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Introduction
What is Digital Computing?
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Digital computation with  bits:  n {0,1}n → {0,1}m, m ≤ n



Introduction
What is Quantum Computing?
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Size of the sample space = 2n

Quantum computation with  qubits: n

α1
α2
⋮

α2n

∈ ℂ2n →

+

Source: https://www.science.org/doi/10.1126/science.abb2823

Prob. (%)

Linear transformation under unitary matrix



Example
Inner Product Calculation

• Let  be two vectors. How to compute the magnitude of the inner product  ? 

• Digital: 

 multiplications & additions 

Decompose multiplications & additions as NAND gate 

• Quantum: 

Run the following circuit with  qubits and  gates 

 

|ψ⟩, |ϕ⟩ ∈ ℂ2n |⟨ϕ |ψ⟩ |2

2n

2n + 1 n + 2

Pr(0) − Pr(1) = |⟨ϕ |ψ⟩ |2
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The First Wave of Quantum Machine Learning
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Long-term: Quantum Linear Algebra 

Exponential or polynomial speed-up in 

‣ Support vector machine 

‣ Principle component analysis 

‣ Bayesian methods 

‣ …



Quantum Computer is Hard to Build
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https://www.youtube.com/watch?v=EZOx1RhMHIo


Quantum Hardware Roadmap
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Kernel Method
Quantum Feature Map
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x ∈ ℝN → |ϕ(x)⟩ ∈ ℂ2N

?

? Classical feature map Quantum feature map

Raw data

U(xi)

… …

|ψ⟩ U†(xj) |⟨ψ |U†(xj)U (xi) |ψ⟩ |2 = k(xi , xj)

Kernel : Positive semidefinite & symmetric 
functions that quantify the 
similarity between data points

Feature maps and kernels are automatically given in QC



Quantum Feature Map
Simple Examples

• Amplitude encoding with multiple copies 

 using  qubits. 

 

• Qubit (product) encoding 

 using  qubits. 

x ∈ ℝN → |ϕ(x)⟩⊗d = (
N

∑
i=1

xi | i⟩)
⊗d

d⌈log2(N)⌉

k(x, y) = ⟨ϕ(x) |ϕ(y)⟩⋯⟨ϕ(x) |ϕ(y)⟩ = (x⊤y)d

x ∈ ℝN → |ϕ(x)⟩ =
N

⨂
i=1

(cos (xi) |0⟩ + sin (xi) |1⟩) N

k(x, y) =
N

∏
i=1

cos(xi − yi)
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Quantum Feature Map
Simple Examples

• General strategy for a quantum advantage: 

Use a quantum feature map that is hard to simulate classically. 

Popular example:
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0(x) =

k(x, y) = |⟨0 |(0†(y))d (0(x))d |0⟩ |2

‣  

with some functions  

‣ Typically,  is a nonlinear function

UΦ( ⃗x ) = exp i ∑
j

ϕ1(xj)Zj + ∑
j<k

ϕ2(xj, xk)ZjZk

ϕ1 and ϕ2

ϕ2

Havlíček et al. Nature 567, 209–212 (2019)

https://www.nature.com/


Parameterized Quantum Circuit & Analytical Gradient
Basic Idea
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L(θ) = f (h(θ))U(θ)

… …
h(θ)}

Update θ ← arg min
θ′ 

f(h(θ′ ))

h(θ) = Tr (HU(θ) |ψ⟩⟨ψ |U†(θ)), H = H†

|ψ⟩

 can be computed directly on a quantum computer!∂h(θ)
∂θ

U(θ)



Parameterized Quantum Circuit & Analytical Gradient
The Curse of Barren Plateaus
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L(θ) = f (h(θ))U(θ)

… …
h(θ)} h(θ) = Tr (HU(θ) |ψ⟩⟨ψ |U†(θ)), H = H†

|ψ⟩

Barren plateaus in layman’s terms: 
If parameterized quantum circuit is able to 
sample uniformly from all unitary operations 
(a.k.a Haar random), then the gradient decreases 
exponentially with the number of qubits

A
B

Solution space

C

Loss function

A
B

C

Can we design a quantum circuit that avoids this?



Quantum Convolutional Neural Network
Basic Framework

• MSE loss as an example:  

• With  input qubits:  features &  layers,  parameters 

• Quantum entanglement beyond local correlation

L(θ) =
m

∑
i=1

(yi − h(θ, |xi⟩))2

n 2n log(n) O(log(n))
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Convolution

Data Encoding

Pooling

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

arg minθ L(θ)

× l2

× l3

× l1

|xi⟩

h(θ, |xi⟩) ∈ [−1,1]
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Convolution

Data Encoding

Pooling

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

× l1
× l2

× l3

0 or 1

T-shirt or  
Trouser

• Input: 8 qubits 
• Total number of parameters: 12 ~ 51 
• Training: 12000 / Test: 2000

arg minθ L(θ)

Quantum Convolutional Neural Network
Classical Data Classification



QCNN for Classical Data Classification

• Higher accuracy in the few parameter regime 

• Trains faster 
• Will these improvements continue to hold in larger 

systems? To be verified.
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(b) 16-input CNN with PCA vs QCNN(a) 8-input CNN with AutoEnc vs QCNN

Lo
ss

Iterations
T. Hur, L. Kim, D. K. Park. Quantum Machine Intelligence 4 3 (2022)
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Fashion MNIST

Classical CNN with 44 params: 93.3%

Classical CNN with 44 params: 92.4%

Model (Num. of params) Model (Num. of params)

MNIST



Classical-to-Quantum Transfer Learning
Example
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Input

2D conv.
Max pool

2D conv.

