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what is dark matter?
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yet to be discovered particles? basic requirements:

• not visible ⇒ electrically neutral

• around long ago & still today ⇒ stable or very long-lived

• correct structure formation long ago ⇒ rather heavy

known particles fail to satisfy these requirements

cartoon candidates from https://xkcd.com/2035/:
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very influential: “wimp paradigm”

postulate the existence of weakly interacting massive particles

(“heavy neutrinos”) which cannot decay and are thus stable

“indirect detection” from galactic center:

DM

DM

DM
′

“direct detection” by nuclear recoil:

DM DM
′

“collider search” through missing energy:

DM
′

DM
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text-book wimp is in trouble
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lee-weinberg equation3 (n=number density, H=Hubble rate)

(∂t + 3H)n = −〈σv rel〉 (n
2 − n

2
eq)

DM

DM

linearize around equilibrium:

n = n eq + δn , n
2 − n

2
eq ≈ 2n eqδn

parametrize cross section:

〈σv rel〉 ≡ α2

M2
, M ≡ MDM

3
B.W. Lee and S. Weinberg, Cosmological Lower Bound..., Phys. Rev. Lett. 39 (77) 165
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⇒ (∂t + 3H)n ≈ −
2α2n eq

M2
δn

equilibrium number density is a known function of T,M :

n eq ∝
∫

d3
p

(2π)3
1

e
√
p2+M2/T ± 1

≈
(
MT

2π

)3/2

e
−M/T

the right-hand side becomes very small if α2n eq/M
2 ≪ H
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indeed a numerical solution shows a “freeze-out” (Y ≡ n/s):
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⇒ final energy density (e ≡ Mn) grows faster than ∼ M :
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WIMP miracle

overclosure

null searches at LHC push up M , so danger of “overclosure”
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could increased 〈σv
rel
〉 help?
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large cross section could originate via “resonant” effects

s-channel

t-channel
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simplest t-channel enhancement:4 “sommerfeld effect”5

〈σv rel〉 −→ 〈σ tree v rel S(v rel)〉

for attractive coulomb-like interaction:

S(v rel) ∼ α

v rel

for v rel
<∼α

4
e.g. J. Hisano et al, Non-perturbative effect on ... dark matter, hep-ph/0610249

5
e.g. L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Third Edition, §136
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even more efficient:6 bound states

Mbound = 2M − ∆E ⇒ e
−Mbound/T > e

−2M/T

⇒ exponential enhancement e∆E/T over the tree-level estimate

(typically the dark sector contains several species, DM and DM’,

and perhaps only one of them forms bound states)

6
e.g. B. von Harling and K. Petraki, Bound-state formation for ..., 1407.7874
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the boost can also be after annihilation: s-channel

DM

DM

on-shell

M resonance = 2M + ∆M ⇒ 〈σv rel〉 “diverges” on-shell

⇒ a very large cross section?

14



example of phenomenology from a higgs resonance7

⇒ thanks to a large cross section, very small couplings allowed

7
M. Di Mauro, C. Arina, N. Fornengo, J. Heisig and D. Massaro, Dark matter at the

Higgs resonance, 2305.11937
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why the large uncertainties?

given the peculiar dynamics, the usual assumption of kinetic

equilibrium has been questioned for s-channel resonances8

note that kinetic equilibrium is certainly not there for “freeze-in”

dark matter — here we focus on non-relativistic “freeze-out” case

in addition there appear to be large QCD uncertainties

8
T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling

of dark matter: when the standard way of calculating the thermal relic density fails,

1706.07433; K. Ala-Mattinen and K. Kainulainen, Precision calculations of dark matter

relic abundance, 1912.02870; T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk,

Dark matter relic abundance beyond kinetic equilibrium, 2103.01944; T. Abe, Early

kinetic decoupling and a pseudo-Nambu-Goldstone dark matter model, 2106.01956; K. Ala-

Mattinen, M. Heikinheimo, K. Kainulainen and K. Tuominen, Momentum distributions of

cosmic relics: Improved analysis, 2201.06456
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how to study kinetic non-equilibrium?9

9
literature is based on boltzmann equations, but then it is not clear how to address the

other uncertainty, from NLO or non-perturbative QCD effects
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rare interactions & non-relativistic limit: langevin equation

ṗ
i
= −(η+H)p

i
+f

i
, 〈 f i(t1) f

j
(t2) 〉 = ζ δ

ij
δ(t1−t2)

fluctuation-dissipation relation ⇒ there is only one free coupling

η =
ζ〈v2〉
6T 2

︸ ︷︷ ︸
defines temperature

, 〈v2〉 ≈ 3T

M︸ ︷︷ ︸
defines kinetic mass
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hubble expansion can be hidden with co-moving variables

x ≡ ln

(
Tmax

T

)

, (...)
′ ≡ d(...)

dx

with entropy density, speed of sound, and hubble rate:

p̂
i ≡ pi

s1/3
, η̂ ≡ η

3c2sH
, ζ̂ ≡ ζ

3c2sHs
2/3

this yields the dimensionless evolution equations

(p̂
i
)
′
= −η̂ p̂i+f̂ i , 〈 f̂ i(x1) f̂

j
(x2) 〉 = ζ̂ δ

ij
δ(x1−x2)

where η̂ and ζ̂ are not constant but evolve rapidly with x
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computation of ζ in quantum field theory

consider the real-time 2-point correlator of the force

force = time derivative of the spatial components of a current

afterwards, model-dependent but weakly coupled fields (dark

matter, mediator) can be “integrated out” perturbatively

left over is a correlation function of strongly coupled objects

(QCD currents composed of quarks and gluons)

parametrization: ζ ≡ ξ T 7

(100 GeV)4
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example: scalar singlet model 10

