Multi-photon decays of the ⁷ Higgs boson at the LHC ⁷ Samuel D. Lane KAIST

w/ Hye-Sung Lee (KAIST) & Ian M. Lewis (Univ. Kansas)

arXiv: <u>2305.00013</u>

- Introduction and Motivation
- Model Overview
 - Particle content, key ideas, constraints, assumptions
- Multi-photon objects & Signal Categories
 - Photon jets, isolated photons, simulation
- Results
- Conclusion

The Standard Model

The SM works incredibly well

• The Higgs mechanism provides masses for all particles in the SM

• Nearly every measurement agrees with SM prediction

The Standard Model

The Standard Model

What is the SM missing?

- Dark Matter
- Dark Energy
- Matter-antimatter asymmetry
 - Scale differences in the model (hierarchy, naturalness, etc.)

Portals & Dark Sector

Dark Axion Portal

- Connect ALP and dark photon
- Dark higgs, Dark photon, ALP, VLFs
- ALPs/DP could give the right relic density for dark matter
- Does not solve strong CP problem

K. Kaneta, H.-S. Lee, and S. Yun, arXiv: <u>1611.01466</u>

- Introduction and Motivation
- Model Overview
 - Particle content, key ideas, constraints, assumptions
- Multi-photon objects & Signal Categories
 - Photon jets, isolated photons, simulation
- Results
- Conclusion

Particle Content

	SU(3)	$SU(2)_L$	Y	Y_D	$Y_{\rm PQ}$
ψ_L	1	1	Q_L	D_L	PQ_L
ψ_R	1	1	Q_R	D_R	PQ_R
$H_{\rm PQ}$	1	1	0	0	PQ_H
H_D	1	1	0	D_H	0

- Global PQ symmetry, gauged dark symmetry
- SM particles have no PQ or dark charge
- BSM Charges chosen to cancel anomalies

Kinetic Mixing

- Experimental limits are important
- The VLFs induce kinetic mixing
- For O(1) dark gauge couplings expect O(0.1) kinetic mixing
- We will assume zero kinetic mixing

Tracking the Goldstone modes

Normal SM Higgs mechanism

- SM Higgs goldstones become the longitudinal modes of W and Z
- Dark Higgs mechanism
 - H_D goldstone becomes longitudinal modes of dark photon
- PQ mechanism at some scale f_a
 - H_{PQ} goldstone becomes the ALP

SM Higgs Mechanism

$$V(\varphi) = -\mu^2 (\varphi^{\dagger} \varphi) + \lambda (\varphi^{\dagger} \varphi)^2.$$
$$\frac{\partial \mathcal{V}}{\partial |\varphi|^2} = \mu^2 - 2\lambda \varphi_0^{\dagger} \varphi_0 = 0$$
$$\varphi_0^{\dagger} \varphi_0 = v^2 = \frac{\mu^2}{2\lambda}$$
$$\varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^+ \\ h + v + iG_0 \end{pmatrix}$$

Scalar Sector Summary

- Potential depends on all scalars
- Should in principle write down the most general renormalizable potential
- Each scalar acquires a vev
- Scalar kinetic terms give masses to vetor bosons
- There could be some scalar mixing between the CP even neutral states

 $\mathcal{V}(\Phi, H_D, H_{\mathrm{PQ}})$

$$|D_{\mu}\Phi|^2 + |D_{\mu}H_D|^2$$

$$\binom{h_1}{h_2} = \hat{R}(\theta_S) \binom{h}{h_d}$$

Higgs Couplings

• Higgs dark photon coupling

• In principle there is a Higgs ALP coupling

$$|D_{\mu}H_{D}|^{2} \longrightarrow \frac{\lambda_{h\gamma_{D}\gamma_{D}}}{2}h\gamma_{D}^{\mu}\gamma_{D\mu}$$

