Searching for Ultralight Scalar Dark Matter with Muonium and Muonic Atoms

Yevgeny Stadnik

Australian Research Council DECRA Fellow

University of Sydney, Australia

KIAS Virtual Seminar, Seoul, South Korea, 19th January 2022

Dark Matter

Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter)

Dark Matter

Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + m_{\varphi}^2\varphi \approx 0 \quad \longleftarrow$

Damped harmonic oscillator with a time-dependent frictional term

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + m_{\varphi}^{2}\varphi \approx 0$ $m_{\varphi} \sim 3H(t) \sim 1/t$

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$

 $\ddot{\varphi} + 3H(t)\dot{\varphi} + \frac{m_{\varphi}^2 \varphi}{m_{\varphi}} \approx 0$ $\frac{m_{\varphi}}{m_{\varphi}} \gg 3H(t) \sim 1/t$

"Vacuum misalignment" mechanism – non-thermal production, $\langle \rho_{\varphi} \rangle$ governed by initial conditions (φ_i), redshifts as $\langle \rho_{\varphi} \rangle \propto 1/[a(t)]^3$, with $\langle p_{\varphi} \rangle \ll \langle \rho_{\varphi} \rangle$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)

•
$$\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$$

 \downarrow
 $v_{\rm DM} \sim 300 \,\rm km/s$
 $Q_{\rm DM} \sim 10^6$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$

Evolution of φ_0 with time $\int \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ t/\tau_{coh}$ Probability distribution function of φ_0 (Rayleigh distribution)

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \leq 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\mathrm{dB},\varphi}/2\pi)^3 \gg 1$

Lyman-α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

[Related figure-of-merit: $\lambda_{dB,\varphi}/2\pi \le L_{dwarf\,galaxy} \sim 100 \,\mathrm{pc} \Rightarrow m_{\varphi} \gtrsim 10^{-21} \,\mathrm{eV}$]

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $\langle \rho_{\varphi} \rangle \approx m_{\varphi}^2 \varphi_0^2/2 \ (\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3)$
- Coherently oscillating field, since cold ($E_{\varphi} \approx m_{\varphi}c^2$)
- $\Delta E_{\varphi}/E_{\varphi} \sim \langle v_{\varphi}^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{\rm coh} \sim 2\pi/\Delta E_{\varphi} \sim 10^6 T_{\rm osc}$
- Classical field for $m_{\varphi} \lesssim 1 \text{ eV}$, since $n_{\varphi} (\lambda_{\text{dB},\varphi}/2\pi)^3 \gg 1$
- $10^{-21} \,\mathrm{eV} \lesssim m_{\varphi} \lesssim 1 \,\mathrm{eV} \iff 10^{-7} \,\mathrm{Hz} \lesssim f_{\mathrm{DM}} \lesssim 10^{14} \,\mathrm{Hz}$

Lyman- α forest measurements [suppression of structures for $L \leq O(\lambda_{dB,\varphi})$]

Wave-like signatures [cf. particle-like signatures of WIMP DM]

(Dilatons): $\varphi \xrightarrow{P} + \varphi$

 \rightarrow Spatio-temporal

variations of "constants"

- Atomic spectroscopy (clocks)
- Cavities and interferometers
- Torsion pendula (accelerometers)
 - Astrophysics (e.g., BBN)

(Axions): $\varphi \xrightarrow{P} - \varphi$

- → Time-varying spindependent effects
 - Co-magnetometers
 - Particle *g*-factors
 - Spin-polarised torsion pendula
 - Spin resonance (NMR, ESR)

\rightarrow Spatio-temporal

variations of "constants"

- Atomic spectroscopy (clocks)
- Cavities and interferometers
- Torsion pendula (accelerometers)
 - Astrophysics (e.g., BBN)

Traditional Probes of Low-mass Scalars

→ Equivalence-principle-violating "fifth-forces"

Traditional Probes of Low-mass Scalars

→ Equivalence-principle-violating "fifth-forces" $\varphi \rightarrow \varphi$

Stellar emission

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4}$$
$$\Rightarrow \Gamma_{\varphi} \propto \frac{1}{\Lambda_{\gamma}^{2}}$$

→ Increased heating in active stars (Increased cooling in "dead" stars)

New Probes of Low-mass Scalars?

