# Combinatorial Optimization with "Quantum" machine

#### **Myeonghun Park**

(Seoultech / KIAS)

based on arXiv:2111.07806 with Minho Kim, Pyungwon Ko, Jae-hyeon Park

**2023** Ai and Qi Application in Fundamental Physics

# Quantum Computung

- There have been great works and focusing on QC.
  Daniel's talk
- But at least it is very interesting to think about computing algorithms being operated with the "quantum nature" as a "physicist".

# My "naive" understanding on quantum advantage

# Quantum superposition



leads to "quantum parallel" computing

### Quantum Hilbert space



 Expressing and manipulating input data in an exponentially large (2<sup>n</sup>) and "compact" Quantum Hilbert Space.

#### Scaling IBM Quantum technology





#### Current 433 Qubits (IBM Ospery)

#### What else ?

IBM

### **Quantum tunneling**



• which is the big "barrier" to make very tiny chip,

There would be the end of Moore's law

- uncontrolled leakage from Quantum tunneling gives the errors in computing

#### "Quantum" annealer

|                    | 2000Q   | Advantage |  |
|--------------------|---------|-----------|--|
| Graph topology     | Chimera | Pegasus   |  |
| Graph size         | C16     | P16       |  |
| Number of qubits   | > 2000  | > 5000    |  |
| Number of couplers | > 6000  | > 35,000  |  |
| Couplers per qubit | 6       | 15        |  |

• Current "Advantage" machine has 5000+ qubits (though limited couplers ~ 35,000  $\ll {}_{5000}C_2 \simeq 10^7$ 

### For Gated-QC

• We need a "connection" to operate between arbitrary two qubits (e.g. controlled-gate)

| Processor                  | Penguin v1 | Penguin v2 | Penguin v3 | Penguin v4 | Falcon r4 |
|----------------------------|------------|------------|------------|------------|-----------|
|                            |            |            |            |            |           |
| Avg. qubit<br>connectivity | 3.9        | 3.7        | 2.3        | 2.3        | 2.1       |

- Due to "error-propagation", Gated-QC reduces the connectivity
  - = The number of required qubits to program >

number of qubits in your circuit



• Shortest path does not guarantee the lowest error rate (arXiv:1805.10224)

### Quantum Annealing

- With adiabatic theorem, we can find the ground state of a complicate hamiltonian  $H_{\rm QUBO}$  starting from simple  $H_0$ .

$$H_{\text{QA}} = A(s)H_0 + B(s)H_{\text{QUBO}} \text{ with } H_0 = \sum \sigma_i^x \text{ and } H_{\text{QUBO}} = \sum J_{ij}\sigma_i^z\sigma_j^z + \sum h_i\sigma_i^z$$

(T. Kadowaki and H. Nishimori, Quantum annealing in the transverse ising model, 1998)



• Annealing time  $< 2000\mu s$ , (mostly)  $\mathcal{O}(10)\mu s$ 

# "Quantum annealing"

• claims to utilize "quantum tunneling" to find the minimum of the hamiltonian

$$H_{\rm QUBO} = \sum J_{ij}\sigma_i\sigma_j + \sum h_i\sigma_i$$

for **Q**uadratic **U**nconstrained **B**inary **O**ptimization problems.

#### "Classic" minimization method (for Ising hamiltonian)



#### Simulated annealing

• Go to the next spin state  $s_n \rightarrow s_{n+1}$ 1) If  $E_n > E_{n+1}$ : go to the lower energy 2) If  $E_n < E_{n+1}$ , go with a probability of  $e^{-\frac{E_{n+1}-E_n}{k_BT}}$  to **jump out** (A "temperate  $T \rightarrow 0$ . With large T, SA can jump out local minimum)

# Any good example

in High Energy Physics to demonstrate

the advantage from "Quantum tunneling",

which cannot be solved with "classical" optimization method ?

#### Hunt for new physics afterwards

- 1. Anomaly detection (different from SM expectations)
  - Need to have precise tools (importance of MC)
- 2. Try to interpret a new signal with **various** model assumptions or **Model-independent way** so called simplified model
  - For each model, we start with **specific** "feynman-diagram"

(event-topology, without specific spin assignment.)

- Determine parameters (spin, mass) with various methods

#### Example: anomaly







diagram from Lian-Tao Wang et.al. arxiv:1303.6638

#### Purely bottom-up approach

- 1. Figure out what is the relevant event-topology behind anomalous (deviation from SM) events.
- 2. Check the mass spectrum.
- 3. Check spin configuration.
- So far, there are very few literatures for #1.
   Here I will introduce how one can identify the eventtopology



- 1. Under the a simple assumption:  $pp \to X, Y \to \{j_x\} \cup \{j_y\}$ (No prejudices on *X* and *Y*)
- 2. Find a right **combination** to reconstruct X and Y particles.  $\rightarrow$  Read off information on **Mass** and **Spin** from event reconstruction.



