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Brief motivation of ML in Jet Tagging

[ Image-based

) Convolutional Neural Network
representation

Jet initiated by different particles

exhibit different characteristics.

/ outgoing particles
\ 4
iy ?
collision polm \
2y ?
prolonbeams

Ay s

( collision event Hjet reconstrucﬁon)—»( jet tagging )

Distinguishing boosted heavy
particle jets from QCD initiated
quark/gluon jet

(W/H/Z/top jets, photon-jets.......)

Jet
Tagging

How to represent a jet
How to analyze the representation

A jet is a spray of particles, produced by
the hadronization of a quark/gluon or originate
from the decay of high-momenta heavy particles.
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Simulation Details

Propagating particles

Soft Killer

Algorithm
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Create tracks of
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charged hadrons
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eflow objects
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We can use Deep learning to analyze low-level LHC data
without constructing high-level observables !

2/35



Introduction to Jet-Image

The image-based representation is based on the reconstruction of jets
with calorimeters. A calorimeter measures the energy deposition of a jet
on fine-grained spatial cells. Treating the energy deposition on each cell as
the pixel intensity naturally creates an image for a jet.

When jets are formed by particles reconstructed with the full detector information
a jet image can be constructed by mapping each particle onto the corresponding
calorimeter cell and sum up the energy if more than one particle is mapped to the same cell.

We can construct different channels to characterize more features.
For example, based on energy flow algorithm in Delphes, we can construct 3 channels for
EflowPhoton, EflowNeutralHadron and EflowTracks, respectively.
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Introduction to CNN

Advantages:

N\ Fewer parameters
Convolution

Shift, scale and
distortion invariance

> Can Local weight sharing
repeat
Convolution many Separate channels
times

Max Pooling
J

Flattened
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CNN Architecture

Conv 5X5
kernel Gonv 5X35 Maxpool2X2  Conv 5X5
kerne| Attention kernel kernel 2106.07018
Adam optimizer
with learning rate

0.001
l:r;:)z;xlzzer gga;:(r);zgps Feature maps Feature maps Feature maps Feature maps
32X40X40 32X40X40 32X20X20  32X20%X20 Photon-jet label: 0
Single photon label: 1
Maxpool2X2  Conv 5X5 Maxpool2X2 o\ i Fully Fully Fully QCD-jet label:2
kernel kernel kernel connected connected‘ connected ®
=) ) m— - ) - .
" . . ) . -
" .
Feature maps Feature maps  Feature maps Hidian Hidden Hidden Outputs
32X10X10 32X10X10 32X5X5 units units il s 3
800 128 32
Shift
Preprocessing Rotation The CNN based on jet images achieve sizable improvement in

performance compared to traditional multivariate methods

Normalization
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Average Jet Images
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Two shortcomings of image-based
representation for jet tagging:

1, Treating jets as images leads to a very
sparse representation.

Without considering the pileup effects, a
typical jet has O(10) to O(100) particles, while
a jet image typically needs O(1000) pixels
(eg.32%x32) in order to fully contain the jet,
more then 90% of the pixels are blank.

2, How to incorporate additional information
of the particles is unclear.

As it involves combining nonadditive

quantities (e.g., the particle type)
of multiple particles entering the same cell.
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Introduction to Particle-based Representation

We organize a jet’s constituent particles into an ordered structure (sequence or tree) based on the py.
Dense Network

We start with N pr-sorted particles per jet, the arguably simplest deep network architecture is a
dense network taking all (pr, 1, ¢) information as a fixed set. We again improve the training
through physics-motivated pre-processing.

. hidden layer | hidden layer 2 hidden layer 3
input layer

output layer

o wo
synapse

axon from a neuron
_WoTo

Y = Activation(Z(weight * input) + bias)

7 cell body

Zwizi +b

output axon

activation
function
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Sigmoid Function
1

Toetel
104

Sigmoid Function: ye

L1

—

The sigmoid function is a commonly used activation function
. 1 . . /

defined as =y where x is the input. It produces values between ohf

0 and 1, which can be interpreted as probabilities. S eaf

Tanh (tanch):

The tanh function is similar to the sigmoid function but produces
values between -1 and 1.

