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Jet
Tagging

Brief motivation of ML in Jet Tagging

Distinguishing boosted heavy 
particle jets from QCD initiated 
quark/gluon jet
(W/H/Z/top jets, photon-jets…….)
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How to represent a jet 
How to analyze the representation

Image-based 
representation

Particle-based 
representation

Point cloud 
representation

Convolutional Neural Network

Simple Dense Network

Recurrent Neural Network

1D Convolutional Neural Network

Deep Set framework

ParticleNet

Point Cloud Transformer

Jet initiated by different particles 
exhibit different characteristics.

A jet is a spray of particles, produced by 
the hadronization of a quark/gluon or originate 
from the decay of high-momenta heavy particles. 

Transformer Particle Transformer

ABCNet

LorentzNet

Tree-based 
representation

Recursive Neural Network

Dual Attention Transformer
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Simulation Details

MadGraph Pythia Delphes

FastJet

Parton level 
events HEPMC file Jets

Pileup 
events

Propagating particles

Create tracks of 
electrons, muons and 

charged hadrons

Pass through ECAL 
and HCAL to create 

eflow objects

Clustering eflow
objects

FeynRules

We can use Deep learning to analyze low-level LHC data 
without constructing high-level observables !

Soft Killer
Algorithm



Introduction to Jet-Image

The image-based representation is based on the reconstruction of jets
with calorimeters. A calorimeter measures the energy deposition of a jet 
on fine-grained spatial cells. Treating the energy deposition on each cell as 
the pixel intensity naturally creates an image for a jet.

When jets are formed by particles reconstructed with the full detector information
a jet image can be constructed by mapping each particle onto the corresponding 
calorimeter cell and sum up the energy if more than one particle is mapped to the same cell.

We can construct different channels to characterize more features.
For example, based on energy flow algorithm in Delphes, we can construct 3 channels for
EflowPhoton, EflowNeutralHadron and EflowTracks, respectively. 
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Introduction to CNN

Advantages:

Fewer parameters

Shift, scale and 
distortion invariance

Local weight sharing

Separate channels
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CNN Architecture

Adam optimizer
with learning rate 

0.001

Photon-jet label: 0
Single photon label: 1

QCD-jet label:2

Preprocessing

Shift

Rotation

Normalization

The CNN based on jet images achieve sizable improvement in 
performance compared to traditional multivariate methods

2106.07018
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Average Jet Images 

Two shortcomings of image-based 
representation for jet tagging:

1, Treating jets as images leads to a very 
sparse representation.

Without considering the pileup effects, a 
typical jet has O(10) to O(100) particles, while 
a jet image typically needs O(1000) pixels 
(eg.32×32) in order to fully contain the jet, 
more then 90% of the pixels are blank.

2, How to incorporate additional information 
of the particles is unclear.

As it involves combining nonadditive 
quantities (e.g., the particle type) 
of multiple particles entering the same cell.



Dense Network

We start with N 𝑝𝑇-sorted particles per jet, the arguably simplest deep network architecture is a 
dense network taking all (𝑝𝑇 , 𝜂, 𝜙) information as a fixed set. We again improve the training 
through physics-motivated pre-processing.
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We organize a jet’s constituent particles into an ordered structure (sequence or tree) based on the 𝒑𝑻.

Introduction to Particle-based Representation

𝑌 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛( 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠)



• Sigmoid Function:

• The sigmoid function is a commonly used activation function 

defined as
1

e−𝑥+1
, where x is the input. It produces values between 

0 and 1, which can be interpreted as probabilities.

• Tanh (tanch):

• The tanh function is similar to the sigmoid function but produces 
values between -1 and 1. 

• ReLU (Rectified Linear Unit):

• The ReLU (Rectified Linear Unit) function is a popular activation 
function in deep learning. It is defined as f(x) = max(0, x), which 
means that the output is 0 for any negative input and equal to the 
input for any positive input.

