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Plan of attack

1. Machine learning for particle physics?
2. MadNIS — Basic functionality

3. MadNIS — Additional features

4. Summary and discussion



How can ML help in particle physics?



LHC analysis (oversimplified)
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LHC analysis + VL
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Fundamental Theory

Fast
simulation
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LHC analysis + VL

Fundamental Theory

|

How to simulate LHC events?

|

Detector-level
observables



How to simulate LHC events




How to simulate LHC events

Shower




ML improved simulations

<




ML improved simulations

Phase-space generation

Hard process

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...]
NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]



ML improved simulations

_ Calculate (differential) cross sections
Phase-space generation
do ~ pdf X |M(x)|* x d®
Hard process

s




ML improved simulations

_ Calculate (differential) cross sections
Phase-space generation
do ~ pdf X |M(x)|* x d®

Hard process

s

Phase space integration

(0) = deﬂx) 0




Are there bottlenecks?



Are there bottlenecks?

Yes! Because

Analytic integration . PDFs, cuts, jet algorithm, complex amplitudes, ...

Another problem is the of the integrand

Standard numerical methods - error ~ N2P... N—4/D
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Are there bottlenecks?

Yes! Because

Analytic integration . PDFs, cuts, jet algorithm, complex amplitudes, ...
Another problem is the of the integrand
Standard numerical methods - error ~ N~2P... N=4D

— Use Monte Carlo integration instead: error ~ N —1/2

1 Efficiency still a problem! /!



Are there bottlenecks?

Hoche et al. [1905.05120]
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Monte Carlo integration

[ = def(x)



Monte Carlo integration

[ = def(x)

Flat sampling:
inefficient



Monte Carlo integration

[ = def(x)
Flat sampling: Importance sampling:
inefficient find g close to f

[ = (f(x)>xNunif = <%> (x)
x~g(x



Flat sampling:

inefficient

I'= <f (x)>x~unif

Monte Carlo integration

[ = def(x)

Importance sampling:

find g close to f

-

fox)
g(x)

>XNg(X)

Multi-channel:
one map for each channel




Importance sampling — VEGAS

Factorize probability
p(x) = p(x;)--p(x,)

v

Fit bins with equal probabillity
and varying width




Importance sampling — VEGAS

Factorize probability
p(x) = p(x;)--p(x,)

—» | @ Computationally cheap

High-dim and rich peaking functions

v -

Fit bins with equal probabillity
and varying width

Peaks not aligned with grid axes




Importance sampling — NN

Using a Neural Network

® Unbinned and no grids

— no “phantom peaks”
Bijectivity not guaranteed
N

Numerical Jacobians

N



Importance sampling — Flow

Using a Neural Network Using a Normalizing Flow
@ Unbinned and no grids @ Invertibility
— no “phantom peaks” — bijective mapping
Bijectivity not guaranteed E—— @ tractable Jacobians
— — fast training and evaluation
Numerical Jacobians

Sampling
6G(p(x)
logp,(x) = log p,(G,(x)) + log P

Training



MadNIS

Neural Importance Sampling

[2212.06172]
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https://arxiv.org/abs/2212.06172

MadNIS — Overview

Basic functionality Improved multi-channeling
CI\Pl]eurall Normalizing Conditional Overflow
an?‘e Flow - flows Channels

eights

MadGraph MadEvent Symmetries Stratified
matrix channel ﬁetween Sampling/
elements mappings ‘ channels Training

Improved training

VEGAS Buffered Trainable

Initialization Training Rotations




MadNIS — Overview

Basic functionality Improved multi-channeling
CI\}l]eurall Normalizing Overflow
an?‘e Flow — Channels

eights

MadGraph MadEvent
matrix channel

elements mappings



MadNIS

Basic Functionality



MadNIS — Basic functionality




MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings



MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

' '
Normalizing flow to

Fully connected network
refine channel mappings to refine channel weights




MadNIS — Basic functionality

Use physics knowledge to construct channel and mappings

Normalizing flow to Fully connected network
refine channel mappings to refine channel weights

Update simultanously with variance as loss function




MadNIS — Basic functionality

Phase space | Learned channel
d C RN - weight a;(x)

Analytic Channel

o Single channel ;

Normalizing
Flow i

Unit hypercube
U =10,11"




MadNIS — Basic functionality

Phase space 7 — X Learned channel
d Cc RY . weights @’(x)

~
......................................................................................................................................

---------------------------------------------------------------------------------------------------------------------------------------
- ~

Normalizing Normalizing Normalizing Combination of
Flow 1 Flow 2 Flow k k channels

Conditional Splitting

~ .
----------------------------------------------------------------------------------------------------------------------------------------

Unit hypercube
|

U=1[0,11"



Toy example — Crossed ring
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2 Channels 1 Channel

3 Channels

Toy example — Crossed ring

Rel. error:
1.17x0.13

Rel. error:

0.71 £0.15

Combined

Rel. error:

0.50 £ 0.14



Toy example — Crossed ring

ring channel overflow channel
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MadNIS

Additional Features



MadNIS — Overview

Basic functionality Improved multi-channeling
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Initialization Training Rotations




MadNIS — Overview

'

Improved training

_ VEGAS Butterea LHC Examples
Initialization Training



VEGAS Inttialization

'

Improved training

_ VEGAS Butterea LHC Examples
Initialization Training




VEGAS Inttialization

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training




VEGAS Inttialization

VEGAS grid

l o
inioion —

Initialization

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training




Bin reduction
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Bin reduction
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MadNIS — VEGAZ-Block