$$H_{D} = \frac{1}{\sqrt{2}}(h_{D} + v_{D})$$

$$\lambda_{h\gamma_{D}\gamma_{D}} \sim \sin\theta \frac{m_{\gamma_{D}}^{2}}{v_{D}}.$$

$$h \cdots \int VLF$$

$$u = a$$

ALP Couplings

$$\frac{G_{a\gamma\gamma}}{4}aF^{\mu\nu}\tilde{F}_{\mu\nu} + \frac{G_{a\gamma\gamma_D}}{2}aF_D^{\mu\nu}\tilde{F}_{\mu\nu} + \frac{G_{a\gamma_D\gamma_D}}{4}aF_D^{\mu\nu}\tilde{F}_{D\mu\nu}$$

- ALP-photon-photon
- ALP-photon-dark photon
- ALP-dark photon-dark photon

$$G_{a\gamma\gamma} = \frac{e^2}{8\pi^2} \frac{PQ_{\Phi}}{f_a} \Big[2N_C Q_{\psi}^2 - \frac{2}{3} \frac{4+z}{1+z} \Big],$$

$$G_{a\gamma\gamma'} \simeq \frac{ee'}{8\pi^2} \frac{PQ_{\Phi}}{f_a} \Big[2N_C D_{\psi} Q_{\psi} \Big] + \varepsilon G_{a\gamma\gamma},$$

$$G_{a\gamma'\gamma'} \simeq \frac{e'^2}{8\pi^2} \frac{PQ_{\Phi}}{f_a} \Big[2N_C D_{\psi}^2 \Big] + 2\varepsilon G_{a\gamma\gamma'}.$$

Why photons?

- Axion to diphoton is well known
- Higgs to diphoton is also well known
- Photons are "clean" at colliders
- Go look for additional signals at LHC that contain photons

Some Signals With Photons

• Some candidate signals in the dark axion portal

Higgs to six photons

 $\sigma(pp \to h \to \gamma_D \gamma_D \to 6\gamma) \approx \sigma(pp \to h) BR (h \to \gamma_D \gamma_D) BR^2 (\gamma_D \to a\gamma) BR^2 (a \to \gamma\gamma)$

- Assume Shell decays
- Use narrow width approximation
- Take the spin averaged matrix element

Full Branching Ratio

$$BR(h \to \gamma_D(k_1)\gamma_D(k_2) \to \gamma(p_1)a(q_1)\gamma(p_2)\gamma(q_2) \to \gamma(p_1)\gamma(p_3)\gamma(p_4)\gamma(p_2)\gamma(p_5)\gamma(p_6))$$

= BR(h \to \gamma_D\gamma_D) BR(\gamma_D \to a\gamma)^2 BR(a \to \gamma\gamma)^2 $\frac{9\int d\Omega_h d\Omega_{\gamma_D(k_1)} d\Omega_{\gamma_D(k_2)}f(p_1, k_1, p_2, k_2)}{(2\pi)^3 \left(12 - 4\frac{m_h^2}{m_{\gamma_D}^2} + \frac{m_h^4}{m_{\gamma_D}^4}\right) (m_{\gamma_D}^2 - m_a^2)^4}$

 $f(p_1, k_1, p_2, k_2) = (p_2 \cdot k_2)(k_1 \cdot k_2)(p_1 \cdot p_2)(p_1 \cdot k_1) + (p_2 \cdot k_1)(p_2 \cdot k_2)(p_1 \cdot k_2)(p_1 \cdot k_1)$ $- (p_2 \cdot k_1)(p_1 \cdot p_2)(p_1 \cdot k_1)k_2^2 - (p_2 \cdot k_2)(p_1 \cdot k_2)(p_1 \cdot p_2)k_1^2$ $+ \frac{1}{2}(p_1 \cdot p_2)^2k_1^2k_2^2.$

Higgs Production

(21)