• LReLU (Leaky ReLU)

• The LeakyReLU function is a modification of the ReLU function that 
solves the "dying ReLU" problem, where ReLU units can get stuck in 
the zero state during training. It is defined as f(x) = max(𝛼x, x), 
where 𝛼 is a small positive constant that determines the slope of 
the function for negative inputs.
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Each activation function has its advantages and 

disadvantages, and the choice of function depends 

on the specific task and network architecture.



P-CNN 

The particle-level convolutional neural network (P-CNN) is a customized 1-dimensional CNN for jet 
tagging. Each input jet is represented as a sequence of constituents with a fixed length of N, 
organized in descending order of 𝑝𝑇. For each constituent, several input features are computed 
from the 4-momenta of the constituent and used as inputs to the network. The P-CNN is similar to 
CNN, but only uses a 1-dimensional convolution instead of 2-dimensional convolutions. 
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Introduction to Particle-based Representation



Two shortcomings of particle-based representation for jet tagging:

1, The jet length are variable.

As each jet may contain a different number of particles.

2, The particles are needed to be sorted in some way.

The constituent particles in a jet have no intrinsic order; 
thus, the manually imposed order may turn out to be suboptimal
and impair the performance.

Introduction to Particle-based Representation
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Introduction to Point Cloud
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We consider a jet as an unordered set of its constituent particles.

Permutation Invariant

more natural !

Typical 
Architectures

Deep Sets 
Framework

IRC-safe Energy Flow network

IRC-not-safe Particle Flow network

ParticleNet

ABCNet

LorentzNet

Transformer



Introduction to Deep Set framework

The Deep Sets framework was adapted and specialized to particle physics in 1810.05165

The Deep Sets framework for point clouds demonstrates how permutation-invariant functions 
of variable-length inputs can be parametrized in a fully general way and it enables a natural 
visualization of the learned latent space, providing insights as to what exactly the NN is learning.
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Permutation-invariant & Variable lengths

IRC safety corresponds to robustness of the observable under collinear 
splittings of a particle or additions of soft particles.



Introduction to Deep Set framework
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Many common observables are naturally constructed by simple choices 
of Φ and F. Furthermore, Φ and F can be parametrized by NN layers, 
capable of learning essentially any function, in order to explore more 
complicated observables.

Particle features

Latent space

Each component of the particle mapping is a filter

Summing 𝜱 𝒑𝒊 over particles induces a latent description 
of entire jet, which is mapped by F to the value of observable. 



Network Implementation

Softmax
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（not necessary）Preprocessing 𝑝𝑇,𝑖 =

𝑝𝑇,𝑖

σ𝑗 𝑝𝑇,𝑗
, 𝑦𝑖 = 𝑦𝑖 − 𝑦𝑗, 𝜙𝑖 = 𝜙𝑖 − 𝜙𝑗



Introduction to ParticleNet (DGCNN)
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Irregular Distribution

Object of convolution

Permutation Invariant

EdgeConv

Point cloud Graph

Points Vertices

Local Patches

Edges
Connections between 
each point and its k nearest 
neighboring points

𝑅𝐹 × 𝑅𝐹 → 𝑅F
′

The EdgeConv parameters 
are shared for all points !

Advantages: 
Easily stacked. A deep network can be built with many EdgeConv operations
to learn features of point cloud hierarchically.

The graph describing the point clouds are dynamically updated 
to reflect the changes in the edges, i.e., the neighbors of each point. 

Similar to regular convolution operates 
on square patches of images. 

1902.08570



Introduction to ParticleNet (DGCNN)

Based on
𝜂 − 𝜙 space

Based on
latent space
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The “edge features” are constructed from the “features” input using the indices of k nearest 

neighboring particles. The EdgeConv operation is implemented as a 3-layer MLP.

After the EdgeConv blocks, a channel wise global average pooling operation is applied to 

aggregate the learned features over all particles in the cloud. 



The attention-based cloud net (ABCNet) treats each collider event as an 
unordered set of points that defines a point cloud. To enhance the extraction 
of local information, an attention mechanism is used. The main difference 
between ABCNet and ParticleNet is that ABCNet takes advantage of attention 
mechanisms to enhance the local feature extraction, allowing for a more 
compact and efficient architecture. To capture the global information, direct 
connections for global input features can be directly added.

