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High-Energy Physics
* Seeks to understand matter and its
interactions at the fundamental level.

* The standard model (SM) is currently
the best description that we have about

the subatomic world.

* Within the SM context, the interaction
between the fundamental blocks of
matter - the leptons and quarks - are

mediated by the four fundamental forces.
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Standard Model of Elementary Particles
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The standard model has been extremely successful
theory, but...

Quarks
u,c,t

d,s, b

Why do neutrinos

have mass? Why are there three

generations of matter?

Gluones

Is there a particle

associated with gravity? What is dark matter?

Boson de Higgs

Why does the Higgs boson
has a mass of 125 GeV?

.. It Is incomplete

Andrea Delgado - QML4AHEP - KIAS Workshop on Al and Quantum Information Applications in Fundamental Physics



Experimental High-Energy Physics

Large Hadron Collider

Super-Kamiokande Tevatron (Particle Accelerator) (Particle Accelerator)
(Neutrino Observatory)) lllinois, USA Switzerland
Japan underneath mount lkeno Top quark discovery Higgs boson discovery

First evidence of neutrino oscillation

Large, complex datasets that pose a challenge to conventional information processing systems — how
can we speed up some computational tasks?
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A deeper connection to the quantum world

Speed

large™”

size

Think about chemistry,
molecules

small

2

slow

Classical
Mechanics

Quantum
Mechanics

A
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fast”

Relativistic
Mechanics

Quantum
Field
Theory

v
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Think about quarks and
gluons.

- fast = close to speed of light

** small = close to the radius of an atom
5



These quantum objects also posses some
Interesting properties...

such as entanglement, superposition, interference

features that make it difficult to study with
current information processing technigues
(lattice QCD, many-body problems).

* ¥ K
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So what about using
guantum computers to
study quantum systems?

A simple, yet powerful idea.
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Hilbert space is a
big place!

Carlton Caves

With 275 qubits, we can
represent more
basis/computational states than

the number of atoms in the
observable universe.

2275
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Hilbert space is a SN
big place! e et

Carlton Caves

With 275 qubits, we can
represent more
basis/computational states than

the number of atoms in the
observable universe.

2275

But it is also very hard! -
Andrea Delgado
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Applications in
Quantum Mackl
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Quantum Computing Applications in High-Energy Physics

spectral analysis

Final train/test score

Sampled Distribution

T1 To T3 : Hypetunlng

QPU I%zfzz:s xﬁ%m I . i
a1 = {

< TR S 1 Field theory simulation
5000 x O(N?) experiments Sras s ﬂ ]

o Cl.as.sica.l : I I . .
§ ) ptimization o M a In
Quantum Machine Learning L \ PPING

. . L fermionic/bosonic
o Supervised learning: Classification based on kernel

L degrees of freedom into
methods, optimization.

. . , , quantum system.
o Unsupervised learning: Generative modeling, data

. o Significant overlap with
augmentation.

condensed matter.

Bauer, C. W., et al Quantum Simulation for High Energy Physics,
arXiv: e-Print: 2204.03381 [quant-ph]
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Quantum Computing Applications in High-Energy Physics

i
; LE_'

Parameter
Update

5000 x O(N?) experiments

) § Opi::-nsis:::ilon &= I I I .
Quantum Machine Learning L_ A —

o Supervised learning: Classification based on kernel

The focus of this talk

methods, optimization.

o Unsupervised learning: Generative modeling, data

augmentation.
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Quantum Machine Learning

The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from
quantum computing to machine learning

Machine
Learning

2
€S
> 3
= o
C
g 5
g O

QML takes elements from classical machine learning theory, and views quantum computing from that lens
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Quantum Machine Learning

The main goal of Quantum Machine Learning (QML) is to speed things up by applying what we know from
quantum computing to machine learning

Linear algebraic
problems
Kernel methods

Optimization

Machine
Learning

Deep quantum

learning

2
€S
> 3
= o
C
g 5
g O
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Quantum Machine Learning

Type of algorithm

quantum classical

©
% classical
% i ML
S o
S
o
3| €
>0
= | 3
C
©
S
o

The intersection of quantum computing and ML is rich!
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Quantum Machine Learning