RelU Activation Function

RelLU (Rectified Linear Unit): .

The ReLU (Rectified Linear Unit) function is a popular activation
function in deep learning. It is defined as f(x) = max(0, x), which
means that the output is 0 for any negative input and equal to the
input for any positive input. max(0,x)

Y Axis

-100 -75 -50 -25 00 25 50 75 100
X Axis
Tl T T T T T T T T 1
-100 -75 -50 -25 00 25 50 75 100
X Axis

LReLU (Leaky RelU) fo)A

The LeakyRelLU function is a modification of the ReLU function that
solves the "dying ReLU" problem, where ReLU units can get stuck in
the zero state during training. It is defined as f(x) = max(ax, x),
where «a is a small positive constant that determines the slope of
the function for negative inputs.

Each activation function has its advantages and
disadvantages, and the choice of function depends
on the specific task and network architecture.
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Introduction to Particle-based Representation

Input signal
1D

Convolution

1D
Convolution

P-CNN

The particle-level convolutional neural network (P-CNN) is a customized 1-dimensional CNN for jet
tagging. Each input jet is represented as a sequence of constituents with a fixed length of N,
organized in descending order of py. For each constituent, several input features are computed
from the 4-momenta of the constituent and used as inputs to the network. The P-CNN is similar to
CNN, but only uses a 1-dimensional convolution instead of 2-dimensional convolutions.
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Introduction to Particle-based Representation

Two shortcomings of particle-based representation for jet tagging:
1, The jet length are variable.

As each jet may contain a different number of particles.

2, The particles are needed to be sorted in some way.

The constituent particles in a jet have no intrinsic order;

thus, the manually imposed order may turn out to be suboptimal
and impair the performance.
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Introduction to Point Cloud

We consider a jet as an unordered set of its constituent particles.

more natural !

[ ]

Deep Sets
Framework

IRC-safe Energy Flow network

IRC-not-safe Particle Flow network

ParticleNet
Typical
Architectures ABCNet

LorentzNet

Transformer 11/35



Introduction to Deep Set framework

The Deep Sets framework was adapted and specialized to particle physics in 1810.05165

The Deep Sets framework for point clouds demonstrates how permutation-invariant functions
of variable-length inputs can be parametrized in a fully general way and it enables a natural
visualization of the learned latent space, providing insights as to what exactly the NN is learning.

Observable Decomposition. An observable O can be approrimated arbitrarily well as:

M
o({pla“‘,pM}) =F (Z q)(pi)) ] (11)
i=1
where ® : RY — RY is a per-particle mapping and F : R® = R is a continuous function.

IRC safety corresponds to robustness of the observable under collinear
splittings of a particle or additions of soft particles.

IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated
arbitrarily well as:

M
zi=pri/ > ;pr;  O(p,....om}) =F (Z Ziq)(ﬁi)) ) (1.2)
i=1
where z; is the energy (or pr) and p; the angular information of particle i.
M M
EFN: F (Z Ziq)(ﬁi)) : PFN: F (Z q)(p?;))
i=1 =1

Permutation-invariant & Variable lengths
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Introduction to Deep Set framework

Many common observables are naturally constructed by simple choices
of @ and F. Furthermore, ® and F can be parametrized by NN layers,
capable of learning essentially any function, in order to explore more
complicated observables.

Latent space M
O{p1;.-spu}) =F (Z ‘I’(Pz')) ;

where ® : R¢ — R’ is a per-particle mapping and F' : RY — Y is a continuous function.

/ Each component of the particle mapping is a filter

Particle features
Summing @(p;) over particles induces a latent description

of entire jet, which is mapped by F to the value of observable.

