
MadNIS
Neural Importance Sampling

KIAS QUC-AIHEP Seminar - Seoul 2023

Ramon Winterhalder — UC Louvain

Plan of attack

1. Machine learning for particle physics?

2. MadNIS — Basic functionality

4. Summary and discussion

3. MadNIS — Additional features

How can ML help in particle physics?

LHC analysis (oversimplified)

Fundamental Theory

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

New Physics?

Fundamental Theory

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Fast
simulation

Experimental
design

Online
processing/
triggering

Data
curation

New Physics?

Parameter
estimation/
unfolding

LHC analysis + ML

Data
curation

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Experimental
design

Online
processing/
triggering

New Physics?

Detector-level  
observables

Fundamental Theory

Fast
simulation Simulation Parameter

estimation/
unfolding

LHC analysis + ML

Data
curation

LHC analysis + ML

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

Experimental
design

Online
processing/
triggering

New Physics?

Detector-level  
observables

Fundamental Theory

Fast
simulation Simulation Parameter

estimation/
unfolding

How to simulate LHC events?

How to simulate LHC events

How to simulate LHC events

Incoming proton

Hard process

Shower Hadronization

Detector

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

Phase-space generation

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections
Phase-space generation

ℒ
Theory Shower EventsHard process Hadronization Detectors

ML improved simulations

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)

Phase-space generation

Are there bottlenecks?

Are there bottlenecks?

Yes! Because

⊖ Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

⊖ Another problem is the high-dimensionality of the integrand

⊖ Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

Are there bottlenecks?

Yes! Because

⊖ Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

⊖ Another problem is the high-dimensionality of the integrand

⊖ Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

→Use Monte Carlo integration instead: error ∼ N−1/2

Are there bottlenecks?

Yes! Because

⊖ Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

⊖ Another problem is the high-dimensionality of the integrand

⊖ Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

→Use Monte Carlo integration instead: error ∼ N−1/2

Efficiency still a problem!! !

Yes! Because

• Analytic integration not feasible: PDFs, cuts, jet algorithm, complex amplitudes, …

• Another problem is the high-dimensionality of the integrand

• Standard numerical methods scale badly: error ∼ N−2/D⋯ N−4/D

• Use Monte Carlo integration instead: error ∼ N−1/2

Efficiency still a problem!! !
0 50000 100000 150000 200000 250000 300000

Ntrials

10°9

10°8

10°7

10°6

10°5

10°4

10°3

F
re

qu
en

cy S
h
er

p
a

M
C

@
N

E
R

S
C

W+0j

W+1j

W+2j

W+3j

W+4j

W+5j

W+6j

W+7j

W+8j

W+9j

Höche et al. [1905.05120]

Are there bottlenecks?

I = ∫ dx f(x)

Monte Carlo integration

I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Monte Carlo integration

I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling:  
find close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Monte Carlo integration

I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling:  
find close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Monte Carlo integration

Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

Fit bins with equal probability

and varying width

Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap

⊖ High-dim and rich peaking functions 
→ slow convergence

⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width

Importance sampling — NN

⊕ Unbinned and no grids 
 no “phantom peaks”

⊖ Bijectivity not guaranteed 
 training unstable

⊖ Numerical Jacobians 
 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Using a Neural Network

Importance sampling — Flow

⊕ Unbinned and no grids 
 no “phantom peaks”

⊖ Bijectivity not guaranteed 
 training unstable

⊖ Numerical Jacobians 
 slow training and evaluation

→

→

→
[1707.00028, 1810.11509, 2009.07819]

Using a Normalizing Flow
⊕ Invertibility 

 bijective mapping

⊕ tractable Jacobians 

 fast training and evaluation

→

→

[2001.05478, 2001.05486, 2001.10028,2005.12719, 2112.09145]

Using a Neural Network

log pφ(x) = log pZ(Gφ(x)) + log
∂Gφ(x)

∂x
xz

Sampling

Training

[2212.06172]

Neural Importance Sampling
MadNIS

https://arxiv.org/abs/2212.06172

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS
Stratified

Sampling/
Training

Overflow
Channels

Conditional
flows

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS
Stratified

Sampling/
Training

Overflow
Channels

Conditional
flows

Basic Functionality
MadNIS

MadNIS — Basic functionality

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

I = ∑
i ⟨αi(x) f(x)

gi(x) ⟩
x∼gi(x)