Introduction to ABCNet

Key part: GAPLayer (Graph Attention Pooling Layer)

The point cloud is first represented as a graph with vertices represented by the points themselves. 

The edges are constructed by connecting the points to their k-nearest neighbors, while the edge 
features, 𝑦𝑖𝑗 = (𝑥𝑖 − 𝑥𝑖𝑗), are taken as the difference between features of each point 𝑥𝑖 and 

its k-neighbors 𝑥𝑖𝑗. 
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2001.05311



A GAPLayer is constructed by first encoding each point and edge to a higher-level feature space of 
dimension F using a single-layer neural network (NN), with learnable parameters θ, in the following form:

A single attention feature for each point is

The outputs of each GAPLayer consist of attention features ( ො𝑥𝑖) and graph 
features (𝑦𝑖𝑗

′ ). The graph features are further aggregated in the form:
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𝑦𝑖𝑗 = (𝑥𝑖 − 𝑥𝑖𝑗)

Point Feature

Edge Feature

Attention coefficient

A M-head process repeats the same procedure 
described above M times, differing only on the random 
weight initialisation. The M results are combined by 
taking the maximum.



Input features: Δ𝜂, ∆𝜙, log 𝑝𝑇, log E, log 
𝑝𝑇

𝑝𝑇𝑗
, log 

𝐸

𝐸𝑗
, ∆𝑅, PID

Global features: 𝑚𝑗 , 𝑝𝑇𝑗

Δ𝑅 = Δ𝜂2 + Δ𝜑2

Distances in the 
transformed
feature space

Concatenation
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LorentzNet, a new symmetry-preserving deep learning model for jet tagging. The 
message passing of LorentzNet relies on an efficient Minkowski dot product attention.

Preprocessing cannot achieve full invariance to arbitrary Lorentz transformations.
LorentzNet directly scalarizes the input 4-vectors to realize Lorentz symmetry. 
Specifically, they design Minkowski dot product attention, which aggregates the 4-vectors with 
weights learned from Lorentz-invariant geometric quantities under the Minkowski metric. 

Introduction to LorentzNet

They regard the constituent particles as a point cloud, which is an unordered, 
permutation invariant set of particles 𝑽 = 𝒗𝟏, … , 𝒗𝑵 ∈ 𝑹𝑵×𝟒

Vector

Scalar

Graph

Input
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2201.08187



The construction of the LorentzNet is based on the following universal 
approximation theorem for the Lorentz group equivariant continuous function.
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The inputs include the PID, mass and the 4-momenta of each particles.

They use ℎ𝑙 = (ℎ1
𝑙 , ℎ2

𝑙 , … , ℎ𝑁
𝑙 ) to denote the node embedding scalars and 𝑥𝑙 = (𝑥1

𝑙 , 𝑥2
𝑙 , … , 𝑥𝑁

𝑙 ) to 
denote the coordinate embedding vectors in the l-th LGEB layer.

Edge message: ψ(·) = sgn(·) log(|·|+1)

Two fully connected layers

Minkowski dot product attention: 

𝜙𝑥, 𝜙ℎ , 𝜙𝑒, 𝜙𝑚 are all scalar functions modeled by NN (linear layers).
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Introduction to Transformer

The original Transformer as well as its 
variants have refreshed the performance 
records in various tasks, from NLP to CV. 
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Inputs encoding + Positional encoding

Query, Key and Value vectors

Self-Attention Layers

Weighted sum of V and attention weightsMatching Q and K

Classification

Generation



Introduction to Point Cloud Transformer

To complete the general architecture, the SA layers are combined through a simple 
concatenation over the feature dimension, followed by a mean aggregation, 
resulting in the overall means of each feature across all the particles. 
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Provide the relationship between all particles
in the set through attention weights.

Point Cloud Transformer incorporates the advantages of the Transformer architecture to an unordered 
set of particles resulting from collision events.