Type of algorithm

quantum classical

classical

Type of data

classical ML on
quantum data

quantum

“Neural-Network Quantum
) States”, arXiv:2204.12966

The intersection of quantum computing and ML is rich!
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Quantum Machine Learning

Type of algorithm

quantum classical

Most HEP
applications
to date

classical

Type of data
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Quantum Machine Learning

Type of algorithm
quantum classical
©
L
o 2
3|0
S
o
\D)
Q| E
« Chemical simulation ~ | 3
e Quantum matter §
simulation =
e Quantum control

* Quantum networks
*  Quantum metrology
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Quantum Machine Learning in the NISQ Era

* Motivated by access to cloud-based processors and commercial
applications.
* Developed for deployment on Noisy Intermediate-Scale
Quantum (NISQ) devices.
o Few qubits,
o Noisy,
o Low gate fidelity - limits the number of operations that can be
executed.
* Applications in Quantum Machine Learning (QML) spurred by the
release of Xanadu's PennylLane / Google's Tensorflow.
* Co-design:
o Algorithmic development/research is adapting to match the pace of
hardware development.
* Hybrid frameworks to leverage benefits of both classical and

quantum computing - variational quantum circuits.
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Parameterized Quantum Circuits as ML Models

jsel
jsel

Benedetti, arXiv:1906.07682

In both cases, learning describes the process of iteratively updating the model’s parameters towards a goal
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit

M,
|O> on = Ucb(a:) = /7( Post-processing
Pre-processing A Ug K
Input: « ~ Pp |0>®m {<Mk>“”9}k=1
T — Gx) [T S > Q
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit

How to encode data into
a quantum state?

M,

/ Pre-processing \ 7y Ue

=
~
®
N
L1
s
]
1

Input: @ ~ Pp |0>®m

x —» oO(x)

&

)F Post-processing

1. Start from a feature vector x. > I g}
2. Optional: dimensionality reduction, PCA, etc. g’
3. Quantum embedding through a quantum * Havlicek, et al, arXivi1804.11326

feature map: Basis embedding, amplitude
embedding.
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* Schuld, Killoran, arXiv:1803.07128
* Lloyd, Schuld, et al, arXiv:2001.03622
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit

4 N M,
|O> on = U¢(=B) = kel Post-processing
Pre-processing A Ug i -
Input: @ ~ Pp |O> o {<Mk>"”9}k=1
r — Gla) [ O e > { )
The “variational”, optimizable / ({ <Mk>“”o}k=1

part of the circuit.

The “guess” or trial function is the unitary U parameterized by a set of

free parameters 0 that will be updated during training.
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit

(i A

|0> on = Uqb(a:) H - 7!\ Post-processing
Pre-processing Ug :
o A K
Input: @ ~ Pp |0> Q {<Mk>w’9}k=1
x —» o) [T S - »

Quantum information is turned back into classical information by The measurement output is then used to

construct a decision function, a probability
distribution, a boundary, etc. ,,

evaluating the expectation value of an observable, or measurement.
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Applications



Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

Quantum machine learning models for supervised learning and kernel
040504 (2019), Nature. vol. 567, pp. 209-212 (2019)

methods are based on a similar principle.

4 )
J——————— ——
/ V. !
/
SO O ¢
/
e X v/ Im
/ * * ' /
/ / Feature
I__'_____*_ _" map &
\_ v, Input Space Feature Space
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Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
V4 7

Quantum machine learning models for supervised learning and kernel
methods are based on a similar principle.

v *’; v / Im
/ '* * , Feature

map P

Feature Space

To optimize a loss
function of the form

Kernel

t t
t Boundary/ _ 1 ey 2. 3.
=1

i=1 l;]=1
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Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

Quantum machine learning models for supervised learning and kernel
040504 (2019), Nature. vol. 567, pp. 209-212 (2019)

methods are based on a similar principle.

