Complicated parameter spaces and machine learning

Raymundo Ramos
Seoultech
(based on: A. Hammad, M. Park, R.R., P. Saha, arXiv:2207.09959)

AI and Quantum Information Applications in Fundamental Physics
February 15, 2023

What makes a parameter space complicated?

- Several dimensions
- Multimodality
- Curved degeneracy

What makes our work more complicated?

- Some high energy physics calculations (HEPC) take a very long time/too much computational power
- Simulations
- Matrix diagonalization
- Amplitudes with many terms and corrections
- More parameters:
exponential increase in required points
time required per point

How we want to approach this problem

- Neural networks (NN) as generic function approximators
- Useful when training a NN could be more efficient than passing every single point through the HEPC
- Design a process where the accuracy of the NN becomes proportional to our interest in sampled regions:
- spend, relatively, more time sampling regions of interest,
- just enough time for low importance regions

Follow an iterative process similar to others proposed in:
Ren, Wu, Yang and Zhao [arXiv:1708.06615]; Caron, Heskes, Otten and Stienen [arXiv:1905.08628]; Goodsell and Joury [arXiv:2204.13950]

An iterative process

0 . L_{0} : sizable but not too large: $\left(L_{0}, Y_{0}\right) \rightarrow \mathrm{NN}$-training

1. L: large set of points:

$$
L \rightarrow \text { NN-prediction } \rightarrow \hat{Y}(L)
$$

2. Select an smaller set

$$
(L, \hat{Y}(L)) \rightarrow \text { selection criteria } \rightarrow(K, \hat{Y}(K))
$$

3. Get the correct results from the HEPC

$$
K \rightarrow \mathrm{HEPC} \rightarrow Y(K)
$$

4. Train with set K and true results $Y(K)$

$$
(K, Y(K)) \rightarrow \text { NN-training }
$$

Selection of points for HEPC - Regression

We want to pass a set of meaningful points to the HEPC.

- Highest predicted likelihood/lowest predicted χ^{2}
- But keep diversity of observables/likelihood
- Points predicted with low likelihood/high χ^{2} may be included as part of some rectifying strategy.
- Fraction of random points to find new regions
predicted by the NN

unlikely to be selected

Selection of points for HEPC - Classification

We want to pass a set of meaningful points to the HEPC.

- Highest probability of being allowed
- But keep diversity of points in and out of region of interest
- Points predicted with low probability of being allowed may be included as part of some rectifying strategy.
- Fraction of random points to find new regions

select randomly

Selection of points for training

Training is also time consuming
Required time depends on:

- epochs
- number of hidden layers
- number of nodes
- number of points used for training

We have to be smart about the points used for training

Selection of points for training - Regression

- wrongly predicted as high likelihood: rectify inaccurate predictions
- What about points wrongly predicted with low likelihood/high χ^{2}.
- This needs a well thought strategy
- There is a chance that will be corrected by additional random points.

Selection of points for training - Classification

- True allowed: Good certainty. These we are interested in
- False allowed: Confusing. These we want to correct
- False excluded: Confusing. These we want to correct
- True excluded: Good certainty. The region we care the least

Applied to toy model, region coverage (20k points)

$$
O_{3 \mathrm{~d}}=\left[2+\cos \left(\frac{x_{1}}{7}\right) \cos \left(\frac{x_{2}}{7}\right) \cos \left(\frac{x_{3}}{7}\right)\right]^{5}=100 \pm 20
$$

4 hidden layers (ReLU), 1000 epochs, Adam, loss: (MAE, Binary cross-entropy), output layer activation: (linear, sigmoid)

Applied to toy model, deviations

Average deviation in 10 runs. Markers show deviation for best result.

- DNNR: regressor
- DNNR: classifier
- MN: MultiNest (pyMultiNest)
- MCMC: Markov Chain Monte Carlo (emcee)

Boosting initial convergence

During the initial steps, predictions should be expected to be mostly wrong

Many options to improve initial convergence:

- Naive/Brute force: run more points to collect usable points
- Sample more points around known points in the target region
- Sample points between known points (Synthetic Minority Oversampling Technique, SMOTE) [Chawla et al, arXiv:1106.1813]

If these techniques work they should be needed only in the first few iterations.

