

Restrictions on the RG flow of effective field theories

Mikael Chala (University of Granada)

based mostly on *2301.09995*

KIAS HEP seminar, Korea Institute for Advanced Study; June 1, 2023

1

Evolution of scale-dependent parameters in QFT:

Well known for renormalisable theories
 Some *aspects* of EFTs well understood

$$\mathcal{L}_{\rm SM} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + D_{\mu} \phi^{\dagger} D^{\mu} \phi - \lambda |\phi|^4 + \cdots$$

Evolution of scale-dependent parameters within simplified SM

 $\dot{c}_i \equiv \beta_{c_i} = \gamma_{ij} c_j$

anomalous dimension matrix (involves SM couplings only)

 $c_{\phi^4 D^2}$ c_{ϕ^6} $c_{\phi^2 B^2}$ $c_{\phi^2 B^2}$ \times $\left(\right)$ $\left(\right)$ $C_{\phi^4 D^2}$ \times Х () γ_{ij} c_{ϕ^6} Х \times \times

On-shell amplitude methods

(+) No fields, no gauge redundancies, no gamma matrices, no polarization vectors, ...

(+) Only observable quantities

(+) Infinitely easier to apply to high-spin particles

(--) Perturbation theory not well understood

The goal: computing amplitudes without using fields/Lagrangians (for massless particles)

Strategy:

And 3-point amplitudes are completely determined by quantum mechanics and special relativity

Spinor-helicity variables

$$p = (p^0, \vec{p}) \qquad P = p_\mu \sigma^\mu = \begin{pmatrix} p_0 + p_3 & p_1 - ip_2 \\ p_1 + ip_2 & p_0 - p_3 \end{pmatrix}$$

$$\det P = 0 \Rightarrow P = \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} \\ \\ p \end{pmatrix}$$

$$\langle p_i p_j \rangle \equiv \langle ij \rangle = \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \end{pmatrix}$$
$$[p_i p_j] \equiv [ij] = \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \end{pmatrix}$$

Spinor-helicity variables

$$p = (p^{0}, \vec{p}) \qquad P = p_{\mu}\sigma^{\mu} = \begin{pmatrix} p_{0} + p_{3} & p_{1} - ip_{2} \\ p_{1} + ip_{2} & p_{0} - p_{3} \end{pmatrix}$$

$$\langle ij \rangle = -\langle ji \rangle$$

$$[ij] = -[ji]$$

$$[p_{i}p_{j}] \equiv [ij] = () \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

All sensible quantities appearing in an amplitude can be written simply as products of **angles** and **brackets**, e.g.:

$$s_{ij} = (p_i + p_j)^2 = \langle ij \rangle [ij]$$
$$\overline{u_1} \gamma^{\mu} P_R u_2) (\overline{u_3} \gamma_{\mu} P_R u_4) = 2 \langle 13 \rangle [42]$$

Main result

An amplitude can be written simply as a linear combination of products of **angles** and **brackets**:

$$\mathcal{M}(1,2,\cdots,4) = \sum_{i} \langle 12 \rangle^{a_i} \langle 13 \rangle^{b_i} \cdots [34]^{c_i} \cdots$$

Little-group scaling:

$$\#[i] - \#\langle i \rangle = 2h_i$$

Locality (only single poles!) + unitarity: residue(\mathcal{M} , pole = s, t, u) = $\mathcal{M}' \times \mathcal{M}''$

3-point amplitudes are fixed

3-point amplitudes are products of only brackets or only angles, e.g.:

 $a = h_1 + h_2 - h_3$ $b = h_2 + h_3 - h_1$ $c = h_1 + h_3 - h_2$

e+ e- to mu+ mu-

 $c_{\phi^4 D^2}$ c_{ϕ^6} $c_{\phi^2 B^2}$ $c_{\phi^2 B^2}$ \times $\left(\right)$ $\left(\right)$ $c_{\phi^4 D^2}$ Х Х () γ_{ij} c_{ϕ^6} Х \times \times

 $\gamma_{\phi^4 D^2 \to \phi^2 B^2} \propto$

Moving to dimension-eight

Besides pure theoretical considerations, anomalous dimensions of dimension-8 operators [Murphy '20; Li, Ren, Shu, Xiao, Yu, Zheng '20] not always phenomenologically irrelevant