Higgs Constraints

95% CL

Axion Constraints

ALP-photon-dark photon

ALP-photon-photon

J.Phys.G 50 (2023) 3, 030501

Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313

Average Decay Lengths

Average Minimum Dark Photon Decay Length Only $\gamma_D \rightarrow a\gamma$ with $G_{a\gamma\gamma_D} = 0.002 \text{ GeV}^{-1}$ 10¹ m_{γ_D} (GeV) $1 \,\mu m$ 10⁰ 100 µm 1 mm 1 cm .0 cm 10^{-1} 10^{-1} 10^{-2} 10^{0} 10^{1} m_a (GeV)

$$\Gamma(\gamma_D \to \gamma a) = \frac{|G_{a\gamma\gamma_D}|^2 m_{\gamma_D}^3}{96\pi} \left(1 - \frac{m_a^2}{m_{\gamma_D}^2}\right)^3$$

$$G_{a\gamma\gamma_D} \approx 2 \times 10^{-3} \text{ GeV}^{-1}$$

Mostly prompt decays with some displaced vertices

Average Decay Lengths

$$\Gamma(a o \gamma \gamma) = rac{|G_{a\gamma\gamma}|^2 m_a^3}{64\pi}$$

Maximal $G_{a\gamma\gamma}$

10¹

10⁰

Mostly prompt decays, with some displaced vertices, and some missing energy 10-1

Only $a \rightarrow \gamma \gamma$ with maximum $G_{a\gamma\gamma}$ coupling Р hun 100 *µ*m 1 mm щ cm 10^{-1} 10^{-2} 10^{1} 10^{0} m_a (GeV)

Average Minimum ALP Decay Length

Model Assumptions

- Want on-shell decays
- Zero kinetic mixing
- Dark photon only decays to ALP and photon
- ALP only decays to photon pairs

$$m_h > m_{\gamma_D} > m_a$$
 $\varepsilon \to 0$
 $BR(\gamma_D \to a\gamma) = 1$ $BR(a \to \gamma\gamma) = 1$

- Introduction and Motivation
- Model Overview
 - Particle content, key ideas, constraints, assumptions
- Multi-photon objects & Signal Categories
 - Photon jets, isolated photons, simulation
- Results
- Conclusion

Photon Jets

Multi-Photon Objects

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

$$\eta = \frac{1}{2} \ln \frac{E + p_Z}{E - p_Z}$$

Well collimated photons end up in same detector location

Appear as a single photon $\Delta R < 0.04$

Photon Jets

Sets of photons or photon-jets that have intermediate separation

 $0.04 < \Delta R < 0.4$ **ξ Jets**

B. Sheff et al. 2008.10568

Use Isolated Photons to reduce QCD backgrounds

 $\Delta R > 0.4$ Isolated Photons

Generate Truth Level Events

$$h \to \gamma_d \gamma_d \to a \gamma a \gamma \to 6 \gamma$$

1. Truth level events $\{\gamma\}$

- Parton Luminoisty
- Spin-correlations $\mathcal{L}(\tau) =$
- Uniformly sample phase space
- Uniformly sample higgs rapidity

$$\tau = m_h^2/S, \ \sqrt{S} = 13 \text{ TeV}$$
$$\int_{\ln\sqrt{\tau}}^{-\ln\sqrt{\tau}} dy_h g(\sqrt{\tau}e^{y_h}, \mu_F) g(\sqrt{\tau}e^{-y_h}, \mu_F),$$

$$\frac{9\int d\Omega_h d\Omega_{\gamma_D(k_1)} d\Omega_{\gamma_D(k_2)} f(p_1, k_1, p_2, k_2)}{(2\pi)^3 \left(12 - 4\frac{m_h^2}{m_{\gamma_D}^2} + \frac{m_h^4}{m_{\gamma_D}^4}\right) (m_{\gamma_D}^2 - m_a^2)^4}$$