Phase space
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MadNIS — Overview

'

Improved training

_ VEGAS Butterea LHC Examples
Initialization Training



Buffered training

'

Improved training

VEGAS Buffered
Initialization Training

LHC Examples
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Buffered training

Training algorithm

s
-

| fixed number of weight updates
generate new samples, train on them,

save samples

! 0.8
train on saved samples n times
{ 0.6
repeat

\

Reduction in training statistics by

relative change in training time

reduction in training statistics Rg




MadNIS — Overview

'

Improved training

_ VEGAS Butterea LHC Examples
Initialization Training



LHC examples

'

Improved training

VEGAS Buffered




LHC example | — Drell-Yan
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LHC example | — Drell-Yan
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LHC example | — Drell-Yan

/\pp—;}// 717 — ete” /_\
Learned distribution oS s ol - chan y Peaks mapped out
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LHC example | — Drell-Yan

— y/Z/7' — e*e”

Peaks mapped out
by different channels

Channel weights
learned by network
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LHC example | — Drell-Yan
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LHC example Il — VBS
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LHC example Il — VBS

uc — WTWtds

uc — WTW™ds
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Unweighting efficiency improved
up to factor ~9 compared to VEGAS



LHC example Il — VBS
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LHC example Il — VBS

Significant improvement
from trained channel weights
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LHC example Il — VBS

Buffered training: small effect on Significant improvement
performance, much faster training from trained channel weights
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LHC example lll — W + 2 jets

Process has small interference terms
— no significant improvement from trained channel weights
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Otherwise similar to results for VBS



Summary and outlook

Outlook
 MadNIS current sampling methods * Full integration of MadNIS into MadGraph
* Multi-channel is when * Test performance on real LHC examples:
with the flow (eg. multi-leg, NLO, complicated cuts, ...)

* \egas initialization * Make everything run on the GPU and

differentiable

MadNIS




Summary and outlook

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
physics. I he gcal of this document is to provide a nearly comprehensive list of citaticns for those developing and applying these
approaches to experimental, phenomenological or theoretical analyses. As a living dgbSit, it will be updated as often as possible to
incorporate the latest developments. A list of proper (unchanging) reviews can be f&Qgd wit n. Papers are grouped into a small set of
topics to be as useful as possible. Suggestions are most welcome.

O Giub

The purpose of this note is to collect references for modern machine lgaoming st mpplied to particle physics. A minimal number of
categcries is chosen n order tc be as useful as possidle. Note that pafarse Wiy be referenced in more than one category. The fact that
a paper is listed in this document does not endorse or validate itggiistery - that is for the community (and for peer-review) to decide.
Furthermore, the classification here is a best attempt and may ave flays - please let us know if (a) we have missed a paper you think
should be included, (b) a paper has been misclassified, or /& a Ci g1 for a paper is not correct or if the jeurna! information is now
available. In order to be as useful &s possible, this docur€Zrivguill coritinue to evolve so please check back before you write your next
paper. If you find this review helpful, please consider c&a it usWig \cite{hepmllivingreview} in HEFML .bib.

« Reviews
o Modern reviews

« Jet Substructure at the Large H&8WCollider: A Review of Recent Advances in Theory and Machine Learning [DOI]
« Deep Learning and its Application to LHC Physics [DCI]

Machine Learning in High Energy Physics Community White Paper [DOI]

Machine learning at the energy and intensity frontiers ot particle physics

Machine learning and the physical sciences |[DCI|

Machine and Deep Learning Applications in Particle Physics [DOI]

Mocern Machine Learning and Particle Physics

Outlook

* Full integration of MadNIS into MadGraph

* Test performance on real LHC examples:

(eg. multi-leg, NLO, complicated cuts, ...)

 Make everything run on the GPU and

differentiable

e Stay tuned for many other ML4HEP applications

HEPML



https://iml-wg.github.io/HEPML-LivingReview/

Summary and outlook

N  HEP ML Living Review ® Q Search

Hame Qecent Ahout Cantribute Resourses Cite L3

A Living Review of Machine Learning for Particle Physics

Modern machine iearnuing technigues, including deep leaming, is raoidly being applied, adapted, and developed for high erergy
physics. The gnal of this document i= te provide a nearly camprehensive list of citations for thase developing ana applying these
approaches to excerimental, phenomenoloqical, or theoretical analyses. As & living document, it will be upasted as often as

possible to incorporate the latest developments. A list of preper (unchanging) revieves can be found within, BPapers are grouged

into a small set of tapics to be as useiul as possibic. Suggestions are mast welcome.

download review m

Expand all sections ‘ Collapse all sections

Reviews

“ ¥ Mcdemn reviews

’» i Specialized reviews
’. § Classical papers

‘ 4 Datasets

GitHub
wain Yis

lable of contents
Reviews
Modan reviews
Spec zized reviews
Classical papers
Natasets
Classiticatian
Pzramelerized classifiers
Reoresentatiors
fargets
earning strategies
Fast inference [ deployment
Regression
Pleup
Calib-ation
Racasting
Matrix elaments
Paramater estimatian

Pzrlon Distribution Funclicns
[and related)

attice Gauge Theory
FLret on Approximatian
Symoolic Ragression

Eguvariant nelworks

Outlook

Full integration of MadNIS into MadGraph

Test performance on real LHC examples:
(eg. multi-leg, NLO, complicated cuts, ...)

Make everything run on the GPU and
differentiable

Stay tuned for many other ML4HEP applications

Got a facelift recently!



https://iml-wg.github.io/HEPML-LivingReview/

