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How can ML help in particle physics?
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How to simulate LHC events

Incoming proton

Hard process

Shower Hadronization

Detector
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ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

Phase-space generation
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Yes! Because

• Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

• Another problem is the high-dimensionality of the integrand

• Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

• Use Monte Carlo integration instead: error ∼ N−1/2

Efficiency still a problem!! !
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I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling:  
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Monte Carlo integration
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Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width



Importance sampling — NN

⊕ Unbinned and no grids 
 no “phantom peaks”


⊖ Bijectivity not guaranteed 
 training unstable


⊖ Numerical Jacobians 
 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Using a Neural Network



Importance sampling — Flow

⊕ Unbinned and no grids 
 no “phantom peaks”


⊖ Bijectivity not guaranteed 
 training unstable


⊖ Numerical Jacobians 
 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Using a Normalizing Flow
⊕ Invertibility 

 bijective mapping

⊕ tractable Jacobians 

 fast training and evaluation

→

→

[2001.05478, 2001.05486, 2001.10028,2005.12719, 2112.09145]

Using a Neural Network

log pφ(x) = log pZ(Gφ(x)) + log
∂Gφ(x)

∂x
xz

Sampling

Training



[2212.06172]

Neural Importance Sampling
MadNIS

https://arxiv.org/abs/2212.06172
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Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality



Latent space z

Channel i
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Unit hypercube
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Toy example — Crossed ring
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LHC example I — Drell-Yan
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LHC example III — W + 2 jets

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

0.4

0.6

0.8

1.0

1.2

1.4

re
la

ti
ve

st
d

d
ev

æ
/I

gg ! W+dū
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Otherwise similar to results for VBS
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Summary and outlook

Outlook

• Full integration of MadNIS into MadGraph

5@

• Test performance on real LHC examples: 
(eg. multi-leg, NLO, complicated cuts, …)

• Make everything run on the GPU and 
differentiable [MadJax 2203.00057]

• Multi-channel is more efficient when trained 
simultanously with the flow

Summary

• MadNIS outperforms current sampling methods

• Vegas initialization improves performance
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