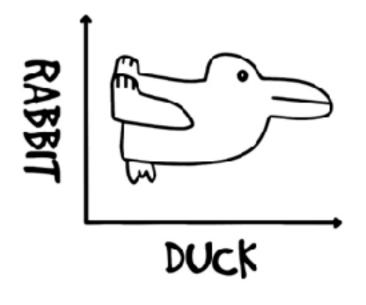


Structures of Neural Network Effective Theories

Zhengkang "Kevin" Zhang (University of Utah)

I. Banta, T. Cai, N. Craig, ZZ, 2305.02334.



Outline

- 1. Neural networks \leftrightarrow field theories (high-level summary).
- 2. EFT of deep neural networks (at initialization).
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

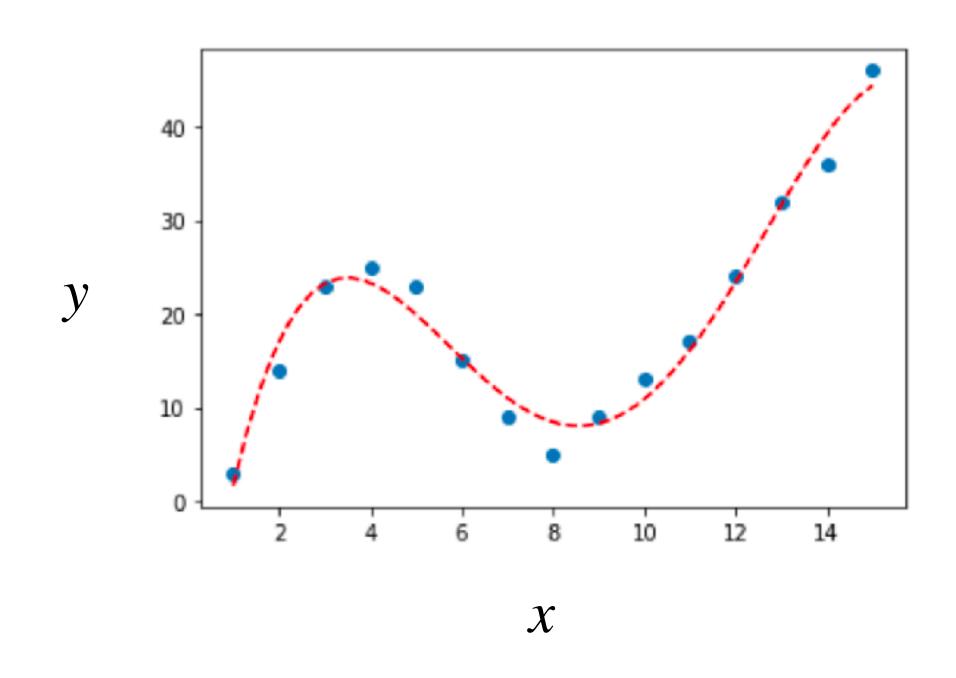
Outline

1. Neural networks \leftrightarrow field theories (high-level summary).

- 2. EFT of deep neural networks (at initialization).
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

What is a (deep) neural network?

Goal (supervised learning): learn a function $y = f(\vec{x})$ from training dataset $(\vec{x}_{\alpha}, y_{\alpha})$.