Kernel Methods Quantum Machine Learning

Feature Encoding feature

map P map P
_— —_— _— _— —_— \
Access via kernel | T T T T T
manipulation | | Access via I

\

- - - S s
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Supervised Learning with Kernel-based Quantum Models

A high-level overview, for more details check
references: arXiv:2101.11020, Phys. Rev. Lett. 122,

040504 (2019), Nature. vol. 567, pp. 209-212 (2019)
V4 7

Quantum machine learning models for supervised learning and kernel

methods are based on a similar principle.

|
|
’ v ! :
~ R KA 2K 2 |
,I ' ** ' [I "- |
/ * o |
LK xRy e e e
| O> Input Space Feature Space
|0) —
5 Construct a kernel
10) 4 matrix of the form
- - 2
Kij = [(0|uTZ)U(x)|0)|

\ _/
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Supervised Learning with Kernel-based Quantum Models

10 Nirin=576, N*€st=720 (x5) i 10 NTain=576, N®st=720 (x5) 1o [ \
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e , 0.9F -
- L
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—_ —_ 0 . -
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é é .g 0.5}
o S 3
& & / 0.4 QSVM-Kernel (Google-TFQ)
F04 §04 4 Do.3}  (AUC=0.922 +0.002) ]
3 2 / U | _._ Classical SVM
80.2F " (AUC = 0.920 + 0.002) ] \ j
02 — QSVM (4 qubits): AUC = 0.621 + 0.031 02 0.1k ... Classical BDT ]
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poo T Random Classifier // """ Random Classifier Signal acceptance
0'%40 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0
Background Efficiency (FPR) Background Efficiency (FPR) (a)
(a) Models trained on the AE latent space features  (b) Models trained on the original input features
(16). (67), discarding the 3 least informative ones (64). 1.0
- 1 L)
trai test. 0.9r 7
10 NTan=576, N*t=720 (x5) c
© 0.8f i
E 0.7
Q- -
0.8 g ‘@ 0.6 ttH, 15 qubits, 20000 events -
- 60 independent datasets
z 2o.5
E]
Sos 0 0.4r QSVM-Kernel (Google-TFQ)
5 4 Bo.3l (AUC=0.922 + 0.002)
2 A e .. QSVM-Kernel (IBM-Quantum)
504 g S 0.2 777 (AUC = 0.922 * 0.002) ]
S, 0.1t QSVM-Kernel (Amazon-Braket) i
o ) el I (AUC = 0.922 + 0.002)
0 1 1 1 1 1 1 1 1 1
0.2 '8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/
#—— QSVM (4 qubits): AUC = 0.657 = 0.014 Signal acceptance
4 SVM rbf: AUC = 0.651 + 0.010
P b Random Classifier
g7 2 (b)

0.4 0.6 0.8
Background Efficiency (FPR)

(c) Models trained on 16 selected features of the input space according to their individual AUC values. "Application of Quantum Machine Learning Using the Quantum Kernel Algorithm on

"Higgs analysis with quantum classifiers”, Belis, Gonzalez-Castillo, et al., arXiv:2104.07692 (2021) High-Energy Physics Analysis at the LHC”, Wu, Sun, Guan, et al., arXiv:2104.05059 (2021)
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Supervised Learning with Kernel-based Quantum Models

The importance of choosing a good feature map The effect of noise in model performance
Table 1 Average results from 10 random dataset samples obtained by 10 Noiseless Experiment
classically simulating various encoding circuits using Qiskit statevec- '
tor_simulator with 60,000 training events and 10,000 testing events {
in each sample 0.9 E {

Encoding circuit Accuracy AUC ..0.8] 1 |

O

©
Combinatorial encoding 0.762 0.822 :':3 071t . T o
Separate particle encoding 0.776 0.835 < : 7
Bloch sphere encoding 0.764 0.836 0.61 _ " 1
Separate particle with bloch 0.771 0.848 e Train = Test
Classical RBF kel'nel SVM 0.728 0.793 0.5 .................................... Ra.ﬁdon.'].Guels.sMg ........
XGBoost 0.590 0.621 10 14 17 10 14 17

Number of aubits
The uncertainty on each of the mean values stated is + 0.001

”"Machine Learning of high-dimensional data on a noisy quantum processor”, Peters,

”Quantum Support Vector Machines for Continuum Suppression in B meson : _ _
Caldeira, Ho, et al., npj Quantum Information (2021) 7:161

Decays”, Heredge, Hill, Hollenberg, Sevior, Computing and Software for Big
science (2021) 5:27
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Unsupervised Generative Modeling

A high-level overview, for more details

Quantum Circuit Born Machines are generative models which represent check references: Phys. Rev. A 98,
the probability distribution of a classical dataset as quantum pure states 062324 (2018), arXiv:2203.03578

0.16 - Target Distribution

0.14 -

0.12 -

- Discretized Gaussian probability

= 008 1 < distribution over 2™qubits hasis states or

0,06 - bins.

