nfinal — 4+ Nfinat — 1
—_———— —
kinematics multichannel
\Similar statements apply to MadGraph, too. https:/ /sherpa.hepforge.org/ |

~

(Figure of merit: Unweighting efficiency

@ Unweighting: we need to accept/reject each event with
Al (i)
probability

max f(x)

reproduce the shape of f(x).

. The kept events are unweighted and

@ The unweighting efficiency is the fraction of events that
“survives” this procedure.
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An example: ete™ — 3j.

+ cos ¥ of decaying fermion with beam

’hgw < @ of decaying fermion with beam

. Mi( “V’E + cos? of decay

]« @ of decay

5 ﬁ\J <+ propagator of decaying fermion

| Target distribution

< multichannel
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An example: ete™ — 3j.

+ cos ¥ of decaying fermion with beam

I~

3

10
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High Multiplicities are difficult to learn in this setup.

unweighting efficiency LO QCD

(W) /Wmax n =0 n=1 n =2 n =3

W+ + njets Sherpa 2.8-107¢ 3.8-1072 7.5-1073 1.5-1073
i-flow 6.1-107¢ 1.2-1071 1.0-1072 1.8-1073
Gain 2.2 3.3 1.4 1.2

W™ + njets Sherpa 2.9.1071 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-107¢ 15-1071 1.1-1072 2.2.1073
Gain 2.4 3.3 1.4 1.1

Z + n jets Sherpa 3.1-107¢ 3.6-1072 1.5-1072 47-1073
i-flow 3.8.107! 1.0-1071 1.4-1072 2.4.1073
Gain 1.2 2.9 0.91 0.51

C. Gao, S. Hoche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]
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High Multiplicities are difficult to learn in this setup.

unweighting efficiency LO QCD
(W) /Wmax n =0 n=1 n =2 n =3
W+ + njets Sherpa 2.8-107¢ 3.8-1072 7.5-1073 1.5-1073
i-flow 6.1-107¢ 1.2-1071 1.0-1072 1.8-1073
Gain 2.2 3.3 1.4 1.2
W™ + njets Sherpa 2.9.1071 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-1071 1.5-107! 1.1-1072 2.2.1073
Gain 2.4 3.3 1.4 1.1
Z + n jets Sherpa 3.1-107¢ 3.6-1072 1.5-1072 47-1073
i-flow 3.8.107! 1.0-1071 1.4-1072 2.4.1073
Gain 1.2 2.9 0.91 0.51
C. Gao, S. Hoche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]
That cries for improvements:
= MadNIS — Neural Multi-Channel Importance Sampling
A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]
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MadNIS learns the channel weights.

ring channel overflow channel

=
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A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, h Winterhalder [2212,06172]
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MadNIS re-uses expensive matrix elements

i @
g 1.0 fixed number of weight updates =1 fixed training time
E g
i=]
%0 0.8 % —ty=1ps
g 4 o
.5 . 10/ te=40us ——t;=10us
B —ty=1ps g thue =30us  —— t; =100us
g 0.61 ——t;=10ps o —t;=1ms
> g
%0 — t; =100us &
= ——t;=1ms g
© 0.41 S|
= te=40us £
° tpusr = 30 us =
= 0.2 % 10°4
1 2 3 4 5 6 1 2 3 4 5 6
reduction in training statistics Rg reduction in training statistics Rg

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

Claudius Krause (ITP Heidelberg) Normalizing Flows for Simulation February 14, 2023 50/53



MadNIS: putting everything together, the Z’' example

Normalized
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Conclusions Part 2: Phase Space Integration

= Normalizing Flows are perfect for Importance Sampling.

= They don't introduce a bias in the result, only increase the uncertainty if not
converged.

= They can be combined with other parts of MadGraph / Sherpa.

Open issues / points of discussion:

@ How is the timing of the full chain?

@ What is missing to be production-ready?
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