Dark-Matter-Induced Variations of the Fundamental Constants

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_0 \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$

Dark-Matter-Induced Variations of the Fundamental Constants

Dark-Matter-Induced Variations of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}}$$
$$\mathcal{L}_{f} = -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}}$$
$$\varphi = \varphi_{0} \cos(m_{\varphi} t - \boldsymbol{p}_{\varphi} \cdot \boldsymbol{x}) \Rightarrow \boldsymbol{F} \propto \boldsymbol{p}_{\varphi} \sin(m_{\varphi} t)$$

$$\mathcal{L}_{\gamma}' = \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' = -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f}\bar{f}f$$

 φ^2 interactions also exhibit the same oscillating-in-time signatures as above, as well as ...

Dark-Matter-Induced Variations of the Fundamental Constants

$$\begin{split} \mathcal{L}_{\gamma} &= \frac{\varphi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{\gamma}} \\ \mathcal{L}_{f} &= -\frac{\varphi}{\Lambda_{f}} m_{f} \bar{f} f \approx -\frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} m_{f} \bar{f} f \Rightarrow \frac{\delta m_{f}}{m_{f}} \approx \frac{\varphi_{0} \cos(m_{\varphi} t)}{\Lambda_{f}} \\ \varphi &= \varphi_{0} \cos(m_{\varphi} t - \boldsymbol{p}_{\varphi} \cdot \boldsymbol{x}) \Rightarrow \boldsymbol{F} \propto \boldsymbol{p}_{\varphi} \sin(m_{\varphi} t) \\ \mathcal{L}_{\gamma}' &= \frac{\varphi^{2}}{\left(\Lambda_{\gamma}'\right)^{2}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \\ \mathcal{L}_{f}' &= -\frac{\varphi^{2}}{\left(\Lambda_{f}'\right)^{2}} m_{f} \bar{f} f \end{cases} \end{cases} \Rightarrow \begin{cases} \frac{\delta \alpha}{\alpha} \propto \frac{\delta m_{f}}{m_{f}} \propto \Delta \rho_{\varphi} \propto \Delta \varphi_{0}^{2} \\ \boldsymbol{F} \propto \nabla \rho_{\varphi} \end{cases} \end{split}$$

Probes of Low-mass Scalar DM

Recent searches for ultralight scalar DM have focused on the electromagnetic (photon) and electron couplings

Atomic clocks

$$\Delta E = h \nu \propto m_e \alpha^2$$

Optical cavities

Probes of Low-mass Scalar DM

Recent searches for ultralight scalar DM have focused on the electromagnetic (photon) and electron couplings

Atomic clocks

Optical cavities

Laser interferometers

For a recent overview, see e.g. [Antypas et al., arXiv:2203.14915] and references therein

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

4 orders of magnitude improvement!

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

4 orders of magnitude improvement!

Constraints on Scalar Dark Matter with $\varphi^2 F_{\mu\nu} F^{\mu\nu} / 4 (\Lambda'_{\gamma})^2$ Coupling

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

15 orders of magnitude improvement!

• What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?

- What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?
- Possible flavour/generational dependence of scalar couplings in the lepton sector

- What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?
- Possible flavour/generational dependence of scalar couplings in the lepton sector
- Extra motivation from persistence of anomalies in muon physics, such as:
 - Proton radius puzzle
 - $(g-2)_{\mu}$ puzzle

- What about searching for ultralight scalar DM via other possible couplings (e.g., scalar-muon couplings)?
- Possible flavour/generational dependence of scalar couplings in the lepton sector
- Extra motivation from persistence of anomalies in muon physics, such as:
 - Proton radius puzzle
 - $(g-2)_{\mu}$ puzzle
- No stable terrestrial sources of muons (unlike electrons), leading to a qualitative different phenomenology as compared to, e.g., scalar-electron couplings

Probing Oscillations of m_{μ} with Muonium Spectroscopy [Stadnik, arXiv:2206.10808]

Muonium = $e^{-\mu^{+}}$ bound state, $m_{r} = \frac{m_{e}m_{\mu}}{m_{e}+m_{\mu}} \approx m_{e}(1-m_{e}/m_{\mu})$

Probing Oscillations of m_{μ} with Muonium Spectroscopy [Stadnik, arXiv:2206.10808]

Muonium = $e^-\mu^+$ bound state, $m_r = \frac{m_e m_\mu}{m_e + m_\mu} \approx m_e (1 - \frac{m_e}{m_\mu})$

$$E_n^{\text{Rydberg}} = -\frac{m_r \alpha^2}{2n^2} \implies \frac{\Delta v_{1S-2S}}{v_{1S-2S}} \approx 2\frac{\Delta \alpha}{\alpha} + \frac{\Delta m_e}{m_e} + \frac{m_e}{m_\mu}\frac{\Delta m_\mu}{m_\mu}$$