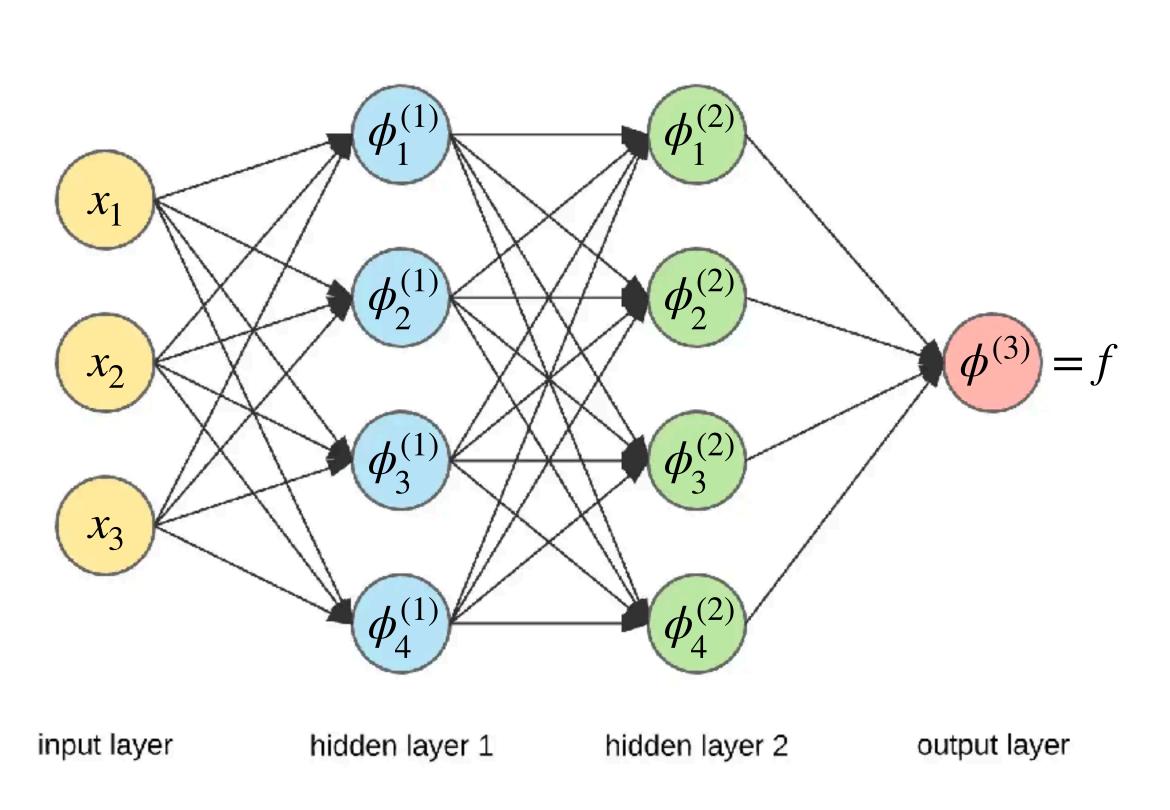




What is a (deep) neural network?

Goal (supervised learning): learn a function $y = f(\vec{x})$ from training dataset $(\vec{x}_{\alpha}, y_{\alpha})$.

Archetype: multilayer perceptron.



$$\phi_i^{(1)}(\vec{x}) = \sum_{j=1}^{n_0} W_{ij}^{(1)} x_j + b_i^{(1)}, \quad \text{function (e.g. tanh)}$$

$$\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma(\phi_j^{(\ell-1)}(\vec{x})) + b_i^{(\ell)} \quad (\ell \ge 2).$$
 weights biases

trainable parameters:

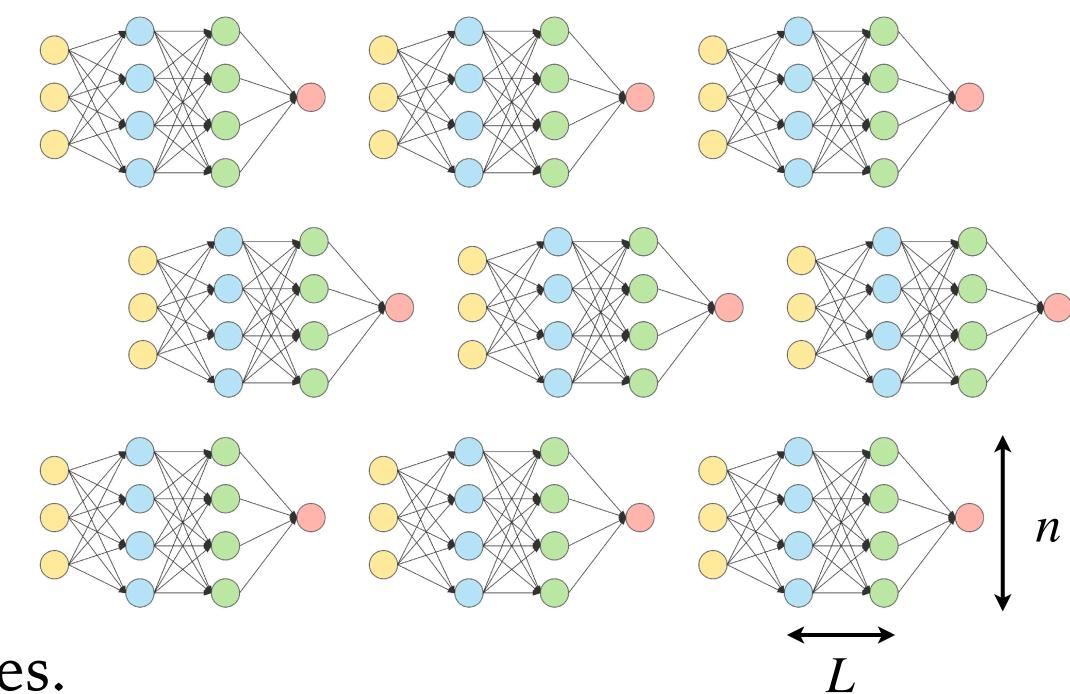
- O randomly initialized
- O then updated by gradient descent to minimize a loss, e.g. $\sum (f(x_{\alpha}) y_{\alpha})^2$

Neural networks \leftrightarrow field theories (1/2)

Ensemble of networks, randomly initialized.

Neurons \leftrightarrow scalar fields $\phi(\vec{x})$.

Ensemble statistics \leftrightarrow action: $P(\phi) = e^{-S[\phi]}$.