Simplest example:

Custodial symmetry violation absent at tree-level dimension-6, one-loop dimension-6 and tree-level dimension-8 [MC, Krause, Nardini '18; Durieux, McCullough, Salvioni '22]

Some partial results:

MC, Guedes, Ramos, Santiago; 2106.05291 Accettulli Huber, Angelis; 2108.03669 Bakshi, MC, Diaz-Carmona, Guedes; 2205.03301 Helset, Jenkins, Manohar; 2212.03253 Asteriadis, Dawson, Fontes; 2212.03258 Bakshi, Diaz-Carmona; 2301.07151

More generally, certain aspects of the full anomalous dimension matrix well understood

Craig, Jiang, Li, Sutherland; 2001.00017

\overline{w}	8	X_L^4	$egin{aligned} X_L^3 H^2, \ X_L^2 \psi^2 H, \ X_L \psi^4 \end{aligned}$	$egin{aligned} X_L^2 H^4, \ X_L \psi^2 H^3, \ \psi^4 H^2 \end{aligned}$	$\psi^2 H^5$	H^8
	6		$egin{aligned} &X_L^2H^2D^2,\ &X_L^2\psiar\psi D,\ &X_L\psi^2HD^2,\ &\psi^4D^2 \end{aligned}$	$egin{aligned} & X_L H^4 D^2, \ & X_L^2 ar{\psi}^2 H, \ & X_L \psi ar{\psi} H^2 D, \ & \psi^2 H^3 D^2, \ & X_L \psi^2 ar{\psi}^2, \ & \psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{l} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2H^2 \end{array}$	$ar{\psi}^2 H^5$
	4			$egin{aligned} & X_L^2 X_R^2, \ & X_L X_R H^2 D^2, \ & H^4 D^4, \ & X_L X_R \psi ar{\psi} D, \ & X_R \psi^2 H D^2, \ & X_L ar{\psi}^2 H D^2, \ & \psi ar{\psi} H^2 D^3, \ & \psi^2 ar{\psi}^2 D^2 \end{aligned}$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar{\psi} H^2 D, \ &ar{\psi}^2 H^3 D^2, \ &X_R \psi^2 ar{\psi}^2, \ &\psi ar{\psi}^3 H D \end{aligned}$	$egin{array}{lll} X_R^2 H^4, \ X_R ar{\psi}^2 H^3, \ ar{\psi}^4 H^2 \end{array}$
	2				$egin{aligned} X_R^2 H^2 D^2, \ X_R^2 \psi ar{\psi} D, \ X_R ar{\psi}^2 H D^2, \ ar{\psi}^4 D^2 \end{aligned}$	$egin{aligned} X_R^3 H^2,\ X_R^2 ar{\psi}^2 H,\ X_R ar{\psi}^4 \end{aligned}$
	0					X_R^4
		0	2	4	6	8

Murphy '20; based on Craig et al '20

Murphy '20; based on Craig et al '20

Murphy '20; based on Craig et al '20 It is obvious that there are zeros in mixing of specific operators of different classes

It is not so clear how to anticipate them, not even with amplitude methods

$$\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} = i(\bar{e}\gamma^{\mu}D_{\nu}e)(D_{(\mu}D_{\nu)}\phi^{\dagger}\phi) + \text{h.c.}$$
$$\mathcal{O}_{B^{2}\phi^{2}D^{2}}^{(1)} = (D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\rho}B_{\nu}^{\rho}$$
$$\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(2)} = i(\bar{e}\gamma^{\mu}D_{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.}$$

$$= \int d\text{LIPS}\langle 4'3' \rangle \langle 4'1 \rangle [4'3'] [3'1] \frac{\langle 3'4 \rangle^2}{\langle 3'3 \rangle \langle 34' \rangle}$$
$$= \int_0^{2\pi} d\phi \int_0^{\pi/2} d\theta s_\theta c_\theta \left[\#_1 e^{i\phi} + \#_2 e^{2i\phi} + \cdots \right]$$

$$c_{B^2\phi^2 D^2}^{(1)} \le 0$$

But some others are not:

Positivity bounds

$$\varphi_i(p_1)$$

$$\varphi_i(p_3)$$

$$s = (p_1 + p_2)^2$$

$$t = (p_1 + p_3)^2$$

$$u = (p_2 + p_3)^2$$

$$\varphi_j(p_2)$$

$$\varphi_j(p_4)$$

$$s + t + u = 0$$

$$\mathcal{A}(s) = \mathcal{A}(-s)$$

$$0 = \operatorname{Res}\left[\frac{\mathcal{A}(s)}{s^3}, s = 0\right] + 2\operatorname{Res}\left[\frac{\mathcal{A}(s)}{s^3}, s = m^2\right]$$
$$= a_2 - \frac{1}{\pi} \int s \frac{\sigma(s)}{(m^2)^3} \Rightarrow a_2 > 0$$

$$c_{B^2\phi^2 D^2}^{(1)} \le 0$$

But some others are not:

$$c^{(1)}_{B^2\phi^2 D^2} \le 0$$

But some others are not:

$$c^{(1)}_{B^2\phi^2 D^2} \le 0$$

But some others are not:

"Therefore",

$$\dot{c}_{B^2\phi^2D^2}^{(1)} = \#_1 \tilde{c}_{e^2\phi^2D^3}^{(1)} + \dots \Rightarrow \#_1 = 0$$

2. Within any such UV, compute to order $O(g^2)$

$$\Sigma(\mu) \equiv \frac{1}{2\pi i} \int_{\gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3} \ge 0$$

36

2. Within any such UV, compute to order $O(g^2)$

2. Within any such UV, compute to order $O(g^2)$

 $\int_{\lambda_1} \mathcal{A}(s) \sim -(\beta_4 + \beta_8 s^2 + \beta_{12} s^4 + \cdots) \log \frac{s}{\Lambda^2}$ $\Sigma(\mu) = -\beta_8 + \beta_{12}\mu^4 + \cdots$ $\Rightarrow \lim_{\mu \to 0} \Sigma(\mu) = -\beta_8 \ge 0$ 38

So $\beta_8 \leq 0$ in any of the aforementioned UV, and therefore for all values of $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ compatible with $c_{e^2\phi^2D^3}^{(1)} + c_{e^2\phi^2D^3}^{(2)} \leq 0$

3. The beta function is linear in the Wilson coefficients:

$$\beta_8 = \alpha (c_{e^2 \phi^2 D^3}^{(1)} + c_{e^2 \phi^2 D^3}^{(2)}), \quad \alpha \ge 0$$

Therefore,

$$\underbrace{\mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} - \mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(2)}}_{\widetilde{\mathcal{O}}_{e^{2}\phi^{2}D^{3}}^{(1)}} \xrightarrow{\mathcal{O}_{B^{2}\phi^{2}D^{2}}^{(1)}}$$

How do things change if we consider instead...?

2. Within any such UV, compute

to order $O(g^2)$

2. Within any such UV, compute

to order $O(g^2)$

Resorting to the UV to understand the IR is only a trick . In general:

(1) Some tree-level O_i obey $c_i \ge 0$

(2) If O_i involves fields not present in O_j and c_j not constrained by positivity, then $\gamma_{ij} = 0$

Other aspects of anomalous dimensions: signs and inequalities

Let us consider the mixing \longrightarrow

Positivity bounds:

$$\begin{aligned} c^{(2)}_{\phi^4} \geq 0 \,, \quad c^{(1)}_{\phi^4} + c^{(2)}_{\phi^4} \geq 0 \,, \quad c^{(1)}_{\phi^4} + c^{(2)}_{\phi^4} + c^{(3)}_{\phi^4} \geq 0 \\ \dot{c}^{(1)}_{B^2 \phi^2 D^2} \geq 0 \end{aligned}$$

From where we obtain:

$$\dot{c}_{B^{2}\phi^{2}D^{2}}^{(1)} = \alpha (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)} + c_{\phi^{4}}^{(3)}) + \beta (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)}) + \gamma c_{\phi^{4}}^{(2)} + \cdots$$
$$= (\alpha + \beta) c_{\phi^{4}}^{(1)} + (\alpha + \beta + \gamma) c_{\phi^{4}}^{(2)} + \alpha c_{\phi^{4}}^{(3)} + \cdots,$$