0.04 -

0.02 -

000 t——F—7——— e

0 1 2 3 45 6 7 8 91011 12 13 14 15
\ Basis states l

|
2Mqubits hasis states or bins, i.e., 0000, 0001, 0010, etc.
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Unsupervised Generative Modeling

A high-level overview, for more details

check references: Phys. Rev. A 98,
062324 (2018), arXiv:2203.03578

Quantum Circuit Born Machines are generative models which represent
the probability distribution of a classical dataset as quantum pure states

A PQC consists of layers or blocks of
rotational and entangling gates that can
be repeated to maximize the circuit’s
expressibility.

—

|
U

Block of rotation gates,
with tunable parameters

Block of . . . .
. Discussion on smart Ansatz choices in
entangling gates
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Unsupervised Generative Modeling

A high-level overview, for more details
check references: Phys. Rev. A 98,

Quantum Circuit Born Machines are generative models which represent

the probability distribution of a classical dataset as quantum pure states 062324 (2018), arXiv:2203.03578
. . / Evaluate loss \
10)— i —A % function on target
10) ' B W 2 we Initialized Values and sampled
|0) i — = 0.25 1 Target Distribution distribution
BN N .
|0) :: _@ a 0.20 1

j 015 -

0.10 1

T Parameter update
0.05

( \ Q123456789101112]314]y
Classical

Optimization Grad'\e“t'based
u y, optimization
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Unsupervised Generative Modeling

Quantum Circuit Born Machines are generative models which represent

the probability distribution of a classical dataset as quantum pure states

0.25 1

0.20

0.15 -

0.10 1

0.05 A

0.00 -

0 Initialized Values
Target Distribution
Start

01 2 3 4 5 6 7 8 9 1011 12 13 14 15

0.16 1
0.14 -
0.12 1
0.10 1
0.08 -
0.06 1
0.04 1
0.02 -

0.00 -

A high-level overview, for more details

check references: Phys. Rev. A 98,
062324 (2018), arXiv:2203.03578

B Optimal Values

Target Distribution
End

01 2 3 4 5 6 7 8 9 1011 12 13 14 15

QCBM trained on 4 qubits using cosine distance metric optimized using gradient-based optimizer (Adam). Hyperparameters:

learning rate = 0.1, number of steps = 100, 8192 shots.
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Unsupervised Generative Modeling

Can QCBM'’s learn joint distributions? Yes! P D —
R() !
0.008 1 | [ Ansatz 1 0-0141 R() w A :
n [ Ansatz 2 '
%0007 = MC Expectation 0.0121 . R()
& 0.006 : : 0.010 1 A xd
B o005 =l':I_ _ woosl T - Ansatz 1 Ansatz 2
- .
g 0.004 : :I
© 003 L‘:‘:' 000071 - (a) Monte Carlo (Ground Truth)
B N -
é 0.002 | 0:004 |—E PT | Mass
o . T‘-':t 0.002 = pT - 0.2
0.000 ; . 0.000 . : . mass 0.2 -
250 300 350 400 450 500 20 40 60 80 100 120 140 160
(b) Ansatz 1
pT mass
g™ " 0) %5 [12F) = [10)®*[12F) ™"
©
1; 1.0 X -__‘ _________ ') - - PT = 0.19 0.12
Q -
< . o mass 0.19| 0.12
0. 051 »
’ . | | ° | | | (c) Ansatz 2
250 300 350 400 450 500 25 50 75 100 125 150
Jet pr [GeV] Jet mass [GeV] = ®8qu>+ T ®8mas;>+ -
Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High- 5 19) !I ) -|1>Oe-3 l_g 1)e-3
Energy Physics” PhysRevD 106, 096006 mqjass 1.06-3] -9.163 —
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Unsupervised Generative Modeling