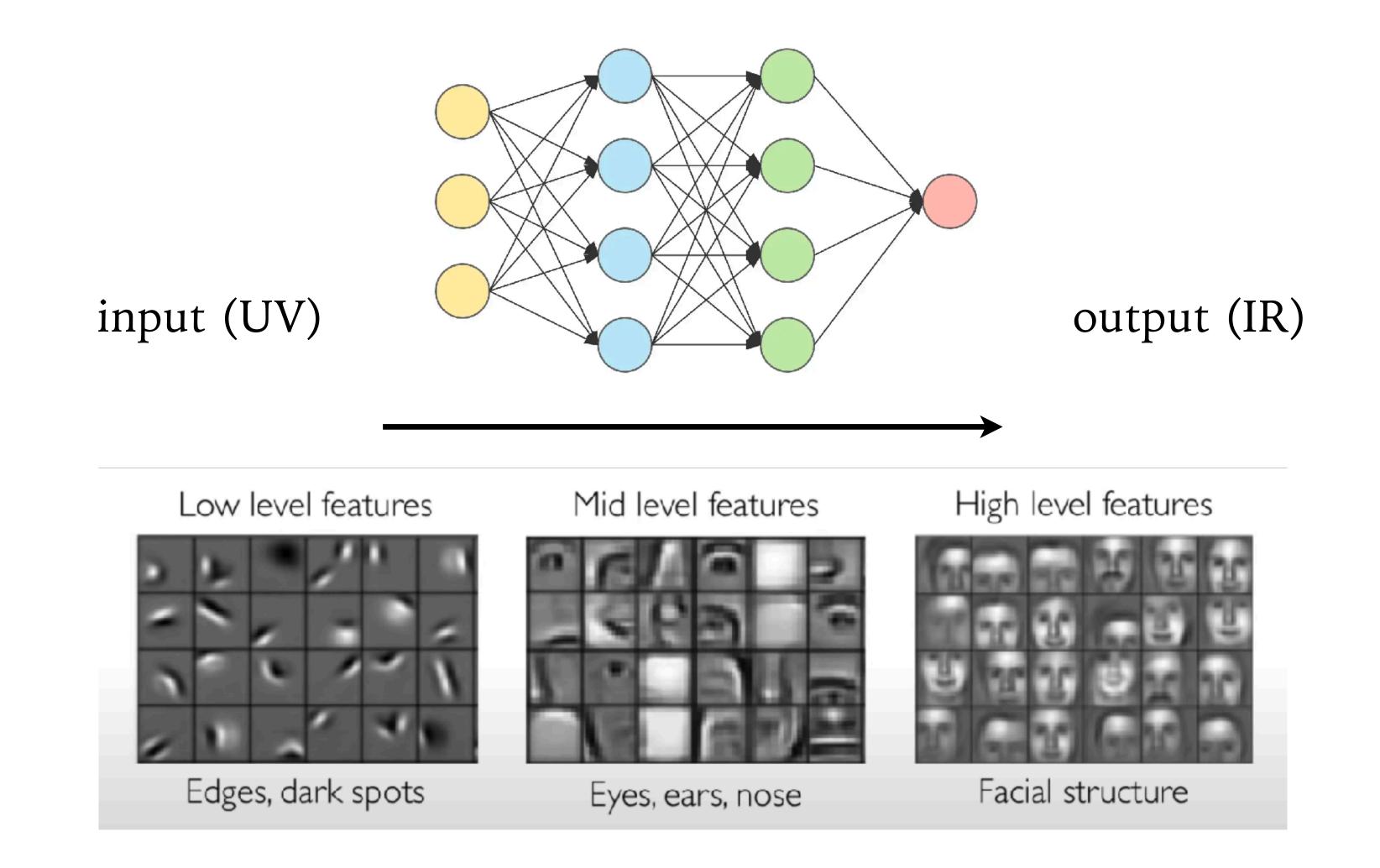
Infinitely-wide networks* $(n \to \infty) \leftrightarrow$ free theories.

Wide networks $(n \gg L) \leftrightarrow$ weakly-interacting theories (perturbation theory!).

^{*} Neal '96. Williams '96.

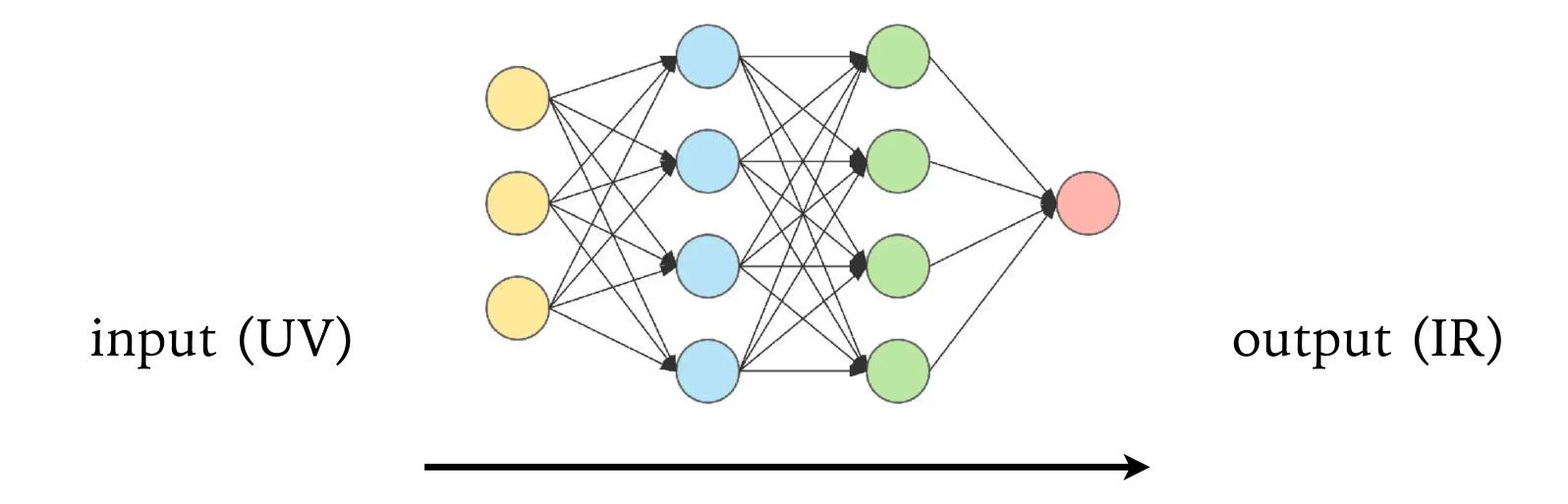
Neural networks \leftrightarrow field theories (2/2)

Information flow \leftrightarrow RG flow.



