Restrictions on the RG flow of effective field theories

Mikael Chala
(University of Granada)
based mostly on 2301.09995

KIAS HEP seminar, Korea Institute for Advanced Study; June 1, 2023

Evolution of scale-dependent parameters in QFT:
(1) Well known for renormalisable theories (2) Some aspects of EFTs well understood

$$
\mathcal{L}_{\mathrm{SM}}=-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}+D_{\mu} \phi^{\dagger} D^{\mu} \phi-\lambda|\phi|^{4}+\cdots
$$

Evolution of scale-dependent parameters

 within simplified SM$$
\begin{aligned}
& \beta_{g_{1}}=\frac{41}{6} g_{1}^{3}+0 \times \lambda \\
& \beta_{\lambda}=\frac{3}{8} g_{1}^{4}+24 \lambda^{2} \\
& \lambda
\end{aligned}
$$

Things change at higher dimensions

$c_{\phi^{2} B^{2}}$

$c_{\phi^{4}} D^{2}$

$c_{\phi^{6}}$

$$
\dot{c}_{i} \equiv \beta_{c_{i}}=\gamma_{i j} c_{j}
$$

anomalous dimension matrix
(involves SM couplings only)

Things change at higher dimensions

		$c_{\phi^{2} B^{2}}$	$c_{\phi^{4} D^{2}}$	$c_{\phi^{6}}$
	$c_{\phi^{2} B^{2}}$	\times	\times	\times
$\gamma_{i j}=$	$c_{\phi^{4} D^{2}}$	\times	\times	\times
	$c_{\phi^{6}}$	\times	\times	\times

Things change at higher dimensions

$\gamma_{i j}=$| $c_{\phi^{2} B^{2}}$ |
| :---: | :---: | :---: |
| $c_{\phi^{4} D^{2}}$ |
| $c_{\phi^{6}}$ |\(\left(\begin{array}{cc}c_{\phi^{2} B^{2}} \& c_{\phi^{4} D^{2}}

\times \& \times

c_{\phi^{6}}

\times \& \times

\times \& \times

\times \& \times

\times\end{array}\right.\)

Things change at higher dimensions

$\gamma_{i j}=$| $c_{\phi^{2} B^{2}}$ |
| :---: | :---: | :---: |
| $c_{\phi^{4} D^{2}}$ |
| $c_{\phi^{6}}$ |\(\left(\begin{array}{cc}c_{\phi^{2} B^{2}} \& c_{\phi^{4} D^{2}}

\times \& 0

c_{\phi^{6}}

\times \& 0

\times \& \times

\times \& \times

\& \times\end{array}\right.\)

Things change at higher dimensions

$$
c_{\phi^{2} B^{2}}
$$

$c_{\phi^{4}} D^{2}$
$c_{\phi^{6}}$

$c_{\phi^{2} B^{2}}$	\times
$c_{\phi^{4} D^{2}}$	\times
$c_{\phi^{6}}$	\times

0
\times
\times

$$
0
$$

0

On-shell amplitude methods

$(+)$ No fields, no gauge redundancies, no gamma matrices, no polarization vectors, ...
$(+)$ Only observable quantities
(+) Infinitely easier to apply to high-spin particles
(--) Perturbation theory not well understood

The goal: computing amplitudes without using fields/Lagrangians (for massless particles)

Strategy:

And 3-point amplitudes are completely determined by quantum mechanics and special relativity

Spinor-helicity variables

$$
\left.\begin{array}{c}
p=\left(p^{0}, \vec{p}\right) \quad P=p_{\mu} \sigma^{\mu}=\left(\begin{array}{cc}
p_{0}+p_{3} & p_{1}-i p_{2} \\
p_{1}+i p_{2} & p_{0}-p_{3}
\end{array}\right) \\
\operatorname{det} P=0 \Rightarrow P=(\quad) \\
p\rangle \quad[p \\
\left\langle p_{i} p_{j}\right\rangle \equiv\langle i j\rangle=(\quad)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
{\left[p_{i} p_{j}\right] \equiv[i j]=(\quad)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}
\end{array}\right)
$$

Spinor-helicity variables

$$
\begin{gathered}
p=\left(p^{0}, \vec{p}\right) \quad P=p_{\mu} \sigma^{\mu}=\left(\begin{array}{cc}
p_{0}+p_{3} & p_{1}-i p_{2} \\
p_{1}+i p_{2} & p_{0}-p_{3}
\end{array}\right) \\
\langle\dot{i} j\rangle=-\langle j i\rangle \\
{[i j]=-[j i]} \\
{\left[p_{i} p_{j}\right] \equiv[i j]=(\quad)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}
\end{gathered}
$$