Can QCBM’s learn joint distributions? T

RO) I |
0.014 A\ |
0.008 1 | [ Ansatz 1 R() A :
n [ Ansatz 2 '
0.012 A 1 ' .
% 0.007 i MC Expectation |—"' | R() :
g 0.006 - - 0.0101 ] — R e xd
B 0005 =l':I_ | F Ansatz 1 Ansatz 2
e 0.008 1
g 0.004 - 0.006 A
) e - . . .
S o003 |=|=|: . 1 The effect of number of shots in training
3] : 2
& 0.002 [ L '—E
F 0.001 0.002 ]
0.000 ' 0.000 I ' —— Ansatz 1 - 8,192 shots
250 300 350 400 450 500 20 40 60 80 100 120 140 160 A Ansatz 1 - 20,000 shots
—— Ansatz 2 - 8,192 shots
A Ansatz 2 - 20,000 shots
1.5 1.5 °
E 4
8 Lo S
“f' L e 9 ___ 7 - -1 Rl Y A e % o % ___ -8 o ﬂ
a o e  °
0.5 051
250 300 350 400 450 500 25 50 75 100 125 150
Jet pr [GeV] Jet mass [GeV]
) ) o o 0 50 100 150 200 250 300
Delgado, A., Hamilton, K. E., “Unsupervised Quantum Circuit Learning in High- optimizer step

Energy Physics” PhysRevD 106, 096006
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Jensen-Shannon Loss

Step 19 3

o
o

005  m—p—

Quartiles

0014
0012
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Fraction of samples
o
8

g

0002

0000

Unsupervised Generative Modeling

What about hardware noise?

W— Ansatz 1: ibmq_guadalupe -..—— Ansatz 1: qasm_simulator
B
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Currently working on...

. HEP
Tl -GHz
1 - . Uniform
== g § Model capacity in terms of parameter
3 § T § dimension D
5 . ‘ |
3 e T!  DLA rank D =2ntl _ 9
n i i
g | | QF| saturation '

! | Define regions of
i?-g-jbg..r;!é over/underparameterization?

- !iﬁéﬁﬁﬁi?%%ﬁééé

23456|7891011 1213141516171819
Number of layers (p)
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Also check out:

Quantum neural network model

Latent
variables
‘_
2000 . __ == ] [ e <4+—]
target i 40001 [ i
17501 | simulator = 2000 =
{7 GMMD = 3500 == <4+—
15004 [ noisy simualtor
{2271 ibmqg mumbai — 3000 1500 = \
' 2500 3
Reference Generated
2000 1000 samples samples i
1500 : |
1000 = \.‘
500 : 5
j - - Classical \
E = - '\
18 ’ Discriminator )
: 104 — -
0.5 1 ;
20 40 60 80 100 120 00 01 02 03 04 4 6 8 10 12 14
Energy [GeV] Transverse Momentum [GeV] Pseudorapidity [deg] Rea| Fake
(a) Energy (b) Transverse momentum (c) pseudorapidity l
. N ) o Classical optimization
Conditional Born machine for Monte Carlo events generation”, Kiss, O.,

Grossi, M., Kajomovitz, E., Vallecorsa, S., arXiv:2205.07674

"”Style-based quantum generative adversarial networks for Monte Carlo
events”, Bravo-Prieto, C., Baglio, J., Ce, M., Francis, A., Grabowska, D.,
Carrazza, S., arXiv: 2110.06933
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QML Applications for Data Analysis in HEP: Lessons Learned

* On training from few data..
% Low statistics vs significance

* QML is not going to solve big
data problems.

* Encoding of classical information
cancels out any potential
quantum advantage.

* Can we harness the intrinsically

quantum/physical structure of
our data?

* What can HEP do for QML?

* ie, unfolding quantum
computer readout noise.
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But also... can we re-evaluate our current experiments in BSM searches?

Recent developments in quantum sensing has inspired novel ideas for dark

matter detection through quantum-enhanced techniques.
 Quantum sensors are able to detect very small changes in motion, electric and
magnetic fields.