Probing Oscillations of m_{μ} with Muonium Spectroscopy [Stadnik, arXiv:2206.10808]

Muonium = $e^-\mu^+$ bound state, $m_r = \frac{m_e m_\mu}{m_e + m_\mu} \approx m_e (1 - m_e / m_\mu)$ $2^{2}S_{1/2}$ $1 {}^{2}S_{1/2}$ $\tau_{\mu} \approx 2.2 \ \mu s$ $E_n^{\text{Rydberg}} = -\frac{m_r \alpha^2}{2n^2} \Rightarrow \frac{\Delta v_{1S-2S}}{v_{1S-2S}} \approx 2\frac{\Delta \alpha}{\alpha} + \frac{\Delta m_e}{m_e} + \frac{m_e}{m_\mu}\frac{\Delta m_\mu}{m_\mu}$ $\Delta E_{\rm Fermi} = \frac{8m_r^3 \alpha^4}{3m_e m_{\mu}} \implies \frac{\Delta \nu_{\rm HFS}}{\nu_{\rm HFS}} \approx 4 \frac{\Delta \alpha}{\alpha} + 2 \frac{\Delta m_e}{m_e} - \frac{\Delta m_{\mu}}{m_{\mu}}$

Estimated Sensitivities to Scalar Dark Matter with $\varphi \bar{\mu} \mu / \Lambda_{\mu}$ Coupling

[Stadnik, arXiv:2206.10808]

Up to 7 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF in 1990s)

Estimated Sensitivities to Scalar Dark Matter with $\varphi^2 \bar{\mu} \mu / (\Lambda'_{\mu})^2$ Coupling

[Stadnik, arXiv:2206.10808]

Up to 8 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF in 1990s)

[Stadnik, arXiv:2206.10808]

$$\mathcal{L}_{\text{lin}} = -\frac{\varphi}{\Lambda_e} m_e \bar{e} e - \frac{\varphi}{\Lambda_\mu} m_\mu \bar{\mu} \mu \implies V_{e\mu}(r) = -\frac{m_e}{\Lambda_e} \frac{m_\mu}{\Lambda_\mu} \frac{e^{-m_\varphi r}}{4\pi r}$$

[Stadnik, arXiv:2206.10808]

Local value of g measured in free-fall experiments using muonium would differ from experiments using non-muon-based test masses

[Stadnik, arXiv:2206.10808]

Local value of g measured in free-fall experiments using muonium would differ from experiments using non-muon-based test masses

Recently started LEMING experiment at the Paul Scherrer Institute aims to measure g with a precision of $\Delta g/g \sim 0.1$ using muonium

[Stadnik, arXiv:2206.10808]

Up to 5 orders of magnitude improvement possible with ongoing measurements! (Recently started LEMING experiment at PSI targets a precision of $\Delta g/g \sim 0.1$)

Summary

- Recent searches for ultralight scalar DM have focused on the electromagnetic (photon) and electron couplings
- Muonium spectroscopy offers a powerful probe of ultralight scalar dark matter via interactions with muons leading to apparent oscillations of muon mass
 - With existing datasets, up to ~10⁷ improvement possible for $\varphi \bar{\mu} \mu$ coupling (up to ~10⁸ for the $\varphi^2 \bar{\mu} \mu$ coupling over an even broader range of scalar DM masses)
- Ongoing muonium free-fall experiments to measure g offer up to ~10⁵ improvement in sensitivity for the combination of $\varphi \bar{\mu} \mu$ and $\varphi \bar{e} e$ couplings by searching for φ -mediated forces

Back-Up Slides

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Profile outside of a spherical body

Gradients + amplification/screening

Gradients + amplification/screening

Fifth Forces: Linear vs Quadratic Couplings

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

Atomic spectroscopy (including clocks) has been used for decades to search for "slow drifts" in fundamental constants **Recent overview:** [Ludlow, Boyd, Ye, Peik, Schmidt, *Rev. Mod. Phys.* 87, 637 (2015)]

"Sensitivity coefficients" K_X required for the interpretation of experimental data have been calculated extensively by Flambaum group
Reviews: [Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$\frac{\nu_{\rm opt,1}}{\nu_{\rm opt,2}} \propto \frac{\left(m_e e^4/\hbar^3\right) F_{\rm rel,1}^{\rm opt}(Z\alpha)}{\left(m_e e^4/\hbar^3\right) F_{\rm rel,2}^{\rm opt}(Z\alpha)}$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$\nu_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$
$$\frac{\nu_{\rm opt,1}}{\nu_{\rm opt,2}} \propto \frac{\left(m_e e^4/\hbar^3\right) F_{\rm rel,1}^{\rm opt}(Z\alpha)}{\left(m_e e^4/\hbar^3\right) F_{\rm rel,2}^{\rm opt}(Z\alpha)}$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

$$|\boldsymbol{p}_e|_{\text{near nucleus}} \sim Z \alpha m_e c$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$\nu_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$
$$K_{\alpha}({\rm H}) = 2.0, K_{\alpha}({\rm Rb}) = 2.3, K_{\alpha}({\rm Cs}) = 2.8$$
Increasing Z