All sensible quantities appearing in an amplitude can be written simply as products of angles and brackets, e.g.:

$$
\begin{gathered}
s_{i j}=\left(p_{i}+p_{j}\right)^{2}=\langle i j\rangle[i j] \\
\left(\overline{u_{1}} \gamma^{\mu} P_{R} u_{2}\right)\left(\overline{u_{3}} \gamma_{\mu} P_{R} u_{4}\right)=2\langle 13\rangle[42]
\end{gathered}
$$

Main result

An amplitude can be written simply as a linear combination of products of angles and brackets:

$$
\mathcal{M}(1,2, \cdots, 4)=\sum_{i}\langle 12\rangle^{a_{i}}\langle 13\rangle^{b_{i}} \cdots[34]^{c_{i}} \cdots
$$

Little-group scaling:

$$
\#[i]-\#\langle i\rangle=2 h_{i}
$$

Locality (only single poles!) + unitarity:

$$
\operatorname{residue}(\mathcal{M}, \text { pole }=s, t, u)=\mathcal{M}^{\prime} \times \mathcal{M}^{\prime \prime}
$$

3-point amplitudes are fixed

3-point amplitudes are products of only brackets or only angles, e.g.:

$$
\begin{aligned}
& a=h_{1}+h_{2}-h_{3} \\
& b=h_{2}+h_{3}-h_{1} \\
& c=h_{1}+h_{3}-h_{2}
\end{aligned}
$$

$$
\mathbf{e}+\mathbf{e}-\text { to } \mathbf{m u}+\mathbf{m u}-
$$

§ FZU

$$
\begin{aligned}
\pi_{s} & =\frac{[2 I]^{2}}{\langle 12]} \times \frac{\langle 4 I\rangle^{2}}{\langle 34\rangle}=\frac{\langle 41\rangle^{2}[12\rangle^{2}}{\left.\langle 12]^{2}\langle 3\rangle\right\rangle} \\
& =\frac{\langle 41\rangle\langle 4\rangle\rangle[32]}{\langle 34\rangle}=\langle 14\rangle\langle 23] \\
& M=\frac{\langle 14\rangle[23]}{s}
\end{aligned}
$$

Things change at higher dimensions

$$
c_{\phi^{2} B^{2}}
$$

$c_{\phi^{4}} D^{2}$
$c_{\phi^{6}}$

$c_{\phi^{2} B^{2}}$
$c_{\phi^{4} D^{2}}$
$c_{\phi}{ }^{6}$

0 0
0
\times
\times 0
0
\times
\times

On-shell methods in EFT

On-shell methods in EFT

On-shell methods in EFT

$$
=\frac{\langle 34\rangle^{2}}{\Lambda^{2}}
$$

On-shell methods in EFT

$$
=\frac{\langle 34\rangle^{2}}{\Lambda^{2}}
$$

Moving to dimension-eight

Besides pure theoretical considerations, anomalous dimensions of dimension- 8 operators [Murphy '20; Li, Ren, Shu, Xiao, Yu, Zheng '20] not always phenomenologically irrelevant

Simplest example:

Integrate out

Custodial symmetry violation absent at tree-level dimension-6, one-loop dimension-6 and tree-level dimension-8 [Mc, Krause, Nardini '18; Durieux, McCullough, Salvioni '22]

Some partial results:
MC, Guedes, Ramos, Santiago; 2106.05291
Accettulli Huber, Angelis; 2108.03669
Bakshi, MC, Diaz-Carmona, Guedes; 2205.03301
Helset, Jenkins, Manohar; 2212.03253
Asteriadis, Dawson, Fontes; 2212.03258
Bakshi, Diaz-Carmona; 2301.07151
More generally, certain aspects of the full anomalous dimension matrix well understood

Craig, Jiang, Li, Sutherland; 2001.00017

8	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2} \\ & X_{L}^{2} \psi^{2} H \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4} \\ & X_{L} \psi^{2} H^{3}, \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2} \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2}, \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H, \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Murphy '20;

8	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2} \\ & X_{L}^{2} \psi^{2} H \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4} \\ & X_{L} \psi^{2} H^{3}, \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2}, \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2}, \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H, \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Murphy '20;