Neural networks \leftrightarrow field theories (2/2)

Information flow \leftrightarrow RG flow.



Exponential scaling (generic) \leftrightarrow flow to trivial fixed point.

Tune to criticality* \Rightarrow power-law scaling \leftrightarrow nontrivial fixed point.

^{*} Raghu et al '16. Poole et al '16. Schoenholz et al '16.

Dreams

A theory of everything deep learning (opening the black box)?

Lee et al '17-19. Matthews et al '18. Yang '19-23.

Jacot, Gabriel, Hongler '18.

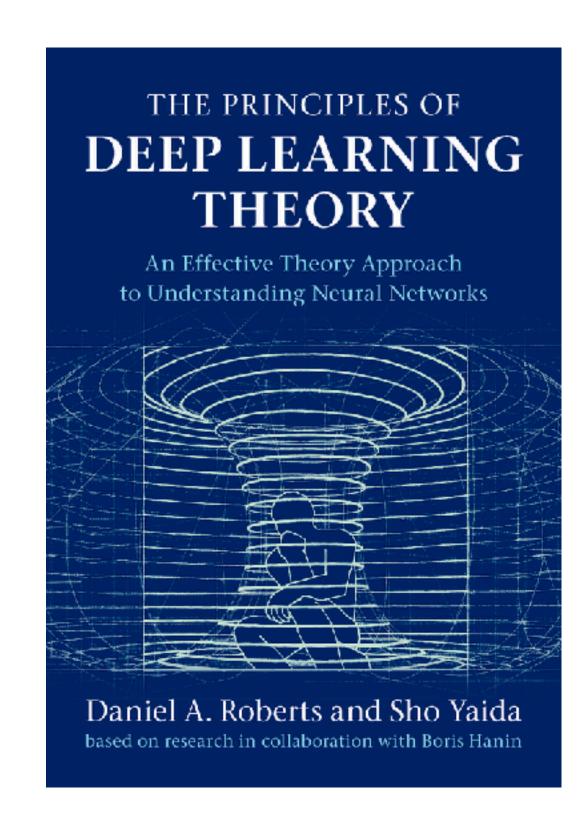
Antognini '19. Huang, Yau '19.

Yaida '19, '22. Hanin, Nica '19. Hanin '21, '22.

Dyer, Gur-Ari '19. Aitken, Gur-Ari '20. Andreassen, Dyer '20.

Naveh, Ringel et al '20, '21. Zavatone-Veth et al '21.

Roberts, Yaida, Hanin '21. (Our work is largely inspired by this book.)



Dreams

A theory of everything deep learning (opening the black box)?

A new angle to learn about field theories?

Schoenholz, Pennington, Sohl-Dickstein '17.

Cohen, Malka, Ringel '19.

Erbin, Lahoche, Samary '21, '22.

Bachtis, Aarts, Lucini '21.

Grosvenor, Jefferson (+ Erdmenger) '21.

Halverson '21; + Maiti, Stoner '20, '21; + Demirtas, Schwartz '23.

Outline

1. Neural networks \leftrightarrow field theories (high-level summary).

- 2. EFT of deep neural networks (at initialization).
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

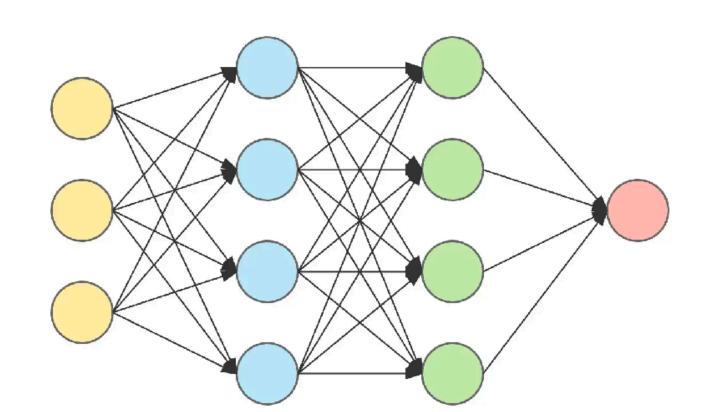
Initializing a deep neural network

Network depth (number of layers): L.

Widths (number of neurons per layer): $n_0, n_1, \ldots, n_{L-1}, n_L$.

input hidden layer output $x \in \mathbb{R}^{n_0}$ widths $\gg 1$ $y \in \mathbb{R}^{n_L}$

architecture hyperparameters

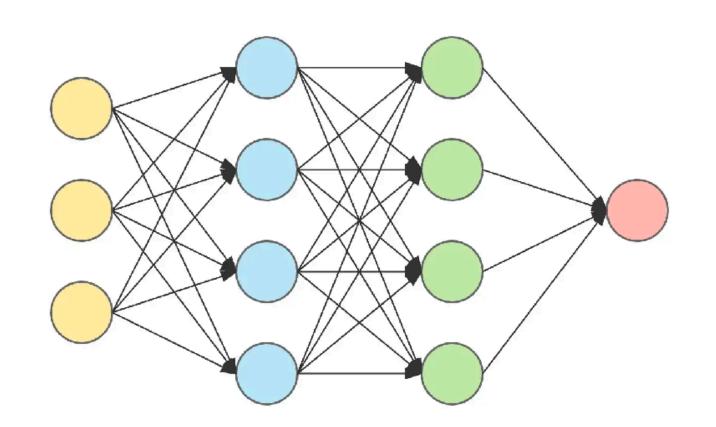


Initializing a deep neural network

Network depth (number of layers): L.