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$\bullet K_{m_e/m_N} = 1$$

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu$$

$$K_{\alpha}(H) = 2.0, K_{\alpha}(Rb) = 2.3, K_{\alpha}(Cs) = 2.8$$

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); *PRA* **59**, 230 (1999); Dzuba, Flambaum, Marchenko, *PRA* **68**, 022506 (2003); Angstmann, Dzuba, Flambaum, *PRA* **70**, 014102 (2004); Dzuba, Flambaum, *PRA* **77**, 012515 (2008)]

• Atomic optical transitions:

$$v_{\rm opt} \propto \left(\frac{m_e e^4}{\hbar^3}\right) F_{\rm rel}^{\rm opt}(Z\alpha)$$

$$K_{\alpha}(Sr) = 0.06, K_{\alpha}(Yb) = 0.3, K_{\alpha}(Hg) = 0.8$$

Increasing Z

• Atomic hyperfine transitions:

$$K_{m_e/m_N} = 1$$

$$v_{\rm hf} \propto \left(\frac{m_e e^4}{\hbar^3}\right) \left[\alpha^2 F_{\rm rel}^{\rm hf}(Z\alpha)\right] \left(\frac{m_e}{m_N}\right) \mu \longleftarrow K_{m_q/\Lambda_{\rm QCD}} \neq 0$$

 $K_{\alpha}(H) = 2.0, K_{\alpha}(Rb) = 2.3, K_{\alpha}(Cs) = 2.8$

Increasing Z

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); Flambaum, *PRL* **97**, 092502 (2006); *PRA* **73**, 034101 (2006); Berengut, Dzuba, Flambaum, *PRL* **105**, 120801 (2010)]

- Sensitivity coefficients may be greatly enhanced for transitions between nearly
 - degenerate levels in:
 - Atoms
 - Highly-charged ions
 - Molecules
 - Nuclei

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); Flambaum, *PRL* **97**, 092502 (2006); *PRA* **73**, 034101 (2006); Berengut, Dzuba, Flambaum, *PRL* **105**, 120801 (2010)]

- Sensitivity coefficients may be greatly enhanced for transitions between nearly degenerate levels in:
 - Atoms
 - Highly-charged ions
 - Molecules
 - Nuclei

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); Flambaum, *PRL* **97**, 092502 (2006); *PRA* **73**, 034101 (2006); Berengut, Dzuba, Flambaum, *PRL* **105**, 120801 (2010)]

- Sensitivity coefficients may be greatly enhanced for transitions between nearly degenerate levels in:
 - Atoms
 - Highly-charged ions
 - Molecules
 - Nuclei

e.g., $|K_{\alpha}(Cf^{15+})| \approx 50$, Optical frequency (Bi isoelectronic sequence)

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); Flambaum, *PRL* **97**, 092502 (2006); *PRA* **73**, 034101 (2006); Berengut, Dzuba, Flambaum, *PRL* **105**, 120801 (2010)]

- Sensitivity coefficients may be greatly enhanced for transitions between nearly degenerate levels in:
 - Atoms
 - Highly-charged ions
 - Molecules
 - Nuclei

Much richer energy level structure possible in molecules than in atoms, and can include contributions from various types of energy intervals:

- Fine-structure
- Hyperfine magnetic
 - Rotational
 - Vibrational
 - Ω-doubling

e.g., $|K_{\alpha}(\text{HfF}^+)| \approx 2000$, $|K_{m_e/m_N}(\text{HfF}^+)| \approx 80$, Far-infrared frequency

[Dzuba, Flambaum, Webb, *PRL* **82**, 888 (1999); Flambaum, *PRL* **97**, 092502 (2006); *PRA* **73**, 034101 (2006); Berengut, Dzuba, Flambaum, *PRL* **105**, 120801 (2010)]

- Sensitivity coefficients may be greatly enhanced for transitions between nearly degenerate levels in:
 - Atoms
 - Highly-charged ions
 - Molecules
 - Nuclei

There exists a low-energy ($\approx 8 \text{ eV}$) isomeric transition between the ground and first-excited states of ²²⁹Th, due to fortuitous cancellation between the electromagnetic and strong force intervals