13/35



Network Implementation

M
O ({p}l) =F (Z Zz'q’(ﬁz'))

=1

Wi NN
22 " NN 2 02 QNN
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A &< Lo QBN 03 % S R D Fs
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O dg  Og
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Figure 4. The particular dense networks used here to parametrize (a) the per-particle mapping
® and (b) the function F, shown for the case of a latent space of dimension £ = 8. For the
EFN, the latent observable is O, = >, 2; ®,(ys, ¢;). For the PFN family, the latent observable is
Oa = > Palyi, ¢i, 2i, PID;), with different levels of particle-ID (PID) information. The output of
F is a softmaxed signal (S) versus background (B) discriminant.

. Pr,i
(not necessary) Preprocessing  pr; =o——

=3 ony Vi=Yi— Y, bi =i — P;
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Introduction to ParticleNet (DGCNN) 1902.08570

Point cloud Graph

Irregular Distribution

Object of convolution m——) [

Permutation Invariant

] Points Vertices

Connections between
Edges each point and its k nearest
neighboring points

I Similar to regulagiconvolution operates
X L heo(x;,x; g P
The EdgeConv parameters : j=1 ®( ! IJ) on square patches of images.

are shared for all points !

!/
RF x RF —» RF |
Local Patches

Advantages:
Easily stacked. A deep network can be built with many EdgeConv operations
to learn features of point cloud hierarchically.

The graph describing the point clouds are dynamically updated
to reflect the changes in the edges, i.e., the neighbors of each point.
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Introduction to ParticleNet (DGCNN)

( "coordinates ) ) (" features ) e g . P W N
(coordinates) (features 2] (coordinates) (_features )
Based on
EdgeConv Block EdgeConv Block
QNNMM n— ¢ space| k=16,C = (64, 64, 64) k=7,C= (32,32, 32)
Linear I
EdgeConv Block
[ Bamr:m,m ) Based on k=16, C = (128, 128, 128) ‘ ‘ Edg(e.Co(r[w1 B‘Icck . J
‘, 1LY / v
aby latent space™ ——
l EdgeConv Block l
e k10 b=i2sh, 256.250) ) [ Global Average Pooling J
| BatchNorm | ¥
H:LU [ Global Average Pooling l
1 ¥ Fully Connected
Linear Fully Connected | 128, ReLU, Dropout = 0.1
256, ReL.U, Dropout = 0.1 l
| BatehNorm | ¥
¥ ‘
i Fully Connected FHly Co2nnected
2
! .
‘ Softmax Softmax
\ ReLU /
l (a) (b)

FIG. 2. The architectures of the (a) ParticleNet and the

FIG. 1. The structure of the EdgeConv block. (b) ParticleNet-Lite networks.

The “edge features” are constructed from the “features” input using the indices of k nearest
neighboring particles. The EdgeConv operation is implemented as a 3-layer MLP.

After the EdgeConv blocks, a channel wise global average pooling operation is applied to
aggregate the learned features over all particles in the cloud.
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Introduction to ABCNet 2001.05311

The attention-based cloud net (ABCNet) treats each collider event as an
unordered set of points that defines a point cloud. To enhance the extraction
of local information, an attention mechanism is used. The main difference
between ABCNet and ParticleNet is that ABCNet takes advantage of attention
mechanisms to enhance the local feature extraction, allowing for a more
compact and efficient architecture. To capture the global information, direct
connections for global input features can be directly added.

Key part: GAPLayer (Graph Attention Pooling Layer)

The point cloud is first represented as a graph with vertices represented by the points themselves.
The edges are constructed by connecting the points to their k-nearest neighbors, while the edge
features, y;; = (x; — x;;), are taken as the difference between features of each point x; and

its k-neighbors x;;.
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A GAPLayer is constructed by first encoding each point and edge to a higher-level feature space of
dimension F using a single-layer neural network (NN), with learnable parameters 6, in the following form:

Point Feature ;U,: h(:c@-, 9@-, F)

Edge Feature yéj = h('yijae:ij:F) }’U = (xi _ xij)

Attention coefficient  ¢;; = LeakyRelu(h(@, 92, 1) + h(ygj, 9;7-, 1))

A single attention feature for each pointis Z; = Relu Z CijYij
J

The outputs of each GAPLayer consist of attention features (X;) and graph
features (yl-'j). The graph features are further aggregated in the form:

max

. /
yzj = max (yzj)

A M-head process repeats the same procedure
described above M times, differing only on the random
weight initialisation. The M results are combined by
taking the maximum.
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Input cloud Global features

(Nx8) (Nx2)
AR = AT] 2 + A(p 2 ((?;(A::g.y:zr i312)} Fully connected {16}
Attention features Graph features

!