architecture hyperparameters

Widths (number of neurons per layer): $n_0, n_1, \ldots, n_{L-1}, n_L$.



$$\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma(\phi_j^{(\ell-1)}(\vec{x})) + b_i^{(\ell)}$$

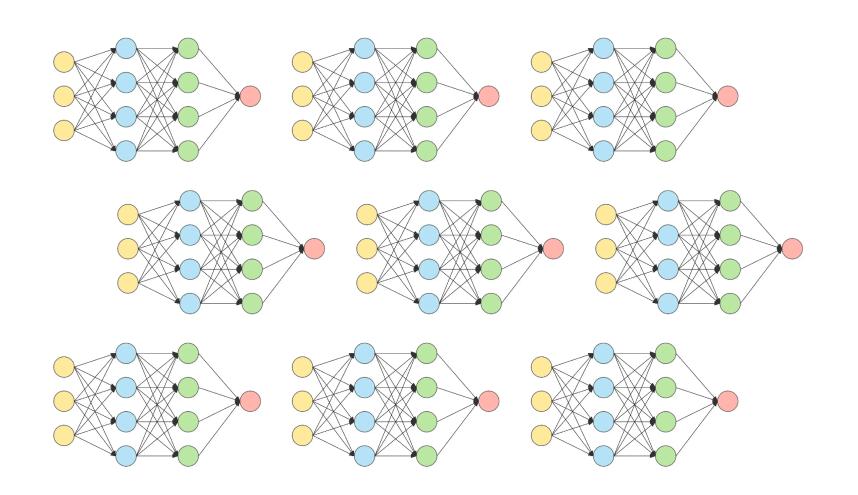
Weights and biases drawn from Gaussian distributions with mean 0, variances $C_W^{(\ell)}/n_{\ell-1}$, $C_h^{(\ell)}$.

Initializing a deep neural network an ensemble of networks

Network depth (number of layers): L.

architecture hyperparameter:

Widths (number of neurons per layer): $n_0, n_1, \ldots, n_{L-1}, n_L$.



$$\phi_i^{(\ell)}(\vec{x}) = \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma(\phi_j^{(\ell-1)}(\vec{x})) + b_i^{(\ell)}$$

Weights and biases drawn from Gaussian distributions with mean 0, variances $C_W^{(\ell)}/n_{\ell-1}$, $C_h^{(\ell)}$.

Statistics of the ensemble (at initialization)

$$P(\phi) = e^{-S[\phi]}$$

We can derive the field theory action $S[\phi]$ (next slide).

Then observables (neuron correlators) can be calculated as in field theory:

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \dots \phi_{i_{2k}}^{(\ell)}(\vec{x}_{2k}) \right\rangle = \int \mathcal{D}\phi \, \phi_{i_1}^{(\ell)}(\vec{x}_1) \dots \phi_{i_{2k}}^{(\ell)}(\vec{x}_{2k}) \, e^{-S[\phi]} \, .$$

And we can study e.g. how they evolve from layer to layer \Rightarrow RG flow.

(which can tell us about how deep neural networks process information)

 $e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)} | \phi^{(1)}) \dots P(\phi^{(L)} | \phi^{(L-1)})$ $P(\phi^{(\ell)} | \phi^{(\ell-1)}) = \prod_{i,j} \int dW_{ij} P_W^{(\ell)}(W_{ij}) \prod_i \int db_i P_b^{(\ell)}(b_i) \prod_{i,\vec{x}} \delta\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)$ $\frac{1}{\sqrt{2\pi C_W^{(\ell)}/n_{\ell-1}}} \exp\left(-\frac{W^2}{2C_W^{(\ell)}/n_{\ell-1}}\right) \qquad \frac{1}{\sqrt{2\pi C_b^{(\ell)}}} \exp\left(-\frac{b^2}{2C_b^{(\ell)}}\right) \qquad \int \frac{d\Lambda_i(\vec{x})}{2\pi} \exp\left[i\Lambda_i(\vec{x})\left(\phi_i^{(\ell)}(\vec{x}) - \sum_{i=1}^{n_{\ell-1}} W_{ij}\sigma\left(\phi_j^{(\ell-1)}(\vec{x})\right) - b_i\right)\right]$

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)} | \phi^{(1)}) \dots P(\phi^{(L)} | \phi^{(L-1)})$$

$$P(\phi^{(\ell)} | \phi^{(\ell-1)}) = \prod_{i,j} \int dW_{ij} P_W^{(\ell)}(W_{ij}) \prod_i \int db_i P_b^{(\ell)}(b_i) \prod_{i,\vec{x}} \delta(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma(\phi_j^{(\ell-1)}(\vec{x})) - b_i)$$

$$\frac{1}{\sqrt{2\pi C_W^{(\ell)}/n_{\ell-1}}} \exp\left(-\frac{W^2}{2C_W^{(\ell)}/n_{\ell-1}}\right) \qquad \frac{1}{\sqrt{2\pi C_b^{(\ell)}}} \exp\left(-\frac{b^2}{2C_b^{(\ell)}}\right) \qquad \int \frac{d\Lambda_i(\vec{x})}{2\pi} \exp\left[i\Lambda_i(\vec{x}) \left(\phi_i^{(\ell)}(\vec{x}) - \sum_{j=1}^{n_{\ell-1}} W_{ij} \sigma(\phi_j^{(\ell-1)}(\vec{x})) - b_i\right)\right]$$