Boosting initial convergence

Suggest new points using 3 nearest neighbors

Boosting initial convergence

Suggest new points using 3 nearest neighbors

Learning the Higgs signal strength in the 2HDM

The two Higgs doublet models (2HDM) [Lee, PRD 8, 1226] are extensions of the standard model scalar sector

$$
\phi_{1}=\binom{\eta_{1}^{+}}{\left(v_{1}+h_{1}+i h_{3}\right) / \sqrt{2}}, \quad \phi_{2}=\binom{\eta_{2}^{+}}{\left(v_{2}+h_{2}+i h_{4}\right) / \sqrt{2}} .
$$

Z_{2} symmetry: $\left(\phi_{1}, \phi_{2}\right) \rightarrow\left(\phi_{1},-\phi_{2}\right) \rightarrow$ No FCNC.
Softly broken by m_{12}^{2} [Glashow, Weinberg, PRD 15, 1958 (1977)]

$$
\begin{aligned}
V_{\phi}= & m_{11}^{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)+m_{22}^{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)-\left[m_{12}^{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)+\text { h.c. }\right]+\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2} \\
& +\lambda_{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right) \\
& +\frac{1}{2}\left[\lambda_{5}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\text { H.c. }\right] \\
& \tan \beta \equiv \frac{v_{2}}{v_{1}} \quad \text { with } \quad v=\sqrt{v_{1}^{2}+v_{2}^{2}} \sim 246 \mathrm{GeV}
\end{aligned}
$$

Numerical scan

Scanned parameters and ranges

$$
\begin{gathered}
0 \leq \lambda_{1} \leq 10, \quad 0 \leq \lambda_{2} \leq 0.2, \quad-10 \leq \lambda_{3} \leq 10, \quad-10 \leq \lambda_{4} \leq 10 \\
-10 \leq \lambda_{5} \leq 10, \quad 5 \leq \tan \beta \leq 45, \quad-3000 \leq \frac{m_{12}^{2}}{\mathrm{GeV}^{2}} \leq 0
\end{gathered}
$$

Tools used

- SPheno to obtain the mass spectrum
- HiggsBounds to obtain limits on the Higgses [Bechtle et al, arXiv:1507.06706]
- HiggsSignals to obtain a χ^{2} for the signals and mass of the Higgs [Bechtle et al, arXiv:1403.1582]

Numerical scan results

4 hidden layers, 100 nodes, ReLU, 1000 epochs per iteration optimizer: Adam, loss: binary cross-entropy

Numerical scan results

What to do with this?

This process could be good for

- Adjusting complicated allowed regions
- Reduce the amount of calls to a time consuming calculation
- Compare against an ever increasing amount of experimental tests

This process could be great for

- A study where we already have a sense of the parameter space
- Update limits to new data
- Test future expectations of a model
- Anything where a precise and fast estimation of observables/likelihood could be employed (after the model has been trained enough)

The code

Implementation using tensorflow

- https://github.com/AHamamd150/MLscanner

Where do we want to go next?

Well known example of complicated space: phase space integration

$$
\begin{gathered}
p_{a}+p_{b} \rightarrow p_{1}+p_{2}+\ldots+p_{n} \\
\int \prod_{i=1}^{n} d^{4} p_{i} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \delta^{4}\left(p_{a}+p_{b}-p_{1}-p_{2}-\ldots-p_{n}\right)
\end{gathered}
$$

$3 n-4$ integration variables
Add the complexity of the squared amplitud $\left|M_{a+b \rightarrow 1+2+\ldots+n}\right|^{2}$
We usually look for: accurate estimation of integral, (unweighted) event generation, accurate simulation of background/signal

Inspiration from previous works

- ANN as event generator.
(Klimek, Perelstein [arXiv:1810.11509]; Chen, Klimek, Perelstein [arXiv:2009.07819])
- ML training with amplitude values.
(Bishara, Montull [arXiv:1912.11055]; Maître, Truong [arXiv:2107.06625])
- Normalizing flows for phase space integration. (Gao, Höche, Isaacson, Krause, Schulz [arXiv:2001.10028])
- Normalizing flows (INN) for multichannel integration. (Bothmann, Janßen, Knobbe, Schmale, Schumann [arXiv:2001.05478];Heimel, Winterhalder, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [arXiv:2212.06172])
- ... (and references found in the works above)

Thanks for listening!