Multiple SA layers can be stacked to achieve different levels of abstraction

2102.05073



Introduction to Point Cloud Transformer

EdgeConv uses a k-nearest neighbors
approach to define a vicinity for 

each point in the point cloud.

The output of the feature extractor 𝐹𝑒 is used as the input of the first SA layer.

Attention weights are created by matching Q and K through matrix multiplication. 
These attention weights, after normalization, represent the weighted importance 
between each pair of particles. The self-attention is then the result of the 
weighted elements of V, defined as the result of the matrix multiplication 
between the attention weights and the value matrix.

Off-set Attention: 𝑭𝒔𝒂 − 𝑭𝒆
results in a superior 
classification performance

Capture Local 
Information
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Introduction to Particle Transformer

Particle Transformer: Incorporating pairwise interactions in the attention mechanism

Particles form an array of (N, C), each particle has C features.
Interactions form an array of (N, N, 𝐶′), each pair of particles has 𝐶′ features.

The same U is used for all the
particle attention blocks.

Interactions

𝑙𝑛Δ

𝑙𝑛𝑘𝑇

𝑙𝑛𝑧

𝑙𝑛𝑚2
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2202.03772



Introduction to Particle Transformer

Key part of particle transformer

Multi-head Attention

shortcut

shortcut

shortcut

Matrix Multiply

Q∈ 𝑅𝑁×𝑑1

K∈ 𝑅𝑁×𝑑1

V∈ 𝑅𝑁×𝑑2

U∈ 𝑅𝑁×𝑁

Scale: 𝑑𝑘 = 𝑑1 embedding dimension

𝑊𝑒 𝑠𝑒𝑡 𝑑1 = 𝑑2 = 𝑑𝑜/ℎ

They take U as the 
attention mask matrix
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GELU: Gaussian Error Linear Unit



Typical evaluation metrics for performance

Accuracy

AUC (Area under ROC curve)

Background rejection (
1

𝜖𝑏
) at a certain signal efficiency 𝜖𝑠

Top Tagging

Gluon/Quark 
Discrimination
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Taken from 2102.05073

LorentzNet 0.844 0.9156 42.4±𝟎. 𝟒 110.2±𝟏. 𝟑

LorentzNet 0.942 0.9868 498±18 2195±𝟏𝟕𝟑



Dual Attention Transformer

Minxuan He & Daohan Wang          2206.xxxxx 

Self-Attention

Spatial tokens: Particle numbers (Different particles)

Channel tokens: Feature numbers (Different features)

With channel tokens, the channel 
dimension defines the token scope, 
and the spatial dimension defines 
the token feature dimension.

Local

Global
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With spatial tokens, the spatial 
dimension defines the token 
scope, and the channel 
dimension defines the token 
feature dimension.



Spatial Window Attention

Channel Group Attention

each channel token itself is 
global on the spatial dimension, 
providing a global view of the image. 

Dual Attention Transformer
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Dual Attention Transformer

Input features



Dual Attention Transformer
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Dual Attention Transformer

Constraints in Pairwise Interaction Matrix

1, Limited by computational time and memory consumption, it is 
difficult to use the full pairwise interaction matrix.  

2, We solved the memory usage problem by importing and deleting 
data during training. 

3, The computational time problem regarding of using the full pairwise 
interaction matrix is still unresolved. We need novel approaches for 
particle embeddings and self-attentions in order to fully utilize the 
physics principles.
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Future Outlook

1, Point Cloud based representation and Transformer show excellent performance. 
We can explore more novel methods for input embedding and self attentions 
that improve the classification performance and alleviate the computational cost.

2, Point Cloud based representation can be used for other interesting physics problems 
such as pileup subtraction, jet grooming and jet energy calibration.

3, Based on the Point Cloud representation and EFN/PFN, we can explore different  
variant architectures and try to obtain a natural visualization of the learned latent space, 
providing insights as to what exactly the NN is learning.

4, We can try to incorporate more priors or constraints from physics principles in
the architecture designs.

5, How to evaluate the statistical uncertainties of deep learning in jet tagging?

34/35



35/35


