Korea Institute for Advanced Study KIAS Seoul 13 April, 2023

Status of proton radius puzzle. QED radiative corrections for accelerator neutrinos

Oleksandr (Sasha) Tomalak LA-UR-23-22299

2010-2023

Tool to explore the proton structure

photon-proton vertex

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_D(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_P(Q^2)$$

Dirac and Pauli form factors

lepton energy

 ω

momentum transfer

$$Q^2 = -(k - k')^2$$

1y amplitude

$$T = \frac{e^2}{Q^2} \left(\bar{u} \left(k', h' \right) \gamma_{\mu} u \left(k, h \right) \right) \cdot \left(\bar{N} \left(p', \lambda' \right) \Gamma^{\mu}(Q^2) N \left(p, \lambda \right) \right)$$

Form factors measurement

Sachs electric and magnetic form factors

$$G_E = F_D - \tau F_P \qquad G_M = F_D + F_P$$

Rosenbluth separation

Proton radius

$$G_{std.dipole} = \frac{1}{\left(1 + \frac{Q^2}{\Lambda^2}\right)^2}$$

Proton radius

- no puzzle in atomic spectroscopy !!!

- scattering data is not completely understood

Possible solutions ?

- drawback in experiment: not a single one !
- drawback in theory: many groups reevaluated rad. corrections, 23

Possible solutions ?

- drawback in experiment: not a single one !
- drawback in theory: many groups reevaluated rad. corrections, 28

- respect $(g_{-2})_{\mu}$, nuclear and particle physics constraints: fine tuning
- vector particle: constraints from decay of W
- embedding in renormalizable theory Carlson and Fried (2015)
- scalar particle: 200 keV 3 MeV Liu, Cloet and Miller (2018)

μH Lamb shift and 2γ

Elastic electron-proton scattering

and two-photon exchange

Scattering experiments and 2y

- 2y is not among standard radiative corrections

 $\sigma^{\exp} \equiv \sigma_{1\gamma} (1 + \delta_{rad} + \delta_{soft} + \delta_{2\gamma})$

- soft-photon contribution is included

L.C. Maximon and J. A. Tjon (2000)

- hard-photon contribution modelled by Feshbach correction
- charge radius insensitive to 2x model

- magnetic radius depends on 28 model

A1@MAMI: J. C. Bernauer et al. (2014)

Elastic lepton-proton scattering and 2y

- leading 2y contribution: interference term

- 2% correction to cross section is given by amplitudes real parts

non-forward scattering at low momentum transfer

assumption about the vertex

non-forward scattering inelastic states

proton + inelastic = total

Fixed-Q² dispersion relation framework

Fixed-Q² dispersion relation framework

πN in dispersive framework (e-p)

Our best 2y knowledge

Applications to nucleon form factors

first model-independent fits presenting covariance matrix
2% provides nontrivial hadronic radiative correction

- proton charge radius as a constraint

Elastic muon-proton scattering

and two-photon exchange

Elastic muon-proton scattering

- charge radius extractions:

eH, eD spectroscopy	ep scattering	
μH, μD spectroscopy	μp scattering ????	

- μp elastic scattering is planned by MUSE@PSI(2018-19)
 measure with both electron/muon charges
- three nominal beam energies: 115, 153, 210 MeV, $Q^2 < 0.1 \text{ GeV}^2$

^{- 2}y correction in MUSE ?

MUSE@PSI (2018-19) estimates (μ-p)

- proton box diagram model + inelastic 28

COMPASS proton radius experiment

- elastic μp scattering at SPS with 100 GeV beam

- measure $G_{\rm E}^2 + \tau G_{\rm M}^2$ at forward angles

28 corrections?

- Feshbach correction (+ recoil)

$$\delta_{2\gamma} = \frac{\alpha \pi Q}{2\omega} \left(1 + \frac{m}{M} \right) \quad \Longrightarrow \quad 2-3 \text{ orders below MUSE}$$

- inelastic states: kinematically enhanced

- sub per mille level of 2y in COMPASS kinematics

1S-2S transition in hydrogen and 2y

- measurements of 1S-2S transition in eH with 4x10⁻¹⁵ accuracy:

 $\nu_{1S-2S}(H) = 2466061413187018(11) Hz$ 2010th

A. Matveev et al. (2013)

- more precise than recent Lamb shift measurement (error: 3.2 kHz)

N. Bezginov et al. (2019)

$$\nu_{\rm nS} = -\frac{R_{\infty}}{n^2} + \frac{L_{1\rm S}(r_E)}{n^3}$$

- main input to determine Rydberg constant

Lamb shift and hyperfine splitting in H

- 1S HFS in µH with 1 ppm accuracy at PSI, J-PARC, RIKEN-RAL

R. Pohl et al. (2016)

µH 1S HFS from eH 1S HFS

- measurements of 1S HFS in eH (21 cm line):