Use physics knowledge to construct channel and mappings

MadNIS — Basic functionality

Latent space z

Channel i

⟨αi(x) f(x)
gi(x) ⟩

Normalizing
Flow i

Analytic Channel
mapping i

 Φ ⊆ ℝN
Phase space Learned channel

weight αi(x)

 U = [0,1]N
Unit hypercube

Single channel i

MadNIS — Basic functionality

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel
mapping 1

Analytic channel
mapping 2

Analytic channel
mapping k

⟨α2(x′) f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′) f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

Combination of
 channelsk

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

MadNIS — Basic functionality

Toy example — Crossed ring

�2 �1 0 1 2
x

�2

�1

0

1

2

y

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

1
C

ha
nn

el
2

C
ha

nn
el

s
3

C
ha

nn
el

s

Combined Channel 0 Channel 1 Channel 2

Rel. error:
1.17 ± 0.13

Rel. error:
0.71 ± 0.15

Rel. error:
0.50 ± 0.14

Toy example — Crossed ring

�2 �1 0 1 2
�2

�1

0

1

2
ring channel

0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

iz
ed

�2 �1 0 1 2
�2

�1

0

1

2
overflow channel

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

�2 �1 0 1 2
�2

�1

0

1

2
combined

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

�2 �1 0 1 2
�2

�1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

ch
an

ne
lw

ei
gh

t

Rel. error:
0.37 ± 0.05

Toy example — Crossed ring

Additional Features
MadNIS

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Stratified
Sampling/
Training

Overflow
Channels

Conditional
flows

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Overflow
Channels

Conditional
flows

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

VEGAS initialization

Overflow
Channels

Conditional
flows

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization

y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

VEGAS grid

Bin reduction

Initialization

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:

Pre-trained VEGAS grid as

starting point for flow training

VEGAS initialization

Bin reduction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

64 VEGAS bins

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

rqs
vegas

10 RQS bins

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

64 VEGAS bins

Bin reduction

Latent space z Conditional Splitting

⟨α1(x) f(x)
g1(x) ⟩

Analytic Channel
mapping 1

Analytic channel
mapping 2

Analytic channel
mapping k

⟨α2(x′) f(x′)
g2(x′) ⟩ Learned channel

weights ⃗α (x)I = + + + ⟨αk(x′ ′) f(x′ ′)
gk(x′ ′) ⟩

Normalizing
Flow 1

Normalizing
Flow 2

Normalizing
Flow k

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

VEGAZ-Block VEGAZ-Block VEGAZ-Block

 VEGAS gridsk

Bin reduction

Initialization

MadNIS — VEGAZ-Block

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Overflow
Channels

Conditional
flows

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Buffered training

Overflow
Channels

Conditional
flows

Sample
z

Integrand
f(xφ)

LossG−1(z |φ)
L(f(xφ), g(xφ |φ))

Single Pass Training

PS point
xφ

g(xφ |φ)
Density

Flow

Sample
z

Integrand
f(xφ)

LossG−1(z |φ)
L(f(xφ), g(xφ |φ))

Single Pass Training

PS point
xφ

g(xφ |φ)
Density

Flow

Double Pass Training

Sample
z

Integrand
f(xφ)

LossG−1(z |φ)
L(f(xφ), g(xφ |φ))

Single Pass Training

PS point
xφ

g(xφ |φ)
Density

Flow

Sample
z

Integrand
f(x)

LossG−1(z |φ)
L(f(x), g(x |φ))

PS point
x

Flow

g(x |φ)
Density

G(x |φ)

Online Training

Sample
z

Integrand
f(x)

LossG−1(z |φ)
L(f(x), g(x |φ))

PS point
x

Flow

g(x |φ)
Density

G(x |φ)

Online Training

Sample
z

Integrand
f(x)

LossG−1(z |φ)
L(f(x), g(x |φ))

PS point
x

Flow

g(x |φ)
Density

G(x |φ)

Buffered samples

x, q(x | φ̂), f(x)
Weighted Loss

L(f(x), g(x |φ) |w(x |φ))
Density

w(x |φ) = g(x |φ)
q(x | φ̂)

g(x |φ)
G(x |φ)

g(x |φ) φ→φ̂ q(x | φ̂)