Fully connected {128}

Concatenati
Fully connected {128}

Distances in the \ \ § - g R 5 8
transformed GAP layer {64} T = = & o @ I =

(k=10,H=2) o B B = B = B
feature space Aggregation —> 83— o .8 .5 .8 .5 .2 &
/ \ £ o £ 2 £ 2 5 &
5] g ] <] 5] ) o o
/ (5] g Q 5 o 5 2‘ @

Attention features Graph features = < = = ol

w [N w

Fully conmlacted {128} A—’/
}

Fully connected {128}

Fig. 1. ABCNet architecture used for quark-gluon tagging. Fully connected layer and encoding node sizes are denoted inside
“{}". For each GAPLayer, the number of k-nearest neighbours (k) and heads (H) are given.

Input features: An, Ag, log pr, log E, log ;—T, log EE, AR, PID
Tj j
Global features: m;, pr;
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Introduction to LorentzNet 2201.08187

LorentzNet, a new symmetry-preserving deep learning model for jet tagging. The
message passing of LorentzNet relies on an efficient Minkowski dot product attention.

Preprocessing cannot achieve full invariance to arbitrary Lorentz transformations.

LorentzNet directly scalarizes the input 4-vectors to realize Lorentz symmetry.

Specifically, they design Minkowski dot product attention, which aggregates the 4-vectors with
weights learned from Lorentz-invariant geometric quantities under the Minkowski metric.

They regard the constituent particles as a point cloud, which is an unordered,
permutation invariant set of particles V = (v, ...,vy) € RN*4

Vector Vi = (Ezapzwapzyapzz)
|nput Scalar S’L = (Sii’ Sé) « e ’S?d)
Graph G = (V, E) where V is the set of nodes and F is the set of edges.
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Let @ be the Lorentz transformation, the Lorentz equivariance of ¢(-) means:

Qé(v) = ¢(Qu), for ¢(v) € RY;
$(v) = ¢(Qu), for ¢(v) € R. (2.3)

The construction of the LorentzNet is based on the following universal
approximation theorem for the Lorentz group equivariant continuous function.

Proposition 3.1. [6/] A continuous function ¢ : (RVN*4) — R* is Lorentz-equivariant if

and only if
N
d)(’ljl,’l}g,“‘ ,UN) :Zgi(<vi>vj>%:1)vi7 (31)
=1

where g; are continuous Lorentz-invariant scalar functions, and {-,-) is the Minkowski inner

product.
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probarbility

( Softmax |
i

( Decoding | Two fully connected layers

i
[ Dropout ]

! 1
[ AveragePooling | h*' = N Z hE.
1 ht i€[N]
LGEB
ThL—l T 2L-1
LGEB xL-1

h° x¢
Embedding
B MLP  []) Sum Pooling @ Minkowski Norm & - ’

Inner Product T
Scalars 4-momentum

Lorentz Group Equivariant Block (LGEB) LorentzNet

Figure 1. (left): the structure of the Lorentz Group Equivariant Block (LGEB). (right): the
network architecture of the LorentzNet.

The inputs include the PID, mass and the 4-momenta of each particles.

They use h! = (hi, hé, ...,h,lv) to denote the node embedding scalars and x! = (x{,xé, ...,x,lv) to
denote the coordinate embedding vectors in the |-th LGEB layer.