- relation between eH and μ H through g1 and g2 in 2 γ O. T., Eur.Phys.J.A 55 (2019) 5, 64

Conclusions

- proton charge radius puzzle dissolves with new measurements

- tensions in scattering data are not resolved

- forthcoming muon scattering data will shed new light

largest theoretical uncertainty in low-energy proton structure

O. T., Qing Chen, Richard J. Hill and Kevin S. McFarland, Nature Commun. 13 (2022), 1, 5286

Radiative corrections in charged-current

elastic scattering on free nucleons

O. T., Qing Chen, Richard J. Hill, Kevin S. McFarland and Clarence Wret editors suggestion in Phys. Rev. D (2022)

Neutrino experiments

- **DUNE** and Hyper-K: leading-edge ν science experiments

- origin of matter-antimatter asymmetry
- mass hierarchy and oscillation parameters
- Grand Unified Theories
- dynamics of supernova explosion wait for one;) 37 DUNE, CDR (2016), TDR (2020)

 δ_{CP}

PMNS matrix, Δm_{31}^2

proton decay

Neutrino experiments

- **DUNE** and Hyper-K: leading-edge ν science experiments

- measurement of $\nu_{\mu}(\overline{\nu}_{\mu})$ disappearance and $\nu_{e}(\overline{\nu}_{e})$ appearance

$$N_{\nu} \sim \int \mathrm{d}E_{\nu} \Phi_{\nu} \left(E_{\nu} \right) \times \sigma \left(E_{\nu} \right) \times R \left(E_{\nu}, E_{\nu}^{\mathrm{rec}} \right)$$

- near detector: determine flux and cross sections

Neutrino interactions

QED corrections

- all charged particles couple to real and virtual photons

QED corrections

- all charged particles couple to real and virtual photons

QED corrections

- $\frac{\alpha}{\pi} \sim 0.2~\%$ suppression by electromagnetic coupling constant

O. T., Qing Chen, Richard J. Hill and Kevin S. McFarland, Nature Commun. 13 (2022), 1, 5286

Radiative corrections in charged-current

elastic scattering on free nucleons

O. T., Qing Chen, Richard J. Hill, Kevin S. McFarland and Clarence Wret editors suggestion in Phys. Rev. D (2022)

CCQE. Why should we care?

- neutrino-nucleus cross sections and future accelerator-based fluxes

- basic process: bulk of events at Hyper-K and DUNE
- channel for reconstruction of neutrino energy

CCQE scattering on free nucleon

neutrino energy $E_{
u}$ momentum transfer $Q^2 = -q^2$

contact interaction at GeV energies

- assuming isospin symmetry, nucleon current:

$$\Gamma^{\mu}(Q^{2}) = \langle p | \bar{u} (\gamma^{\mu} - \gamma^{\mu} \gamma_{5}) d | n \rangle$$

$$\Gamma^{\mu}(Q^{2}) = \gamma^{\mu} F_{D}^{V}(Q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_{P}^{V}(Q^{2}) + \gamma^{\mu}\gamma_{5}F_{A}(Q^{2}) + \frac{q^{\mu}}{M}\gamma_{5}F_{P}(Q^{2})$$

form factors: isovector Dirac and Pauli axial and pseudoscalar $F_{D,P}^V = F_{D,P}^p - F_{D,P}^n$

tree-level amplitude

$$T = \frac{G_F V_{ud}}{\sqrt{2}} (\bar{\ell}(k')\gamma_\mu (1-\gamma_5) \nu_\ell(k))(\bar{p}(p')\Gamma^\mu(Q^2)n(p))$$

CCQE scattering on free nucleon

$$A = \tau \left(G_{M}^{V}\right)^{2} - \left(G_{E}^{V}\right)^{2} + (1+\tau)F_{A}^{2} - r^{2}\left(\left(G_{M}^{V}\right)^{2} + F_{A}^{2} - 4\tau F_{P}^{2} + 4F_{A}F_{P}\right)$$
$$B = \pm 4\tau F_{A}G_{M}^{V} \qquad C = \tau \left(G_{M}^{V}\right)^{2} + \left(G_{E}^{V}\right)^{2} + (1+\tau)F_{A}^{2}$$

pseudoscalar form factor contribution is suppressed by lepton mass
cross section is sensitive to both vector and axial contributions

Elastic scattering on free nucleon

- only 3 experiments performed with deuterium bubble chamber

direct access to form-factor shape

ANL 1982: 1737 events

BNL 1981: 1138 events

FNAL 1983: 362 events

world data: ~3200 events

Fermilab bubble chamber, Richard Drew

- axial form factor extracted based on electromagnetic structure

A.S. Meyer, M. Betancourt, R. Gran and R.J. Hill (2016)

MINERvA result with free protons

- idea of scattering on molecular hydrogen realized !!!