• Standard example of six jets

 $pp \to t\bar{t} \to \{j_b, (W \to jj)\} \cup \{j_b, (W \to jj)\}$ (when A and B have same mass)

• Right answer is  $(n_A, n_B) = (3,3)$ 





• Different mother particles

$$pp \rightarrow ZH \rightarrow \{j, j\} \cup \{(W \rightarrow jj), (W^* \rightarrow jj)\}$$

• Right answer is  $(n_A, n_B) = (2,4)$ 





• Complicate situation (12 jets)  $pp \rightarrow o\tilde{o} \rightarrow \{t, \bar{t}\} \cup \{t, \bar{t}\}$   $o \rightarrow t\bar{t} \rightarrow \{j_b, (W \rightarrow jj)\} \cup \{j_b, (W \rightarrow jj)\}$  $\tilde{o} \rightarrow t\bar{t} \rightarrow \{j_b, (W \rightarrow jj)\} \cup \{j_b, (W \rightarrow jj)\}$ 





# An algorithm ?

- With the only assumption of  $2 \rightarrow (2 \rightarrow n)$  process
  - No special treatment on any flavor-tagged particle
  - No assumption on  $M_A$  and  $M_B$
  - No assumption on any decaying structure
- What could be a good guide line ?

# A Classic algorithm

• Hemisphere method: a seed-based method (iterative and converge)



# Non-geometric algorithm



• For each assignment, calculate invariant mass

$$(M_A^2, M_B^2) = (P_1^2, P_2^2)$$

• Try to **minimize** the mass difference  $H = (M_A^2 - M_B^2)^2$ 

# Non-geometric algorithm



• For each assignment, calculate invariant mass

$$(M_A^2, M_B^2) = (P_1^2, P_2^2)$$

- Try to **minimize** the mass difference  $H = (M_A^2 M_B^2)^2$
- How can we deal with the case of  $M_A \neq M_B$  ?



#### • How can we deal with the case of $M_A \neq M_B$ ?

+ (even with  $M_A = M_B$ ) we need to handle 1) off-shell mass due to the width of A and B 2) from smearing effects due to imperfect detectors

• One suggestion: Add a regularization term of  $\lambda(P_1^2 + P_2^2)$ ( $\lambda$  is a dimension full "**hyper-parameter**") • 2  $\rightarrow$  2 process: { $p_i$ }  $\rightarrow$   $P_1 \cup P_2$ Using a binary operation  $x_i \in \{0,1\}$ 

For  $p_i$  to be either in  $P_1$  ( $x_i = 1$ ) or in  $P_2$  ( $x_i = 0$ )

$$P_1 = \sum_{i} p_i x_i, P_2 = \sum_{i} p_i (1 - x_i)$$



• Try to **minimize** 

$$H = (P_1^2 - P_2^2)^2 + \lambda(P_1^2 + P_2^2)$$

for each "assignment" ?!

This problem now becomes well-known...

#### Minimization using Ising model

• If we replace 
$$x_i \rightarrow \frac{1+s_i}{2}$$
 with  $s_i \in \{+1, -1\}$   
 $H = \left(P_1^2 - P_2^2\right)^2 \rightarrow H + \lambda \left(P_1^2 + P_2^2\right)$   
 $= \sum_{i,j} \left(C_{ij} + 2\lambda S_{ij}\right) s_i s_j + \sum_i \left(J_i - 2\lambda \sum_j S_{ij}\right) s_i$ 

• To maintain the importance of original H,

we take 
$$\lambda = \frac{\min(C_{ij})}{\max(S_{ij})}$$

#### But our "mindless" =minimally assumed Collider example is not so easy for a classical SM

# **Combinatorial complexity** arises (for a random Ising model)

Landscape of energy distribution



 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \to \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \to \dots \to \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow (n_{\rm spin} = 2^{12} = 4096)$ 

#### SA cannot jump this random potential!

### **Quantum tunneling**



1) The effect of energy difference becomes mild

#### 2) Effective for shallow barrier !

This would be a Good example for D-Wave!

# (small) Quantum advantage

• QA v.s. Brute-force scanning: The required time (mostly preparation time  $T_{\rm QUBO}$ ) of QA machine:  $T_{\rm QUBO} = O(n^2)$ The complete scanning with *n* input takes  $O(2^n)$ 



# (big) Quantum advantage



| Process             | $pp \rightarrow t\bar{t}$<br>(2 $\rightarrow$ 6) | $pp \rightarrow HZ$ (2 $\rightarrow$ 6 ) | $pp  ightarrow 	ilde{o} 	ilde{o}^*$ (2 $ ightarrow$ 12 ) |
|---------------------|--------------------------------------------------|------------------------------------------|----------------------------------------------------------|
| Quantum annealing   | 100%                                             | 100%                                     | 74.3%                                                    |
| Simulated annealing | 36.7%                                            | 45.7%                                    | 1%                                                       |

Percentage to get a **global minimum energy state** (**does not guarantee** a true combinatorial assignment)

#### results



• Madgraph  $\rightarrow$  Pythia (ISR/FSR/MPI turned off)  $\rightarrow$  Delphes

\* a to c: brute force scanning for  $H_{\rm QUBO}$  to check the fidelity of our algorithm d is from D-Wave computer (expensive...)