Complete the squares, integrate out W, b, then integrate out Λ (~F.T. of Gaussians) \Rightarrow

$$P(\phi^{(\ell)}|\phi^{(\ell-1)}) = \left[\det\left(2\pi \mathcal{G}^{(\ell)}\right)\right]^{-\frac{n_{\ell}}{2}} \exp\left[-\int d\vec{x}_{1}d\vec{x}_{2} \frac{1}{2} \sum_{i=1}^{n_{\ell}} \phi_{i}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1}(\vec{x}_{1}, \vec{x}_{2}) \phi_{i}^{(\ell)}(\vec{x}_{2})\right]$$

$$\mathcal{G}^{(\ell)}(\vec{x}_{1}, \vec{x}_{2}) \equiv \frac{1}{n_{\ell-1}} \sum_{i=1}^{n_{\ell-1}} \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1}, \vec{x}_{2}), \qquad \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1}, \vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)} \underbrace{\sigma_{j, \vec{x}_{1}}^{(\ell-1)} \sigma_{j, \vec{x}_{2}}^{(\ell-1)}}_{j, \vec{x}_{2}}$$

operator built from $\phi^{(\ell-1)} \Rightarrow$ interactions between adjacent-layer neurons!

Faddeev-Popov?

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)} | \phi^{(1)}) \dots P(\phi^{(L)})$$

$$e^{-\mathcal{S}} = P\left(\phi^{(1)}, \dots, \phi^{(L)}\right) = P\left(\phi^{(1)}\right) P\left(\phi^{(2)} | \phi^{(1)}\right) \dots P\left(\frac{1}{|\mathcal{V}|}\right) P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) \dots P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) \dots P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) \dots P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) \dots P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) P\left(\phi^{(\ell)}$$

Complete the squares, integrate out W, b, then integrate out Λ (~F.T. of Gaussians) \Rightarrow

$$P \big(\phi^{(\ell)} \big| \phi^{(\ell-1)} \big) = \left[\det \left(2 \pi \frac{\mathcal{G}^{(\ell)}}{\mathcal{G}} \right) \right]^{-\frac{n_\ell}{2}} \exp \left[- \int \! d\vec{x}_1 d\vec{x}_2 \, \frac{1}{2} \sum_{i=1}^{n_\ell} \phi_i^{(\ell)}(\vec{x}_1) \left(\frac{\mathcal{G}^{(\ell)}}{\mathcal{G}^{(\ell)}} \right)^{-1}\!\! (\vec{x}_1, \vec{x}_2) \, \phi_i^{(\ell)}(\vec{x}_2) \right]$$

$$\mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2) , \qquad \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)} \underline{\sigma^{(\ell-1)}_{j, \vec{x}_1} \sigma^{(\ell-1)}_{j, \vec{x}_2}}$$

operator built from $\phi^{(\ell-1)} \Rightarrow$ interactions between adjacent-layer neurons!

Faddeev-Popov?

$$e^{-S} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)} | \phi^{(1)}) \dots P(\phi^{(L)})$$

$$e^{-\mathcal{S}} = P\left(\phi^{(1)}, \dots, \phi^{(L)}\right) = P\left(\phi^{(1)}\right) P\left(\phi^{(2)} | \phi^{(1)}\right) \dots P\left(\frac{1}{|\mathcal{V}|}\right) P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) \dots P\left(\frac{1}{|\mathcal{V}|}\right) P\left(\phi^{(\ell)} | \phi^{(\ell)}|\right) \dots P\left(\frac{1}{|\mathcal{V}|}\right) P\left(\frac{1}$$

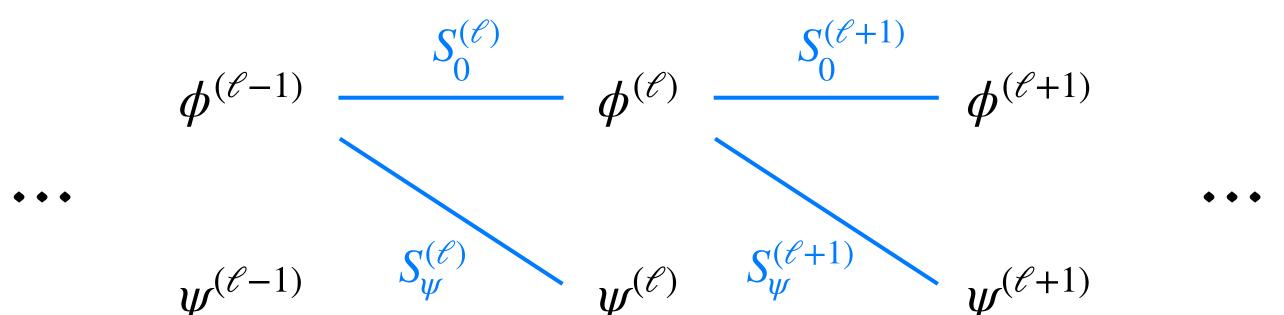
Complete the squares, integrate out W, b, then integrate out Λ (~F.T. of Gaussians) \Rightarrow