44

Other aspects of anomalous dimensions: signs and inequalities

$$\dot{c}_{B^{2}\phi^{2}D^{2}}^{(1)} = \alpha (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)} + c_{\phi^{4}}^{(3)}) + \beta (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)}) + \gamma c_{\phi^{4}}^{(2)} + \cdots$$
$$= (\alpha + \beta) c_{\phi^{4}}^{(1)} + (\alpha + \beta + \gamma) c_{\phi^{4}}^{(2)} + \alpha c_{\phi^{4}}^{(3)} + \cdots,$$

1. The anomalous dimensions are positive

$$\begin{array}{cccc} c^{(1)}_{\phi^4 D^4} & c^{(2)}_{\phi^4 D^4} & c^{(3)}_{\phi^4 D^4} \\ c^{(1)}_{B^2 \phi^2 D^2} & + & + & + \\ \end{array}$$
2. They fulfill
$$\gamma_{c^{(1)}_{B^2 \phi^2 D^2}}, c^{(2)}_{\phi^4 D^4} \geq \gamma_{c^{(1)}_{B^2 \phi^2 D^2}}, c^{(1)}_{\phi^4 D^4} \geq \gamma_{c^{(1)}_{B^2 \phi^2 D^2}}, c^{(3)}_{\phi^4 D^4} \\ \end{array}$$

$$\begin{array}{c} 45 \end{array}$$

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c_{l^4D^2}^{(1)}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2 e^2 D^2}$
$c^{(1)}_{B^2\phi^2D^2}$	+	+	+	0	_	0	_	0	_	0	0	0	0	0
$c^{(1)}_{W^2\phi^2D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	-	_	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	_	×	×	×	×	0	_	_	0	_
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$C_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2e^2D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2\phi^2D^3}$	$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c_{l^4D^2}^{(1)}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$C_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	_	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	_	0	0
$c^{(2)}_{l^2e^2D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2\phi^2D^3}$	$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	_	0	_	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	$-\frac{4 Y ^2}{3}$	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	-
$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	-	_	0	-
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	_	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	_	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2e^2D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	$c_{e^4D^2}$	$c_{l^4D^2}^{(1)}$	$c^{(2)}_{l^4D^2}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2 e^2 D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	-	0	-	0	0	0	0	0
$c^{(1)}_{W^2\phi^2D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	$g^2 - Y ^2$	×	0	$-\frac{4 Y ^2}{3}$	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	_
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	_	0	0	0	_
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	_	_	_	×	×

Outlook

Positivity bounds on dimension-8 interactions (which are important/interesting by themselves) restrict different aspects of (certain) anomalous dimensions (zeros, signs, inequalities)

Further applications include full SMEFT [MC, Li 'ongoing work], LEFT and other EFTs.

Phenomenological relevance of dimension-8 quantum corrections still to be fully understood

Thank you!

$$\int \frac{\mathcal{A}(s)}{s^3} = 2 \int_{m^2}^{\infty} \frac{1}{s^3} \lim_{\epsilon \to 0} [\mathcal{A}(s+i\epsilon) - \mathcal{A}(s-i\epsilon)]$$
$$= 2 \int_{m^2}^{\infty} \frac{1}{s^3} \lim_{\epsilon \to 0} [\mathcal{A}(s+i\epsilon) - \mathcal{A}(s+i\epsilon)^*] = 2i \int_{m^2}^{\infty} \frac{\sigma(s)}{s^2}$$

$$2i \int_{m^2}^{\infty} \frac{\sigma(s)}{s^2} = 2\pi i \operatorname{Res}\left[\frac{\mathcal{A}(s)}{s^3}, s=0\right] = 2\pi i a_2$$
$$\Rightarrow a_2 \ge 0$$

$$\Sigma(\mu) \equiv \frac{1}{2\pi i} \int_{\gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3}$$

$$\Sigma(\mu) = \frac{1}{\pi i} \int_0^\infty \frac{s^3}{(s^2 + \mu^4)^3} \lim_{\epsilon \to 0} \left[\mathcal{A}(s + i\epsilon) - \mathcal{A}(s - i\epsilon) \right]$$
$$= \frac{1}{\pi i} \int_0^\infty \frac{s^3}{(s^2 + \mu^4)^3} \lim_{\epsilon \to 0} \left[\mathcal{A}(s + i\epsilon) - \mathcal{A}(s + i\epsilon)^* \right] = \frac{2}{\pi} \int_0^\infty \frac{\operatorname{Im}\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3} \ge 0$$