NV centers in diamond

* O pe ﬂ q U eSt | O ﬂ S entanglement-enhanced

atomic sensors

« Could they
complement BSM
searches at large-
scale facilities such as

interferometry

NV fluorescence

[PRX 10, 031003 (2020)]

precisions measurements with molecules

the LHC? Y
nY ;oA
\/ 75 c |
.N ™ | [Phys. Rev. Lett. 123, 231107 (2019)]
e Can we cou p[e QML / E—g .ar e [Phys. Rev. Lett. 124, 171102 (2020)]
. [Nature 588, 414 (2020)] =
a [g orl t h ms tO th ese [arXiv:2106.03754 (2021)] 47—3';1 =), o 4‘.:“{ 5""
. v, _remonbia, \!P—q;‘
devices? : : quantum sensing review:
[Science 343, 269 (2013)]
[Nature 562, 355 (2018)] [Rev. Mod. Phys. 89, 035002 (2017)]

Andrea Delgado - QML4HEP - KIAS Workshop on Al and Quantum Information Applications in Fundamental Physics 42



Summary

Promising applications in HEP.
* Finding complex correlations in data.
* As a data augmentation tool.
* As input models for other quantum algorithms.

* To complement quantum-enhanced searches for BSM physics — i.e.
guantum sensor networks.

Continuous variable QML applications continue unexplored.

Applications to data analysis outside QML exist.

Today | only featured some applications, most of them based
on discrete variable QC, targeted to IBM devices, but there
are many more!

* Delgado, A., Hamilton, K. E., Date, P, et al, “Quantum Computing for
Data Analysis in High-Energy Physics”, arXiv ePrint:2203.08805

[physics.data-an]
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Submit your work to |[EEE Quantum Week (QCE23)!

About IEEE Quantum Week

IEEE Quantum Week — the IEEE International Conference on Quantum Computing and Engineering (QCE) — is bridging the gap between the
science of quantum computing and the development of an industry surrounding it. As such, this event brings a perspective to the quantum industry
different from academic or business conferences. IEEE Quantum Week is a multidisciplinary quantum computing and engineering venue that gives
attendees the unique opportunity to discuss challenges and opportunities with quantum researchers, scientists, engineers, entrepreneurs, developers,
students, practitioners, educators, programmers, and newcomers.

QCE23 will be held as an in-person event with virtual participation in Bellevue, Washington, USA at the Hyatt Regency Bellevue on Seattle’s
Eastside. After three highly successful IEEE Quantum Week events, we are eager to develop an oustanding conference program with live exhibits,
world-class keynote speakers, technical papers, community building workshops, workforce-building tutorials, stimulating panels, innovative posters,
thought-provoking Birds of Feather (BoF) sessions, networking, sessions. Attend in-person for the full conference experience! Virtual registration
options are available for those who are unable to travel to Bellevue, Washington, USA.

With your contributions and support, together we are building a wonderful premier meeting of quantum
minds to help advance the fields of quantum computing and engineering. IEEE Quantum Week
provides ample opportunities to network with your peers and explore partnerships with industry,
government, and academia. Quantum Week 2023 aims to bring together quantum professionals,
researchers, educators, entrepreneurs, champions and enthusiasts to exchange and share their
experiences, challenges, research results, innovations, applications, pathways and enthusiasm on all
aspects of quantum computing and engineering.

IEEE Quantum Week aims to showcase quantum research, practice, applications, education, and
training including programming systems, software engineering methods & tools, hybrid quantum-
classical computing, architectures & algorithms, benchmarks & performance metrics, hardware
engineering, architectures, & topologies as well as many applications including simulation of chemical,
physical and biological systems, optimization techniques & solutions, and quantum machine learning.
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Quantum Artificial Intelligence Workshop at QCE23!

Quantum Artificial Intelligence Workshop

Part of the IEEE International Conference on Quantum Computing and Engineering (QCE) 2023

) WHEN 9 WHERE

September 17-23, Bellevue, Washington
2023

gai-workshop.ornl.gov
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Thank you!

delgadoa@ornl.gov
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