8	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2} \\ & X_{L}^{2} \psi^{2} H \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4}, \\ & X_{L} \psi^{2} H^{3}, \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D, \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2}, \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2}, \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H, \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Murphy '20;

It is obvious that there are zeros in mixing of specific operators of different classes

It is not so clear how to anticipate them, not even with amplitude methods
$\mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(1)}=i\left(\bar{e} \gamma^{\mu} D_{\nu} e\right)\left(D_{(\mu} D_{\nu)} \phi^{\dagger} \phi\right)+$ h.c.
$\mathcal{O}_{B^{2} \phi^{2} D^{2}}^{(1)}=\left(D^{\mu} \phi^{\dagger} D^{\nu} \phi\right) B_{\mu \rho} B_{\nu}^{\rho}$
$\left.\mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(2)}=i\left(\bar{e} \gamma^{\mu} D_{\nu} e\right)\left(\phi^{\dagger} D_{(\mu} D_{\nu}\right) \phi\right)+$ h.c.

$\underbrace{\mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(1)}-\mathcal{O}_{e^{2} \phi^{2} D^{3}}^{(2)}}_{\widetilde{\mathcal{O}}_{e^{2} \phi^{2} D^{3}}^{(1)}} \longrightarrow \mathcal{O}_{B^{2} \phi^{2} D^{2}}^{(1)}$

$$
\begin{aligned}
& 2_{0}=\left\{\begin{array}{l}
1_{0} \\
\sim_{4_{-1}}^{3_{+1}}=\langle 41\rangle^{2}[31]^{2} \\
3_{+1 / 2}
\end{array}=\langle 43\rangle\langle 41\rangle[43][31]\right. \\
& \gamma_{\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)} \rightarrow c_{B^{2} \phi^{2} D^{2}}^{(1)}} \propto \\
& \begin{array}{l:l}
3_{+1 / 2}^{\prime} & 3_{-1 / 2}^{\prime} \\
4_{-1 / 2}^{\prime} & 4_{+1 / 2}^{\prime} \\
& S M \sim_{4-1} \\
3_{+1} \\
\end{array} \\
& =\int d \operatorname{LIPS}\left\langle 4^{\prime} 3^{\prime}\right\rangle\left\langle 4^{\prime} 1\right\rangle\left[4^{\prime} 3^{\prime}\right]\left[3^{\prime} 1\right] \frac{\left\langle 3^{\prime} 4\right\rangle^{2}}{\left\langle 3^{\prime} 3\right\rangle\left\langle 34^{\prime}\right\rangle} \\
& =\int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 2} d \theta s_{\theta} c_{\theta}\left[\#_{1} e^{i \phi}+\#_{2} e^{2 i \phi}+\cdots\right]
\end{aligned}
$$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

But some others are not:

Positivity bounds

$$
\begin{aligned}
& \varphi_{i}\left(p_{1}\right) \\
& \varphi_{i}\left(p_{3}\right)=\left(p_{1}+p_{2}\right)^{2} \\
& t=\left(p_{1}+p_{3}\right)^{2} \\
& u=\left(p_{2}+p_{3}\right)^{2} \\
& s+t+u=0 \\
& \varphi_{j}\left(p_{2}\right) \mathcal{A}(\boldsymbol{s})=\boldsymbol{A}(-\boldsymbol{s})
\end{aligned}
$$

$$
\mathcal{A}(s)=a_{0}+a_{2} s^{2}+\cdots
$$

$$
\begin{aligned}
0 & =\operatorname{Res}\left[\frac{\mathcal{A}(s)}{s^{3}}, s=0\right]+2 \operatorname{Res}\left[\frac{\mathcal{A}(s)}{s^{3}}, s=m^{2}\right] \\
& =a_{2}-\frac{1}{\pi} \int s \frac{\sigma(s)}{\left(m^{2}\right)^{3}} \Rightarrow a_{2}>0
\end{aligned}
$$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

But some others are not:

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

But some others are not:

$$
\widetilde{\mathcal{O}}_{e^{2} \phi^{2} D^{3}}^{(1)}=2_{2_{0}}^{1_{0}}=\langle 43\rangle\langle 41\rangle[43][31]
$$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$
c_{B^{2} \phi^{2} D^{2}}^{(1)} \leq 0
$$

But some others are not:

$$
\widetilde{\mathcal{O}}_{e^{2} \phi^{2} D^{3}}^{(1)}=2_{2_{0}}^{1_{4-12}}=\langle 43\rangle\langle 41\rangle[43][31]
$$