Max pool
DenseDense

BN

|ψ⟩d

2D conv.

Pre-trained CNN

QCNN
Transfer

(a) Fashion MNIST (b) MNIST

(a) Fashion MNIST (b) MNIST



Classical-to-Quantum Transfer Learning
Benchmarking Example
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J. Kim, J. Huh, D. K. Park arXiv:2208.14708 [quant-ph]

(a) 0 vs 1 (b) 2 vs 3 (c) 8 vs 9

Adam

https://arxiv.org/abs/2208.14708


Quantum Semi-Supervised Learning
One-Class Classification
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• A typical dataset in supervised classification:  

• One-class classification:  
• Problem: Is a new data point  normal or not?

5 = {( ⃗x 1, y1), …, ( ⃗x M, yM)} ⊂ ℂN × ℤl

5 = { ⃗x 1, ⃗x 2, …, ⃗x M}

x̃

Quantum Autoencoder Quantum OCC



Quantum Semi-Supervised Learning
One-Class Classification
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(a) Fashion MNIST (b) MNIST

(a) Fashion MNIST (b) MNIST

The Quantum model uses an exponentially smaller number of parameters subject to training.
G. Park, J. Huh, D. K. Park. MLST 4 015006 (2023)



Variational Quantum State Discriminator
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Positive Operator-Valued Measurement (POVM) can distinguish non-orthogonal states!

2-class 3-class

3-class 4-class

Iris data classification

 ancilla qubits for  classeslog(l) l

Data



Variational Quantum Classifier
Interpretation

• What does a variational quantum classifier do?  Quantum state discrimination!  

, where  encodes the training data in class  

Optimal measurement for the binary case: Helstrom measurement. 

Helstrom bound:  

The trace norm is contrastive under CPTP:  

The training accuracy is determined by the classical-to-quantum encoding method! 
VQC simply tries to reach the Helstrom bound. 

• We can optimize the data encoding on a quantum computer! (In progress)

→

max
θ

l

∑
i=1

Tr [M†
i MiU(θ)ρiU(θ)] ρi i

psuccess = 1
2 + 1

2 ∥p0ρ0 − p1ρ1∥1 = 1
2 + 1

2 T(p0ρ0, p1ρ1)

T(Φ(ρ0), Φ(ρ1)) ≤ T(ρ0, ρ1)
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Gradient-Free Quantum Optimization
Quantum Annealing
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• Quantum computer is governed by the differential equation  
 
                                                       
 

 and the size of  and  grows exponentially with the number of qubits 

• Under certain condition (called adiabatic), this can be used to find the lowest eigenvalues 
and corresponding eigenstates (a.k.a ground state) of  

‣ Equivalent to solving certain NP-hard combinatorial optimization problems!

iℏ d |ψ(t)⟩
dt

= H(t) |ψ(t)⟩

H(t) = H†(t) |ψ(t)⟩ H(t)

H(t)

HF = ∑
i

hiZi + ∑
i<j

JijZiZj

Quadratic Unconstrained Binary Optimization (QUBO)

This condition is usually impractical…!



QUBO Example
Weighted Max-cut
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3

2

0

4w01

w12

w23

w34

24

wij ≥ 0

w03

w24

• Maximize the sum of weights that are cut by a given partition of the vertices into two sets 
• If  represents the distance between  and , weighted max-cut is clustering 

• This problem is equivalent to finding the ground state of 

wij xi xj

H = ∑
i<j

wijZiZj



QUBO Example
Weighted Max-cut
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wij ≥ 0

w03

w24

• Maximize the sum of weights that are cut by a given partition of the vertices into two sets 
• If  represents the distance between  and , weighted max-cut is clustering 

• This problem is equivalent to finding the ground state of 

wij xi xj

H = ∑
i<j

wijZiZj

A classical algorithm is likely to provide the best approximation ratio!



Summary
Opportunities

• Noisy Intermediate-Scale Quantum era (soon) 

Kernel method 

Gradient-based optimization 

Gradient-free optimization (e.g. quantum annealing) 

• Full-fledge Quantum era (when?) 

Basic linear algebra subprogram (such as matrix diagonalization and inversion) 

• QML is the most natural for quantum data (e.g. from quantum sensing)
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Summary
Challenges

• Variational quantum algorithms and non-adiabatic quantum annealing: 

Practical quantum advantage without Haar measure? 

Practical quantum advantage without adiabaticity? 

• Classical data encoding 

• Classical-Quantum hybrid model: Optimizer robust to quantum noise 

• Dealing with quantum errors without relying on quantum error correction
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