Edge message:  mi; = e (L, b, w(la} — 241%), w((eh2}))  w() = sgn(:) log(]-]+1)

Minkowski dot product attention: z/™' =i +c¢ Y ¢s(mij) -2} W =hl+ g, (hﬁ, 3 wijmij) Wi = ¢m(m§g) € [O, 1].
JEIN] JEIN] T . S

bxr DPn, Ge, O are all scalar functions modeled by NN (linear layers).
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Introduction to Transformer

.pe . Output
Classification o . piities

-
Add & Norm
Feed
Forward
/7 1 N\ | Add & Norm g
e Multi-Head
Feed Attention
Forward D) Nx
—
Nix Add & Norm
~—>{_Add & Norm } Ve
Multi-Head Multi-Head
Attention Attention
, S At
\_ J \_ _JJ
Positional & ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs  Generation
(shifted right)

Figure 1: The Transformer - model architecture.

Encoder Decoder

The original Transformer as well as its
variants have refreshed the performance
records in various tasks, from NLP to CV.

Inputs encoding + Positional encoding

Self-Attention Layers

Query, Key and Value vectors

Matching Q and K

. (QKT)
Attemmn(Q,K, V) = softmax %
Va

SA LAYER

KEY (daxN)
INPUT —— ConviD

VALUE (Nxdou)

Matrix multiplication

1 Matrix subtraction

Matrix addition
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Introduction to Point Cloud Transformer 2102.05073

Point Cloud Transformer incorporates the advantages of the Transformer architecture to an unordered
set of particles resulting from collision events.

INPUT DATASET
(Nxdm)
¥

FEATURE EXTRACTOR i NXdin N xdou
(Nxdou) Fin €R m— F. € R t

v
SA LAYERS Provide the relationship between all particles

(Nxdout) in the set through attention weights.
./
CONCATENATION
\
ConviD
v
Average pooling
./

FULLY CONNECTED

+

OUTPUT
(Ncategories)

Multiple SA layers can be stacked to achieve different levels of abstraction

To complete the general architecture, the SA layers are combined through a simple
concatenation over the feature dimension, followed by a mean aggregation,
resulting in the overall means of each feature across all the particles.
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Introduction to Point Cloud Transformer

FEATURE EXTRACTOR
SPCT PCT (2x)
INPUT INPUT
! v
ConviD EdgeConv Capture I‘_ocal
l ‘ Information
Conv2D
ConviD v
Conv2D
2
Conv2D
¥
Average pooling
v
OUTPUT OUTPUT

EdgeConv uses a k-nearest neighbors
approach to define a vicinity for
each pointin the point cloud.

Off-set Attention: F;, — F,
results in a superior
classification performance

SA LAYER
KEY (daxN)
INPUT ——— ConviD
o o
— 8- T o
O 3
2 23ad Gl Ty VALUE (Nxdou)
‘ Matrix multiplication
» «+«— ConviD
l Matrix subtraction
OUTPUT Matrix addition

The output of the feature extractor F, is used as the input of the first SA layer.

Attention weights are created by matching Q and K through matrix multiplication.
These attention weights, after normalization, represent the weighted importance
between each pair of particles. The self-attention is then the result of the

weighted elements of V, defined as the result of the matrix multiplication
between the attention weights and the value matrix.

Q,K,V=F.(Wy, Wi, W,)
Q, K € RVxda 'V € RNV xdous
A = Softmax(Q.K™)/N, A € RV*N
Fyo =A-V,F,, € RVXu
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Introduction to Particle Transformer 2202.03772

Particle Transformer: Incorporating pairwise interactions in the attention mechanism

x? € RV*d Lblocks Class token i
—
=11}
-,g Particle Particle Particle Clas.s Clas§
. = . Attention Attention
Particles —» 2 Attention Attention f- - - - - - - - - ->| Attention Block Block
g Block Block -1 Block L
) 7y
~—
&
) sl U
Interactions —» % -------- The same U is used for all the
&) Ue RNV *Nxd (a) Particle Transformer particle attention blocks.

Particles form an array of (N, C), each particle has C features.
Interactions form an array of (N, N, C’), each pair of particles has C’ features.