Merge Photon Jets

$$h \to \gamma_{d}\gamma_{d} \to a\gamma a\gamma \to 6\gamma \to n\gamma$$
1. Truth level events { γ }
Merge γ -Jets $\Delta R < 0.04$
2. Observable Photons { γ_{obs} }

$$Prob(6\gamma \to n\gamma_{iso} + m\xi) = \frac{BR(h \to \gamma_{D}\gamma_{D} \to a\gamma a\gamma \to 6\gamma \to n\gamma_{iso} + m\xi)}{BR(h \to \gamma_{D}\gamma_{D})BR^{2}(\gamma_{D} \to a\gamma)BR^{2}(a \to \gamma\gamma)} Max Prob(6\gamma \to n\gamma_{obs})$$

$$Max Prob(6\gamma \to n\gamma_{obs})$$

Signals after Merging

Estimating Trigger/Detector Efficiency

- Use simple cut and count
- Impose some transverse momentum cuts on k photons
- Impose some rapidity cuts on all photons
- Try to match existing searches when possible

$$\operatorname{Eff}_{k}(h \to n\gamma_{iso} + m\xi)$$

$|\eta| < 1.44$ or $1.57 < |\eta| < 2.5$.

Channel	CMS p_T Requirements
1γ	$p_{1,T} > 145 \text{ GeV} [98]$
2γ	$p_{1,T} > 30 \text{ GeV} \text{ and } p_{2,T} > 18 \text{ GeV} [30]$
3γ	$p_{1,T} > 15 \text{ GeV}, p_{2,T} > 15 \text{ GeV}, \text{ and } p_{3,T} > 15 \text{ GeV}$ [95]
4γ	$p_{1,T} > 30 \text{ GeV}, p_{2,T} > 18 \text{ GeV}, p_{3,T} > 15 \text{ GeV}, \text{ and } p_{4,T} > 15 \text{ GeV}$ [27]
5γ	$p_{i,T} > 15 \text{ GeV} (i = 1, 2, 3, 4, 5)$
6γ	$p_{i,T} > 15 \text{ GeV} (i = 1, 2, 3, 4, 5, 6)$

ATLAS Cuts

$|\eta| < 1.37$ or $1.52 < |\eta| < 2.5$

Channel	ATLAS p_T Requirements
1γ	$p_{1,T} > 150 \text{ GeV} [94]$
2γ	$p_{1,T} > 35 \text{ GeV} \text{ and } p_{2,T} > 25 \text{ GeV} [24]$
3γ	$p_{1,T} > 15 \text{ GeV}, p_{2,T} > 15 \text{GeV}, \text{ and } p_{3,T} > 15 \text{ GeV}$ [95]
4γ	$p_{1,T} > 30 \text{ GeV}, p_{2,T} > 18 \text{ GeV}, p_{3,T} > 15 \text{ GeV}, \text{ and } p_{4,T} > 15 \text{ GeV}$ [95]
5γ	$p_{i,T} > 15 \text{ GeV} (i = 1, 2, 3, 4, 5)$
6γ	$p_{i,T} > 15 \text{ GeV} (i = 1, 2, 3, 4, 5, 6)$

Estimated Trigger Efficiencies

Estimated Trigger Efficiencies

- Introduction and Motivation
- Model Overview
 - Particle content, key ideas, constraints, assumptions
- Multi-photon objects & Signal Categories
 - Photon jets, isolated photons, simulation
- Results
- Conclusion

Two Photon Signals

Four Photon Signals

Six Photon Signals

Combining Constraints

- Introduction and Motivation
- Model Overview
 - Particle content, key ideas, constraints, assumptions
- Multi-photon objects & Signal Categories
 - Photon jets, isolated photons, simulation
- Results
- Conclusion

Summary & Conclusion

- The DAP introduces a six photon Higgs resonance.
- We can place good constraints using the two and four photon categories.
- Could constrain other regions by doing appropriate searches
- The pure six photon signal has a good chance to be seen

Thanks for your attention!

Questions?