 $\overline{\nu}_{\mu}p \to \mu^+ n$

Hydrogen fit

T. Cai et al., MINERvA Collaboration, Nature (2023), 614, 48-53

Deuterium fit — BBBA2007 fit — LQCD fit

Static nucleon limit

formal limit of infinitely heavy nucleus

```
m_\ell \ll E_\ell \ll M
```

- provides correct soft and collinear logarithms
- soft-photon energy < 20 MeV, jet size: 10° for electron and 2° for muon

flavor-dependent effect, same for ν_ℓn → ℓ⁻p vs ν_ℓp → ℓ⁺n
collinear observable: cancellation of virtual vs real logs
inclusive observables (+γ): few % level, flavor independent

Electron vs muon jets

- factorization for radiation of collinear photons
- cone angle is defined to lepton direction
- photons of energy > 20 MeV, fixed energy in the cone

- flavor-dependent effect, same for $\nu_{\ell}n \rightarrow \ell^- p$ vs $\bar{\nu}_{\ell}p \rightarrow \ell^+ n$ - forward-peaked radiation for electron flavor - negligible radiation for muons with shifted peak position

Factorization approach

cross section is given by factorization formula

 m_{μ}

 m_e

$$\mathrm{d}\sigma \sim S\left(\frac{\Delta E}{\mu}\right) J\left(\frac{m_{\ell}}{\mu}\right) H\left(\frac{M}{\mu}\right)$$

determine hard function at hard scale by matching experiment or hadronic model to the theory with heavy nucleon

soft and collinear functions are evaluated perturbatively

Hadronic model at GeV scale

- exchange of photon between the charged lepton and nucleons

- assume onshell form for each interaction with dipole form factors discussed for neutrino-nucleon scattering: Graczyk (2013)
- add self energy for charged particles
- reproduce soft and collinear regions of SCET

- best determination of hard function

Factorization approach

cross section is given by factorization formula

$$d\sigma \sim S\left(\frac{\Delta E}{\mu}\right) J\left(\frac{m_{\ell}}{\mu}\right) H\left(\frac{M}{\mu}\right)$$

- - determine hard function at hard scale by matching experiment or hadronic model to the theory with heavy nucleon
 - RGE evolution of the hard function to scales $\Delta E, m_\ell$

 $-m_{\mu}$

- soft and collinear functions are evaluated perturbatively
- calculate cross section at low energies accounting for all large logs m_e ep scattering with soft radiation only: Richard J. Hill (2016)
 - soft and collinear functions determined analytically
 hard function describes physics at GeV energies

Exclusive observables

- cancellation of uncertainties from hard function for e/μ and ratio to LO

- ratios: cancellation of uncertainty from hard function

Inclusive observables

- the same gauge-invariant model for the real radiation

- arbitrary hard photons are part of the observable

Inclusive observables

- kinematics $Q^2 = 2M (E_{\nu} - E_X)$ is reconstructed with 3 different E_X

- dependence on reconstruction of kinematics and cuts - predict σ_{ν_e} from $\sigma_{\nu_{\mu}}$ measurements with neutrino beam (

Electron/muon ratio

	$E_{\nu}, { m GeV}$		$\left \left(\frac{\sigma_e}{\sigma_\mu} - 1 \right)_{\rm LO}, \% \right $	$rac{\sigma_e}{\sigma_\mu} - 1, \ \%$
T2K/HyperK	0.6	u	2.47 ± 0.06	$2.84 \pm 0.06 \pm 0.37$
		$ar{ u}$	2.04 ± 0.08	$1.84 \pm 0.08 \pm 0.20$
NOvA/DUNE	2.0	u	0.322 ± 0.006	$0.54 \pm 0.01 \pm 0.22$
		$ar{ u}$	0.394 ± 0.003	$0.20 \pm 0.01 \pm 0.19$

TABLE II: Inclusive electron-to-muon cross-section ratios for neutrinos and antineutrinos without kinematic cuts. Uncertainties at leading order are from vector and axial nucleon form factors. For the final result, we include an additional hadronic uncertainty from the one-loop correction to the first uncertainty, and provide a second uncertainty as the magnitude of the radiative correction.

$$\frac{\sigma \left(m_{\ell} \to 0\right)}{\sigma \left(m_{\ell} = 0\right)} \approx 1 + Am_{\ell}^2 + \alpha Bm_{\ell}^2 \ln m_{\ell}$$

- inclusive cross sections and flavor ratios determined by KLN
 - nuclear effects: suppressed by expansion parameters squared

Comparison to data

- medium-energy flux data from MINERvA@FERMILAB

, Qing Chen, Richard J. Hill, Kevin S. McFarland and Clarence Wret editors suggestion, Phys. Rev. D 106, 093006 (2022)

electron flavor: measurements are uncertain
muon flavor: comparable to experimental precision

Conclusions

radiative corrections in EFT framework

- radiative corrections to neutrino-nucleon cross sections formulated in factorization framework
- charged-current elastic electron vs muon cross-section ratios evaluated from theory with sub-percent uncertainty
- ongoing work on applications

Thanks for your attention !!!