- [nA
A= ‘\/(ya o yb)2 T (ﬁba 7 ¢b)2a
Ink kr = min(pr q, pr.p)A,
Interactions 4 Ing o o= min(pT,a,pT,b)/(pT,a + p'l‘,b)a
m2 — (Ea -} Eb)2 = ||pa + pb“za
- Inm?
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Introduction to Particle Transformer

Key part Of particle transformer GELU: Gaussian Error Linear Unit

— GELU (x) =~ 0.5x(1 +4 tanh(\/ﬂ(x F0.044715x%))) ~ x - sigmoid(1.702x)

Xclass

Multi-head Attentjpn

(P-MHA ). &
[ MatMul )
shortcut shortcut
U
- =
X
xl—l Xclass xL
(b) Particle Attention Block (c) Class Attention Block

Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

- They take U as the
P-MHA(Q, K, V) = SoftMax(QK™ /vdi + U)V,  5ttention mask matrix

Nxd4 Scale: d;, = d; embedding dimension

QER k 1

Ke RN*d1 Qi = QW K, = KWKV, =VWY, i=1,---,8
head; = Attention(Q;, K;,V;), i=1,---,8

Ve RNxdz MultiHead(Q, K, V') = Concat(head; , - - - , headg ) W?

Ue RV*N Wesetd, =d, =d,/h
1ol 27/35



Typical evaluation metrics for performance

Accuracy
AUC (Area under ROC curve)
. 1 . -
Background rejection (E—) at a certain signal efficiency €,
b

Top Tagging Acc  AUC  1/eg (es =0.5) 1/eg (es = 0.3)
ResNeXt-50 [17] 0.936  0.9837 302+5 1147+58
P-CNN [17] 0.930  0.9803 20144 759424
PFN [33] - 0.9819 24743 888+17
ParticleNet-Lite [17] 0.937  0.9844 32545 1262449 Perfect RO curve
ParticleNet [17] 0.940 0.9858 397+7 1615+93 1.0
JEDI-net [21] 0.9263 0.9786 - 590.4 X 7
JEDI-net with S0 [21] 0.9300 0.9807 - 774.6 g
SPCT 0.928  0.9799 20149 725454 o 7N
PCT 0.940  0.9855 39247 1533101 Z 05 Worse
LorentzNet 0.942 0.9868 498118 2195+173 qS)
=
Gluon/Quark
Discrimination Acc AUC 1/eg (es =0.5) 1/ep (es =0.3) 0.0
ResNeXt-50 [17] 0.821  0.9060 30.9 80.8 0.0 0.5 1.0
P-CNN [17] 0.827  0.9002 34.7 91.0 False positive rate
PFN [33] - 0.9005 34.7+0.4 -
ParticleNet-Lite [17] 0.835  0.9079 37.1 94.5
ParticleNet [17] 0.840 0.9116 39.840.2 98.641.3
ABCNet [18] 0.840 0.9126 42.640.4 118.4+1.5
SPCT 0.815 0.8910 31.6+0.3 93.041.2 Taken from 2102.05073
PCT 0.841 0.9140  43.2+0.7 118.0+£2.2
LorentzNet 0.844 0.9156 42.41+0.4 110.2+1.3
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Dual Attention Transformer

Minxuan He & Daohan Wang 2206.XXXXX

Spatial tokens: Particle numbers (Different particles)  Local
Self-Attention

Channel tokens: Feature numbers (Different features) Global

NNy NN O &
b’?
spatial & & channel LS
token m m m A Q?%\O transpose token j @Q@o
\\ﬁyiy\& tokenization 5\&
OOy & 3
S LI
spatial dimension spatial dimension
(a) Spatial Window Multihead Self-attention (b) Channel Group Self-attention
S et B With spatial tokens, the spatial
’ | Projection | \ It spatla tokens, the spatla

dimension defines the token
scope, and the channel
dimension defines the token

T
Softmax " C,XP

O, X C, feature dimension.
T~--C‘gxP pPXCy TngxP

With channel tokens, the channel
dimension defines the token scope,
and the spatial dimension defines
the token feature dimension.