#### results



Madgraph → Pythia (ISR/FSR/MPI turned ON) → Delphes

(As we give a priority to hardest jets, effect of hard ISR is emerging for hard scale, here  $2m_{\tilde{o}} = 1.2 \text{TeV}$ )

#### Effect of additional constraints

$$H = \left(P_1^2 - P_2^2\right)^2 \rightarrow H + \lambda \left(P_1^2 + P_2^2\right)$$

• For different mother particle cases:  $pp \rightarrow HZ$ 

 $H = \left(P_1^2 - P_2^2\right)^2 \qquad \qquad H \to H + \lambda \left(P_1^2 + P_2^2\right)$ 





#### Effect of additional constraints

$$H = \left(P_1^2 - P_2^2\right)^2 \rightarrow H + \lambda \left(P_1^2 + P_2^2\right)$$

• For smearing effects :  $pp \rightarrow \tilde{o}\tilde{o} \rightarrow t\bar{t}t\bar{t}$ 

 $H = \left(P_1^2 - P_2^2\right)^2 \qquad \qquad H \to H + \lambda \left(P_1^2 + P_2^2\right)$ 





# Sequential algorithm



$$\begin{split} H^{(A)}_{\text{QUBO}} &= \sum_{ij=1}^{\ell} J_{ij}^{\prime \alpha} s_i^{\alpha} s_j^{\alpha} + \sum_{i=1}^{\ell} h_i^{\prime \alpha} s_i^{\alpha}, \\ H^{(B)}_{\text{QUBO}} &= \sum_{ij=1}^{m} J_{ij}^{\prime \beta} s_i^{\beta} s_j^{\beta} + \sum_{i=1}^{m} h_i^{\prime \beta} s_i^{\beta}, \end{split}$$

 For 12 hard-jets production, it would be worthy if we can check whether this is four-tops events or not !



• We can "guess" that  $A_i = t(\overline{t})$  as their **mass** and **number** of children are identical to the case of a top-quark.

### Bench mark?

- There are not many studies on identifying event-topology.
   (as far as I have searched... if I missed, plz let me know)
- Hemisphere method: seed-based algorithm (our algorithm is seedless one)

| Process   |            | $pp \rightarrow t\bar{t}$ Eq. (7a) | $pp \rightarrow HZ$ Eq. (7b) | $pp \rightarrow \tilde{o}\tilde{o}^*$ Eq. (7c) |
|-----------|------------|------------------------------------|------------------------------|------------------------------------------------|
| Algorithm | QUBO       | 47.3%                              | 89.5%                        | 15.1%                                          |
|           | Hemisphere | 33.6%                              | 86.2%                        | 5.84%                                          |

(Parton-level analysis with detector cuts)



 Performance of an algorithm based on "seed" becomes weak when particles are not boosted enough to develop structures.

• Lorentz boost factor 
$$\gamma_A = \frac{E_A}{M_A} = \frac{M_{AB}}{2M_A}$$
 (for A=B case)

### Current limits for QA

- Number of couplers is limited
  - **spin-chain** method to encode a hamiltonian (connections)



• Number of required qubits for our problem





### Conclusion

- I presented a **simple quantum annealing method for clustering** reconstructed particles.
  - We are interested in expanding this work including Missing particles. (KC and me)
- Gate-based QC can be used via a variational algorithm.
- We can use Gate-based QC for QUBO, which KC is working on. Details about this, plz check Dr. Bae's talk afternoon



- As a **desperate** seeker, we have tried to take advantages of new computing methods, ML, QC, QML.
- In this talk, I presented a **bottom-up** collider algorithm to identify a new physics from a signal (if we can have)
- There could be many good examples to demonstrate
   Quantum Advantage in the field of HEP:
  - check Jae-hyun's talk afternoon
- QC can be the next "Galieo's telescope"
- At least with QC and QI, we can "teach" QM-1 to students in a very interesting and "modern" way!



**KI**<sup>A</sup>S

#### Al and Quantum Information Applications in Fundamental Physics

<sup>-</sup>ebruary 12(Sun) ~ 18(Sat), 2023 💿 Konjiam Ski Resort

- Coming to this far away,
- Sharing your ideas and visions,
- "Enjoying" night discussions and drinks.