Buffered Training

Flow

1 2 3 4 5 6
reduction in training statistics R@

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

ch
an

ge
in

tr
ai

ni
ng

tim
e

t@ = 40µs
tbuff = 30µs

fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm
generate new samples, train on them,

save samples

↓

train on saved samples times

↓

repeat

n

Reduction in training statistics by

R@ = n + 1

Buffered training

MadNIS — Overview

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

Overflow
Channels

Conditional
flows

Neural
Channel
Weights

Buffered
Training

Stratified
Sampling/
Training

Symmetries
between
channels

VEGAS
Initialization

Normalizing
Flow

Trainable
Rotations

MadGraph
matrix

elements

MadEvent
channel

mappings

Basic functionality Improved multi-channeling

Improved training

MADNIS

LHC Examples

LHC examples

Overflow
Channels

Conditional
flows

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

pp → γ/Z/Z′ → e+e−

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Peaks mapped out 
by different channels

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Peaks mapped out 
by different channels

Channel weights 
learned by network

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1

↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution  
matches truth

Peaks mapped out 
by different channels

Channel weights 
learned by network

Use samples multiple  
times to make  
training faster

pp → γ/Z/Z′ → e+e−

LHC example I — Drell-Yan

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

(p
re

lim
in

ar
y)

LHC example II — VBS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

(p
re

lim
in

ar
y)

LHC example II — VBS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

Big improvement from

VEGAS initialization

(p
re

lim
in

ar
y)

LHC example II — VBS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

Big improvement from

VEGAS initialization

Significant improvement

from trained channel weights

(p
re

lim
in

ar
y)

LHC example II — VBS

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

1.0

1.5

2.0

re
la

ti
ve

st
d

d
ev

æ
/I

uc ! W+W+ds

2

4

6

8

10

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.7

0.8

æ
/I

uc ! W+W+ds

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

8

9

¥
[%

]

Unweighting efficiency improved

up to factor ~9 compared to VEGAS

Big improvement from

VEGAS initialization

Significant improvement

from trained channel weights

Buffered training: small effect on

performance, much faster training

(p
re

lim
in

ar
y)

LHC example II — VBS

LHC example III — W + 2 jets

VEGAS Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

0.4

0.6

0.8

1.0

1.2

1.4

re
la

ti
ve

st
d

d
ev

æ
/I

gg ! W+dū

5

10

15

20

u
nw

ei
gh

ti
n
g

e±
ci

en
cy

¥
[%

]

0.40

0.45

æ
/I

gg ! W+dū

Flow
fixed Æ

Flow
trained Æ

VFlow
fixed Æ

VFlow
trained Æ

VFlow
trained Æ
R@ = 2.9

VFlow
trained Æ
R@ = 5.0

15

20

¥
[%

]

Process has small interference terms

→ no significant improvement from trained channel weights

Otherwise similar to results for VBS

(p
re

lim
in

ar
y)

Summary and outlook

Outlook

• Full integration of MadNIS into MadGraph

5@

• Test performance on real LHC examples: 
(eg. multi-leg, NLO, complicated cuts, …)

• Make everything run on the GPU and
differentiable [MadJax 2203.00057]

• Multi-channel is more efficient when trained
simultanously with the flow

Summary

• MadNIS outperforms current sampling methods

• Vegas initialization improves performance

MadNIS∫

Outlook

• Full integration of MadNIS into MadGraph

5@

• Test performance on real LHC examples: 
(eg. multi-leg, NLO, complicated cuts, …)

• Make everything run on the GPU and
differentiable [MadJax 2203.00057]

• Multi-channel is more efficient when trained
simultanously with the flow

Summary

• MadNIS outperforms current sampling methods

• Vegas initialization improves performance

• Stay tuned for many other ML4HEP applications

HEPML

Summary and outlook

OUTD
AT

ED

https://iml-wg.github.io/HEPML-LivingReview/

Outlook

• Full integration of MadNIS into MadGraph

5@

• Test performance on real LHC examples: 
(eg. multi-leg, NLO, complicated cuts, …)

• Make everything run on the GPU and
differentiable [MadJax 2203.00057]

• Multi-channel is more efficient when trained
simultanously with the flow

Summary

• MadNIS outperforms current sampling methods

• Vegas initialization improves performance

• Stay tuned for many other ML4HEP applications

HEPML

Summary and outlook

Got a facelift recently!

https://iml-wg.github.io/HEPML-LivingReview/