L ≡ LSM +

{
1

2
∂
µ
ϕ∂µϕ−

[
1

2
(m

2
ϕ0 + κφ

†
φ)ϕ

2
+

1

4
λϕϕ

4

]}

introduce an effective non-relativistic field ψ as

ϕ ≃ 1
√

2mϕ

(

ψ e
−imϕt + ψ

∗
e
imϕt

)

ψ has a conserved particle number current, broken by interactions

10
V. Silveira and A. Zee, Scalar Phantoms, PLB 161 (1985) 136; J. McDonald, Gauge

singlet scalars as cold dark matter, hep-ph/0702143; C.P. Burgess, M. Pospelov and T. ter
Veldhuis, The Minimal Model of nonbaryonic dark matter: a singlet scalar, hep-ph/0011335;

J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter,

1306.4710
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after the dust settles, quark contribution in higgs phase

DM DM DM DM

LSM ⊃ −(higgs)
hb b̄b√

2

ζ ⊃ 4κ2m2
bNcT

3π3m2
ϕm

4
h

∫ ∞

m
b

dǫ ǫ
3
(ǫ

2 −m
2
b)nF

(ǫ)

≤ 31π3κ2m2
bNcT

7

189m2
ϕm

4
h

≈ ξ T 7

(100 GeV)4
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numerical examples of ξ and ζ̂
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scalar singlet

ξ = 1e-7

ξ = 1e-8

ξ = 1e-9

ξ = 1e-10

in the following consider the four different ξ curves
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simulations and results
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analytic solution for the second moment

(p̂
i
)
′
= −η̂ p̂i+f̂ i , 〈 f̂ i(x1) f̂

j
(x2) 〉 = ζ̂ δ

ij
δ(x1−x2)

first order differential equation can be solved and then averaged

〈 p̂2
(x2) 〉 = 〈 p̂2

(x1) 〉 exp

[

−2

∫ x2

x1

dy η̂(y)

]

+ 3

∫ x2

x1

dz ζ̂(z) exp

[

2

∫ z

x2

dy η̂(y)

]
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numerical evaluation of the second moment

1234
T / GeV

10

100

〈p
2
〉

^

equilibrium

ξ = 1e-7

ξ = 1e-8

ξ = 1e-9

ξ = 1e-10

here the equilibrium value is 〈p̂2〉 eq ≡ 3ζ̂/(2η̂) ∼ M/T
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approximate physics of the second moment

〈 p̂2
(x2) 〉

eq
≈

[

〈 p̂2
(x1) 〉 −

3ζ̂

2η̂

]

e
−2η̂(x2−x1) +

3ζ̂

2η̂

η̂(x2 − x1) ≪ 1: 3ζ̂/(2η̂) cancels, so that non-equilibrium

manifests itself by the system staying close to the old value

η̂(x2 − x1) ≫ 1: memory of initial conditions is lost, and the

system moves towards 〈p̂2〉 eq = 3ζ̂/(2η̂)

summary: x ∼ O(1) ⇒ kinetic decoupling starts when η̂ < 1
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discretization of full langevin evolution

p̂
i
n+1 = p̂

i
n − η̂n p̂

i
ndx+ f̂

i
n

√
dx , 〈 f̂ inf̂

j
m 〉 = ζ̂n δ

ij
δmn

initial p̂i’s drawn from the equilibrium distribution at T = 5 GeV

histograms produced from N = 105 independent runs

errors from a jackknife analysis, with a block size of 103
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ratio of full and equilibrium distributions (r ≡ P/Peq)
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fits ⇒ momentum distribution maintains a gaussian form even

after the system falls out of equilibrium
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implications for freeze-out

30



boltzmann equation for the number density

DM

DM

DM

DM

(∂t −Hp1∂p1
)fϕ1

≈

−
∫

p2,ph

κ2v2(2π)4δ(ǫϕ1 + ǫϕ2 − ǫh)δ
(3)(p1 + p2 − ph)

8ǫϕ1ǫϕ2ǫh

× (fϕ1
fϕ2

− f̄ϕ1
f̄ϕ2

)

here the equilibrium form reads f̄ϕ = exp(−ǫϕ/T )
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after integration over momenta

∂xYϕ ≈ − s

3c2sH

[

〈σv rel〉Y
2
ϕ − 〈σv rel〉 Ȳ

2
ϕ

]

where the dynamical variable is Y ≡
∫

p
fϕ/s

〈σv rel〉 ≡ momentum average with respect to fϕ

〈σv rel〉 ≡ momentum average with respect to f̄ϕ
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cross section is reduced thanks to redshifted spectra

1234
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〉
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this is because of less weight in the high-momentum domain
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therefore the yield is higher for more non-equilibrium
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∼40% increase of Yϕ ⇔ ∼20% increase of the coupling κ

34



summary
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⇒ kinetic non-equilibrium may be important for precision studies

⇒ langevin simulations provide for an efficient framework for this

⇒ in the scalar singlet case, effects on the 40% level found

⇒ there are QCD effects but not as large as claimed

⇒ other models remain to be investigated
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