> $|K_{\alpha}(Th)| \sim 10^4$, Ultraviolet frequency

Atomic Spectroscopy Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

- Dy/Cs [Mainz]: [Van Tilburg et al., PRL 115, 011802 (2015)], [Stadnik, Flambaum, PRL 115, 201301 (2015)]
 - **Rb/Cs [SYRTE]:** [Hees *et al.*, *PRL* **117**, 061301 (2016)], [Stadnik, Flambaum, *PRA* **94**, 022111 (2016)]
 - Al⁺/Yb, Yb/Sr, Al⁺/Hg⁺ [NIST + JILA]: [BACON Collaboration, *Nature* **591**, 564 (2021)]
 - Yb/Cs [NMIJ]: [Kobayashi *et al.*, *PRL* **129**, 241301 (2022)]
 - Yb⁺(E3)/Sr [PTB]: [Filzinger *et al.*, arXiv:2301.03433]

Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

Solid material

 $L_{\text{solid}} \propto a_{\text{B}} = 1/(m_e \alpha)$ $\Rightarrow \nu_{\text{solid}} \propto 1/L_{\text{solid}} \propto m_e \alpha$ (adiabatic regime) Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter

[Stadnik, Flambaum, PRL **114**, 161301 (2015); PRA **93**, 063630 (2016)]

- Sr vs Glass cavity [Torun]: [Weislo et al., Nature Astronomy 1, 0009 (2016)]
- Various combinations [Worldwide]: [Wcislo et al., Science Advances 4, eaau4869 (2018)] ٠
 - Cs vs Steel cavity [Mainz]: [Antypas et al., PRL 123, 141102 (2019)]
 - Sr/H vs Silicon cavity [JILA + PTB]: [Kennedy et al., PRL 125, 201302 (2020)] ٠
 - Sr⁺ vs Glass cavity [Weizmann]: [Aharony et al., PRD 103, 075017 (2021)]
 - H vs Sapphire/Quartz cavities [UWA]: [Campbell et al., PRL 126, 071301 (2021)] ٠

Cavity-Based Searches for Oscillating Variations of Fundamental Constants induced by Dark Matter [Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRA* **93**, 063630 (2016)]

Small-scale experiment currently under development at Northwestern University

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson interferometer (GEO600)

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$

First results recently reported using GEO600 and Fermilab holometer data: [Vermeulen *et al.*, *Nature* 600, 424 (2021)], [Aiello *et al.*, *PRL* 128, 121101 (2022)]

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

- Geometric asymmetry from beam-splitter: $\delta(L_x L_y) \sim \delta(nl)$
- Both broadband and resonant narrowband searches possible: $f_{\rm DM} \approx f_{\rm vibr,BS}(T) \sim v_{\rm sound}/l \Rightarrow Q \sim 10^6$ enhancement
Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Atom Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Graham, Hogan, Rajendran, Van Tilburg, PRD 97, 075020 (2018)]

Phase shift between the two separated atom interferometers is maximised when $T_{\rm osc} \sim 2T$: $\delta(\Delta \Phi)_{\rm max} \sim \delta v_{\rm atom} \cdot T_{\rm osc}$

Constraints on Scalar Dark Matter with $\varphi F_{\mu\nu}F^{\mu\nu}/4\Lambda_{\gamma}$ Coupling

Clock/clock: [*PRL* **115**, 011802 (2015)], [*PRL* **117**, 061301 (2016)], [*Nature* **591**, 564 (2021)]; Clock/cavity: [*PRL* **125**, 201302 (2020)]; GEO600: [*Nature* **600**, 424 (2021)]

4 orders of magnitude improvement!

Constraints on Scalar Dark Matter with $\varphi^2 F_{\mu\nu} F^{\mu\nu} / 4 (\Lambda'_{\gamma})^2$ Coupling

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* **115**, 201301 (2015); *PRA* **94**, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* **98**, 064051 (2018)]

15 orders of magnitude improvement!

Estimated Sensitivities to Scalar Dark Matter with $\varphi \bar{\mu} \mu / \Lambda_{\mu}$ Coupling

[Stadnik, arXiv:2206.10808]

Up to 7 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF in 1990s)

Estimated Sensitivities to Scalar Dark Matter with $\varphi^2 \bar{\mu} \mu / (\Lambda'_{\mu})^2$ Coupling

[Stadnik, arXiv:2206.10808]

Up to 8 orders of magnitude improvement possible with existing datasets! (Best existing datasets from muonium experiments at LAMPF in 1990s)