"Therefore",

$$
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)}=\#_{1} \tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)}+\cdots \Rightarrow \#_{1}=0
$$

1. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
2. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

$$
\Sigma(\mu) \equiv \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathcal{A}(s) s^{3}}{\left(s^{2}+\mu^{4}\right)^{3}} \geq 0
$$

1. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
2. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

3. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} D^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
4. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

\[

\]

So $\beta_{8} \leq 0$ in any of the aforementioned UV, and therefore for all values of $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with $c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0$
3. The beta function is linear in the Wilson coefficients:

$$
\beta_{8}=\alpha\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)}\right), \quad \alpha \geq 0
$$

Therefore,

How do things change if we consider instead...?

1. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
2. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

3. For any $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ compatible with the positivity bounds $\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}+c_{e^{2} \phi^{2} D^{3}}^{(2)} \leq 0\right)$, there exists UV such that only $\quad\left(c_{e^{2} \phi^{2} D^{3}}^{(1)}, c_{e^{2} \phi^{2} D^{3}}^{(2)}\right)$ (and lowerdimensional ones) at tree level.
4. Within any such UV, compute to order $\mathrm{O}\left(g^{2}\right)$

Resorting to the UV to understand the IR is only a trick. In general:
(1) Some tree-level O_{i} obey $c_{i} \geq 0$
(2) If O_{i} involves fields not present in O_{j} and c_{j} not constrained by positivity, then $\gamma_{i j}=0$

Other aspects of anomalous dimensions: signs and inequalities

Let us consider the mixing
Positivity bounds:

$$
\begin{gathered}
c_{\phi^{4}}^{(2)} \geq 0, \quad c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)} \geq 0, \quad c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}+c_{\phi^{4}}^{(3)} \geq 0 \\
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)} \geq 0
\end{gathered}
$$

From where we obtain:

$$
\begin{aligned}
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)} & =\alpha\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}+c_{\phi^{4}}^{(3)}\right)+\beta\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}\right)+\gamma c_{\phi^{4}}^{(2)}+\cdots \\
& =(\alpha+\beta) c_{\phi^{4}}^{(1)}+(\alpha+\beta+\gamma) c_{\phi^{4}}^{(2)}+\alpha c_{\phi^{4}}^{(3)}+\cdots,
\end{aligned}
$$

Other aspects of anomalous dimensions: signs and inequalities

$$
\begin{aligned}
\dot{c}_{B^{2} \phi^{2} D^{2}}^{(1)} & =\alpha\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}+c_{\phi^{4}}^{(3)}\right)+\beta\left(c_{\phi^{4}}^{(1)}+c_{\phi^{4}}^{(2)}\right)+\gamma c_{\phi^{4}}^{(2)}+\cdots \\
& =(\alpha+\beta) c_{\phi^{4}}^{(1)}+(\alpha+\beta+\gamma) c_{\phi^{4}}^{(2)}+\alpha c_{\phi^{4}}^{(3)}+\cdots,
\end{aligned}
$$

1. The anomalous dimensions are positive

$$
\begin{array}{lccc}
\hline & c_{\phi^{4} D^{4}}^{(1)} & c_{\phi^{4} D^{4}}^{(2)} & c_{\phi^{4} D^{4}}^{(3)} \\
c_{B^{2} \phi^{2} D^{2}}^{(1)} & + & + & +
\end{array}
$$

2. They fulfill

$$
\gamma_{c_{B^{2} \phi^{2} D^{2}}^{(1)}, c_{\phi^{4} D^{4}}^{(2)}} \geq \gamma_{C_{B^{2} \phi^{2} D^{2}}^{(1)}, c_{\phi^{4} D^{4}}^{(1)}} \geq \gamma_{c_{B^{2} \phi^{2} D^{2}}^{(1)}, c_{\phi^{4} D^{4}}^{(3)}}
$$

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$C_{e}{ }^{4} D^{2}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	+	+	$+$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	$+$	0	0	0	-	0	-	0	0	0	0	0
$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	\times	\times	0	-	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$C_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e}{ }^{4} D^{2}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	$\frac{g^{2}}{3}$	$\frac{g^{2}}{2}$	$\frac{g^{2}}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	$+$	+	\times	\times	0	-	0	-	-	0	0	0	-
$\tilde{c}_{l 2^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e^{4} D^{2}}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	$\frac{g^{2}}{3}$	$\frac{g^{2}}{2}$	$\frac{g^{2}}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	\times	\times	0	$-\frac{4\|Y\|^{2}}{3}$	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Full electroweak SMEFT (with no flavour)