N, X1IxXC,xP
Transpose & Reshape
1

| Projection ‘

I
I
I
|
I
:
|
, (9]
I
|
|
I
I
I
|
:
\

___________________
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Dual Attention Transformer

(] s

a

Transpose 4 g
CxP N LN

Softmax Softmax
Linear Linear

® ®
cxC CG‘?E PXP—‘ E
CxP g P CxP @ c g CxP PxC @

-1

o
)
)

M
&

Transpose Projection

Linear

L

T
R
R
R

X

~ Spatial Window Attention I:> A(Q, K, V) = Concat(heady, . . ., headn,)
where head; = Attention(Q;, K;, V;)

Qi (K;)T

+ U1 | V;
oY)

= softmax [

each channel token itself is
global on the spatial dimension,
providing a global view of the image.

Q'K;

~ Channel Group Attention :> AQ;, K, V) = SOftmax[ JC + Uy V;;r
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Dual Attention Transformer

AR = \/(ya — 1) + (da — d1)%,
kr = min(prq, prp)A,

Interaction
Embedding

Interaction
Embedding

Interaction
Embedding

Interaction
Embedding

z = min(pr.a,p1)/(PT.0 + PTb)s [ Particle ] [ Channel ] [ Particle ] [ Channel ]

m? = (Eq + Ep)? — ||pa + pol|%,
Apr = pra — PTh

Jet Feature Particle Channel Particle Channel
Dataset Extractor 0 Self Attention Self Attention Self Attention Self Attention
X

Px10 PXN
Average
Pooling Concatenate Channel Particle
Output g SoftMax T Self Attention Self Attention
Z
Channel Particle
Input features Interaction Interaction
Embedding Embedding
log E, log |pz|, log |py|, log [p.],
v F
log pr, *, —-, An A¢, AR, PID
pri Ej
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Dual Attention Transformer

{E, Pay Pys Pz PT, Y _prs, Y Ef, An, Ad, AR, PID}' (3.3)

I E | po | 2y | - | pr | Xprs | LEf| An Ad AR | PID
E 1 | & | B | B | B 0 1 0 0 0 i
pe | 22 | 1 0 0 | B 0 0 0 0 0 deti
py | |0 1 0 v 0 0 0 0 0 Bpfip
p. | B | 0 0 1 0 0 0 0 0 0 Lerip
pr | B | B | 0 1 1 0 0 0 EESiR
Spry| O 0 0 0 1 1 0 0 0 0 PTfPID
S Ef 1 0 0 0 0 0 1 0 0 0 Espip
An | o 0 0 0 0 0 0 1 0 2 Anprp
A | 0 0 0 0 0 0 0 0 1 2% | Aépip
AR | 0 | 0 | 0 | 0| 0 | o0 o | &2 | 2 | 1 |ARrp
PID | Ezin | P e p"‘:;D DI\ PEPID | pryprp | Efpip Anprp | A¢prp | ARprp 1

Table 1. The jet feature pairwise interaction matrix used as the inputs for the P-DAT.
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Dual Attention Transformer

Constraints in Pairwise Interaction Matrix

1, Limited by computational time and memory consumption, it is
difficult to use the full pairwise interaction matrix.

2, We solved the memory usage problem by importing and deleting
data during training.

3, The computational time problem regarding of using the full pairwise
interaction matrix is still unresolved. We need novel approaches for
particle embeddings and self-attentions in order to fully utilize the
physics principles.
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Future QOutlook

1, Point Cloud based representation and Transformer show excellent performance.
We can explore more novel methods for input embedding and self attentions
that improve the classification performance and alleviate the computational cost.

2, Point Cloud based representation can be used for other interesting physics problems
such as pileup subtraction, jet grooming and jet energy calibration.

3, Based on the Point Cloud representation and EFN/PFN, we can explore different
variant architectures and try to obtain a natural visualization of the learned latent space,

providing insights as to what exactly the NN is learning.

4, We can try to incorporate more priors or constraints from physics principles in
the architecture designs.

5, How to evaluate the statistical uncertainties of deep learning in jet tagging?
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Tnamnks for your eittention

35/35