$$P\left(\phi^{(\ell)} \middle| \phi^{(\ell-1)}\right) = \underbrace{\left[\det\left(2\pi \mathcal{G}^{(\ell)}\right)\right]^{-\frac{n_{\ell}}{2}}}_{} \exp\left[-\int d\vec{x}_{1} d\vec{x}_{2} \frac{1}{2} \sum_{i=1}^{n_{\ell}} \phi_{i}^{(\ell)}(\vec{x}_{1}) \underbrace{\left(\mathcal{G}^{(\ell)}\right)^{-1}}_{} (\vec{x}_{1}, \vec{x}_{2}) \phi_{i}^{(\ell)}(\vec{x}_{2})\right]$$

$$\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \exp\left[\sum_{i'=1}^{n_{\ell}/2} \underbrace{\bar{\psi}_{i'}^{(\ell)}(\vec{x}_{1})}_{i'} \left(\mathcal{G}^{(\ell)}\right)^{-1} (\vec{x}_{1}, \vec{x}_{2}) \underbrace{\psi_{i'}^{(\ell)}(\vec{x}_{2})}_{i'}\right] \qquad \text{ghosts!}$$

$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)} | \phi^{(1)}) \dots P(\phi^{(L)} | \phi^{(L-1)})$$
$$= \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-\sum_{\ell=1}^{L} \left(\mathcal{S}_{0}^{(\ell)}[\phi] + \mathcal{S}_{\psi}^{(\ell)}[\phi, \psi, \bar{\psi}]\right)}$$

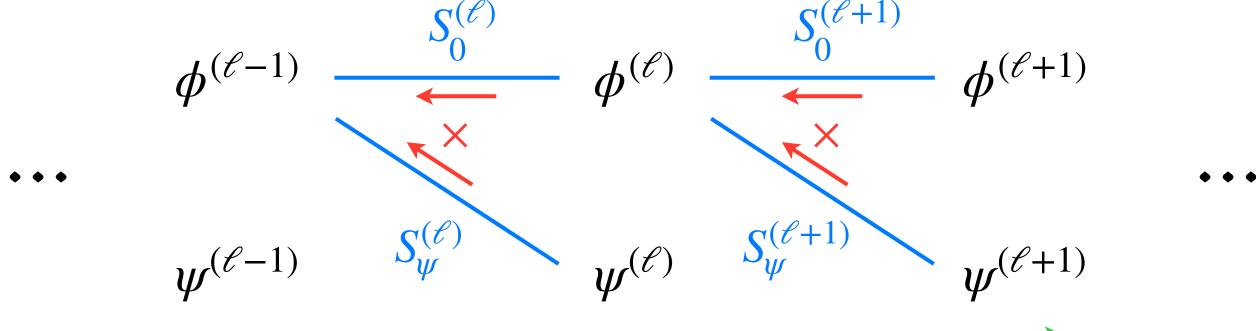
$$S_0^{(\ell)} = \int d\vec{x}_1 d\vec{x}_2 \, \frac{1}{2} \sum_{i=1}^{n_\ell} \phi_i^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)} \right)^{-1} (\vec{x}_1, \vec{x}_2) \, \phi_i^{(\ell)}(\vec{x}_2) \qquad \qquad S_\psi^{(\ell)} = -\int d\vec{x}_1 d\vec{x}_2 \, \sum_{i'=1}^{n_\ell/2} \bar{\psi}_{i'}^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)} \right)^{-1} (\vec{x}_1, \vec{x}_2) \, \psi_{i'}^{(\ell)}(\vec{x}_2)$$



$$e^{-\mathcal{S}} = P(\phi^{(1)}, \dots, \phi^{(L)}) = P(\phi^{(1)}) P(\phi^{(2)} | \phi^{(1)}) \dots P(\phi^{(L)} | \phi^{(L-1)})$$

$$= \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-\sum_{\ell=1}^{L} \left(\mathcal{S}_{0}^{(\ell)}[\phi] + \mathcal{S}_{\psi}^{(\ell)}[\phi, \psi, \bar{\psi}]\right)}$$

$$\mathcal{S}_{0}^{(\ell)} = \int d\vec{x}_{1} d\vec{x}_{2} \, \frac{1}{2} \sum_{i=1}^{n_{\ell}} \phi_{i}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1} (\vec{x}_{1}, \vec{x}_{2}) \, \phi_{i}^{(\ell)}(\vec{x}_{2}) \qquad \qquad \mathcal{S}_{\psi}^{(\ell)} = -\int d\vec{x}_{1} d\vec{x}_{2} \sum_{i'=1}^{n_{\ell}/2} \bar{\psi}_{i'}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1} (\vec{x}_{1}, \vec{x}_{2}) \, \psi_{i'}^{(\ell)}(\vec{x}_{2}) \qquad \qquad \mathcal{S}_{\psi}^{(\ell)} = -\int d\vec{x}_{1} d\vec{x}_{2} \sum_{i'=1}^{n_{\ell}/2} \bar{\psi}_{i'}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1} (\vec{x}_{1}, \vec{x}_{2}) \, \psi_{i'}^{(\ell)}(\vec{x}_{2}) \qquad \qquad \mathcal{S}_{\psi}^{(\ell)} = -\int d\vec{x}_{1} d\vec{x}_{2} \sum_{i'=1}^{n_{\ell}/2} \bar{\psi}_{i'}^{(\ell)}(\vec{x}_{1}) \left(\mathcal{G}^{(\ell)}\right)^{-1} (\vec{x}_{1}, \vec{x}_{2}) \, \psi_{i'}^{(\ell)}(\vec{x}_{2})$$



Network has directionality! (Loop corrections cancel between ϕ and ψ when going backward.) When calculating neuron correlators $\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \dots \phi_{i_{2k}}^{(\ell)}(\vec{x}_{2k}) \rangle$, ghosts do not enter.