	$c_{\phi^{4} D^{4}}^{(1)}$	$c_{\phi^{4} D^{4}}^{(2)}$	$c_{\phi^{4} D^{4}}^{(3)}$	$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{e^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(1)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(3)}$	$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	$c_{e^{4} D^{2}}$	$c_{l^{4} D^{2}}^{(1)}$	$c_{l^{4} D^{2}}^{(2)}$	$c_{l^{2} e^{2} D^{2}}^{(1)}$	$c_{l^{2} e^{2} D^{2}}^{(2)}$
$c_{B^{2} \phi^{2} D^{2}}^{(1)}$	$\frac{g^{2}}{3}$	$\frac{g^{2}}{2}$	$\frac{g^{2}}{6}$	0	-	0	-	0	-	0	0	0	0	0
$c_{W^{2} \phi^{2} D^{2}}^{(1)}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$\tilde{\boldsymbol{c}}_{e^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	$g^{2}-\|Y\|^{2}$	\times	0	$-\frac{4\|Y\|^{2}}{3}$	0	-	-	0	0	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(2)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$\tilde{c}_{l^{2} \phi^{2} D^{3}}^{(4)}$	+	+	+	0	-	\times	\times	\times	\times	0	-	-	0	-
$c_{e^{2} B^{2} D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^{2} B^{2} D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^{2} W^{2} D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c_{l^{2} W^{2} D}^{(1)}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c_{l^{2} e^{2} D^{2}}^{(2)}$	0	0	0	0	-	0	-	0	-	-	-	-	\times	\times

Outlook

Positivity bounds on dimension-8 interactions (which are important/interesting by themselves) restrict different aspects of (certain) anomalous dimensions (zeros, signs, inequalities)

Further applications include full SMEFT [MC, Li ‘ongoing work], LEFT and other EFTs.

Phenomenological relevance of dimension-8 quantum corrections still to be fully understood

Thank you!

$$
\begin{aligned}
\int \frac{\mathcal{A}(s)}{s^{3}} & =2 \int_{m^{2}}^{\infty} \frac{1}{s^{3}} \lim _{\epsilon \rightarrow 0}[\mathcal{A}(s+i \epsilon)-\mathcal{A}(s-i \epsilon)] \\
& =2 \int_{m^{2}}^{\infty} \frac{1}{s^{3}} \lim _{\epsilon \rightarrow 0}\left[\mathcal{A}(s+i \epsilon)-\mathcal{A}(s+i \epsilon)^{*}\right]=2 i \int_{m^{2}}^{\infty} \frac{\sigma(s)}{s_{52}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathcal{A}(s)}{s^{3}} \rightarrow 0 & \\
2 i \int_{m^{2}}^{\infty} \frac{\sigma(s)}{s^{2}} & =2 \pi i \operatorname{Res}\left[\frac{\mathcal{A}(s)}{s^{3}}, s=0\right]=2 \pi i a_{2} \\
& \Rightarrow a_{2} \geq 0
\end{aligned}
$$

Positivity in the presence of light loops

(b) Subtracted amplitude

Deform the integration path

Positivity in the presence of light loops

$$
\Sigma(\mu) \equiv \frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathcal{A}(s) s^{3}}{\left(s^{2}+\mu^{4}\right)^{3}}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\mathcal{A}(s) s^{3}}{\left(s^{2}+\mu^{4}\right)^{3}}
$$

$$
\begin{aligned}
\Sigma(\mu) & =\frac{1}{\pi \mathrm{i}} \int_{0}^{\infty} \frac{s^{3}}{\left(s^{2}+\mu^{4}\right)^{3}} \lim _{\epsilon \rightarrow 0}[\mathcal{A}(s+\mathrm{i} \epsilon)-\mathcal{A}(s-\mathrm{i} \epsilon)] \\
& =\frac{1}{\pi \mathrm{i}} \int_{0}^{\infty} \frac{s^{3}}{\left(s^{2}+\mu^{4}\right)^{3}} \lim _{\epsilon \rightarrow 0}\left[\mathcal{A}(s+\mathrm{i} \epsilon)-\mathcal{A}(s+\mathrm{i} \epsilon)^{*}\right]=\frac{2}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} \mathcal{A}(s) s^{3}}{\left(s^{2}+\mu^{4}\right)^{3}} \geq 0
\end{aligned}
$$

