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What makes a parameter space complicated?

▶ Several dimensions

▶ Multimodality

▶ Curved degeneracy

▶ . . .
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What makes our work more complicated?

▶ Some high energy physics calculations (HEPC) take a very
long time/too much computational power
▶ Simulations
▶ Matrix diagonalization
▶ Amplitudes with many terms and corrections

▶ More parameters:
exponential increase

in required points × time required
per point
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How we want to approach this problem

▶ Neural networks (NN) as generic function approximators

▶ Useful when training a NN could be more efficient than passing
every single point through the HEPC

▶ Design a process where the accuracy of the NN becomes
proportional to our interest in sampled regions:
▶ spend, relatively, more time sampling regions of interest,
▶ just enough time for low importance regions

Follow an iterative process similar to others proposed in:
Ren, Wu, Yang and Zhao [arXiv:1708.06615];
Caron, Heskes, Otten and Stienen [arXiv:1905.08628];
Goodsell and Joury [arXiv:2204.13950]
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An iterative process

0. L0: sizable but not too large: (L0, Y0) → NN-training
1. L: large set of points:

L → NN-prediction → Ŷ (L)

2. Select an smaller set

(L, Ŷ (L)) → selection criteria → (K , Ŷ (K ))

3. Get the correct results from the HEPC

K → HEPC → Y (K )

4. Train with set K and true results Y (K )

(K , Y (K )) → NN-training
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Selection of points for HEPC – Regression

We want to pass a set of meaningful points to the HEPC.

▶ Highest predicted likelihood/lowest predicted χ2

▶ But keep diversity of observables/likelihood
▶ Points predicted with low likelihood/high χ2 may be included

as part of some rectifying strategy.
▶ Fraction of random points to find new regions

predicted by the NN
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Selection of points for HEPC – Classification

We want to pass a set of meaningful points to the HEPC.
▶ Highest probability of being allowed

▶ But keep diversity of points in and out of region of interest
▶ Points predicted with low probability of being allowed may be

included as part of some rectifying strategy.
▶ Fraction of random points to find new regions

predicted by the NN
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Selection of points for training

Training is also time consuming

Required time depends on:

▶ epochs

▶ number of hidden layers

▶ number of nodes

▶ number of points used for training

We have to be smart about the points used for training
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Selection of points for training – Regression

▶ wrongly predicted as high likelihood: rectify inaccurate
predictions

▶ What about points wrongly predicted with low likelihood/high
χ2.
▶ This needs a well thought strategy
▶ There is a chance that will be corrected by additional random

points.

predicted by the NNreal distribution
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Selection of points for training – Classification

▶ True allowed: Good certainty. These we are interested in

▶ False allowed: Confusing. These we want to correct

▶ False excluded: Confusing. These we want to correct

▶ True excluded: Good certainty. The region we care the least

predicted by the NNactual classes

Cl
as

s
pr

ob
ab

ili
ty

Good certainty

Needs more
training

10 / 24



Applied to toy model, region coverage (20k points)
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4 hidden layers (ReLU), 1000 epochs, Adam, loss: (MAE, Binary
cross-entropy), output layer activation: (linear, sigmoid)
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Applied to toy model, deviations
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Markers show deviation for best
result.
▶ DNNR: regressor
▶ DNNR: classifier
▶ MN: MultiNest

(pyMultiNest)
▶ MCMC: Markov Chain

Monte Carlo (emcee)
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Boosting initial convergence

During the initial steps, predictions should be expected to be
mostly wrong

Many options to improve initial convergence:

▶ Naive/Brute force: run more points to collect usable points
▶ Sample more points around known points in the target region
▶ Sample points between known points (Synthetic Minority

Oversampling Technique, SMOTE) [Chawla et al,
arXiv:1106.1813]

If these techniques work they should be needed only in the first
few iterations.
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Boosting initial convergence

Suggest new points using 3 nearest neighbors
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Boosting initial convergence

Suggest new points using 3 nearest neighbors
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Learning the Higgs signal strength in the 2HDM
The two Higgs doublet models (2HDM) [Lee, PRD 8, 1226] are
extensions of the standard model scalar sector
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Z2 symmetry: (ϕ1, ϕ2) → (ϕ1, −ϕ2) → No FCNC.
Softly broken by m2

12 [Glashow, Weinberg, PRD 15, 1958 (1977)]
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Numerical scan

Scanned parameters and ranges

0 ≤ λ1 ≤ 10, 0 ≤ λ2 ≤ 0.2, −10 ≤ λ3 ≤ 10, −10 ≤ λ4 ≤ 10,

−10 ≤ λ5 ≤ 10, 5 ≤ tan β ≤ 45, −3000 ≤ m2
12

GeV2 ≤ 0 ,

Tools used

▶ SPheno to obtain the mass spectrum
▶ HiggsBounds to obtain limits on the Higgses [Bechtle et al,

arXiv:1507.06706]
▶ HiggsSignals to obtain a χ2 for the signals and mass of the

Higgs [Bechtle et al, arXiv:1403.1582]
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Numerical scan results

4 hidden layers, 100 nodes, ReLU, 1000 epochs per iteration
optimizer: Adam, loss: binary cross-entropy
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Numerical scan results
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What to do with this?

This process could be good for

▶ Adjusting complicated allowed regions
▶ Reduce the amount of calls to a time consuming calculation
▶ Compare against an ever increasing amount of experimental

tests

This process could be great for
▶ A study where we already have a sense of the parameter space

▶ Update limits to new data
▶ Test future expectations of a model

▶ Anything where a precise and fast estimation of
observables/likelihood could be employed (after the model has
been trained enough)
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The code

Implementation using tensorflow

▶ https://github.com/AHamamd150/MLscanner
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Where do we want to go next?

Well known example of complicated space: phase space integration

pa + pb → p1 + p2 + . . . + pn∫ n∏
i=1

d4piδ(p2
i − m2

i )δ4(pa + pb − p1 − p2 − . . . − pn)

3n − 4 integration variables

Add the complexity of the squared amplitud |Ma+b→1+2+...+n|2

We usually look for: accurate estimation of integral, (unweighted)
event generation, accurate simulation of background/signal
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Inspiration from previous works

▶ ANN as event generator.
(Klimek, Perelstein [arXiv:1810.11509]; Chen, Klimek, Perelstein
[arXiv:2009.07819])

▶ ML training with amplitude values.
(Bishara, Montull [arXiv:1912.11055]; Maître, Truong [arXiv:2107.06625])

▶ Normalizing flows for phase space integration.
(Gao, Höche, Isaacson, Krause, Schulz [arXiv:2001.10028])

▶ Normalizing flows (INN) for multichannel integration.
(Bothmann, Janßen, Knobbe, Schmale, Schumann
[arXiv:2001.05478];Heimel, Winterhalder, Butter, Isaacson, Krause,
Maltoni, Mattelaer, Plehn [arXiv:2212.06172])

▶ . . . (and references found in the works above)
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Thanks for listening!
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