Outline

- 1. Neural networks \leftrightarrow field theories (high-level summary).
- 2. EFT of deep neural networks (at initialization).
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

$$\mathcal{S}_0^{(\ell)} = \int d\vec{x}_1 d\vec{x}_2 \; \frac{1}{2} \sum_{i=1}^{n_\ell} \phi_i^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)} \right)^{-1}(\vec{x}_1, \vec{x}_2) \; \phi_i^{(\ell)}(\vec{x}_2)$$

$$\mathcal{G}_0^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \;, \qquad \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)} \; \sigma_{j, \vec{x}_1}^{(\ell-1)} \; \sigma_{j, \vec{x}_2}^{(\ell-1)} = \mathcal{G}_j^{(\ell)}(\vec{x}_2, \vec{x}_1)$$
 operator built from $\phi^{(\ell-1)}$

If $\phi^{(\ell-1)}$ were classical background \Rightarrow free theory for $\phi^{(\ell)}$.

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \right\rangle = \delta_{i_1 i_2} \, \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2)$$

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \, \phi_{i_3}^{(\ell)}(\vec{x}_3) \, \phi_{i_4}^{(\ell)}(\vec{x}_4) \right\rangle = \delta_{i_1 i_2} \delta_{i_3 i_4} \, \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \mathcal{G}^{(\ell)}(\vec{x}_3, \vec{x}_4) + \text{perms.}$$

$$\mathcal{S}_0^{(\ell)} = \int d\vec{x}_1 d\vec{x}_2 \; \frac{1}{2} \sum_{i=1}^{n_\ell} \phi_i^{(\ell)}(\vec{x}_1) \left(\mathcal{G}^{(\ell)} \right)^{-1}\!\! (\vec{x}_1, \vec{x}_2) \; \phi_i^{(\ell)}(\vec{x}_2)$$

$$\mathcal{G}_0^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{j=1}^{n_{\ell-1}} \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \;, \qquad \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)} \; \sigma_{j, \vec{x}_1}^{(\ell-1)} \; \sigma_{j, \vec{x}_2}^{(\ell-1)} = \mathcal{G}_j^{(\ell)}(\vec{x}_2, \vec{x}_1)$$
 operator built from $\phi^{(\ell-1)}$

If $\phi^{(\ell-1)}$ were classical background \Rightarrow free theory for $\phi^{(\ell)}$.

In reality $\phi^{(\ell-1)}$ have statistical fluctuations.

n reality
$$\phi^{(\ell)}$$
 have statistical fluctuations.
$$\frac{1}{n_{\ell-1}} \langle \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle$$

$$\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \rangle = \delta_{i_1 i_2} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \delta_{i_1 i_2} \sum_j \langle \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle$$

$$\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \, \phi_{i_3}^{(\ell)}(\vec{x}_3) \, \phi_{i_4}^{(\ell)}(\vec{x}_4) \rangle = \delta_{i_1 i_2} \delta_{i_3 i_4} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \mathcal{G}^{(\ell)}(\vec{x}_3, \vec{x}_4) \rangle + \text{perms.} \qquad = \delta_{i_1 i_2} \delta_{i_3 i_4} \sum_{j_1, j_2} \langle \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \mathcal{G}_j^{(\ell)}(\vec{x}_2, \vec{x}_3) \rangle$$

$$\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \rangle = \delta_{i_1 i_2} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \delta_{i_1 i_2} \sum_{j} \underbrace{\sum_{\phi_i^{(\ell)}(\vec{x}_1) \quad \phi_i^{(\ell)}(\vec{x}_2)}^{\frac{1}{n_{\ell-1}}} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle}_{\phi_i^{(\ell)}(\vec{x}_1) \quad \phi_i^{(\ell)}(\vec{x}_2)} = \delta_{i_1 i_2} \delta_{i_3 i_4} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \mathcal{G}^{(\ell)}(\vec{x}_3, \vec{x}_4) \rangle + \text{perms.}$$

$$\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \, \phi_{i_3}^{(\ell)}(\vec{x}_3) \, \phi_{i_4}^{(\ell)}(\vec{x}_4) \rangle = \delta_{i_1 i_2} \delta_{i_3 i_4} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \, \mathcal{G}^{(\ell)}(\vec{x}_3, \vec{x}_4) \rangle + \text{perms.}$$

$$= \delta_{i_1 i_2} \delta_{i_3 i_4} \sum_{j_1, j_2} \underbrace{\sum_{\vec{x}_1, j_2}^{\mathcal{G}^{(\ell)}} \mathcal{G}^{(\ell)}_{j_2}}_{\vec{x}_1} + \text{perms.}$$

Effectively, we can simply use the following Feynman rule to build up diagrams.

$$\frac{\frac{1}{n_{\ell-1}}\,\mathcal{G}_j^{(\ell)}(\vec{x}_1,\vec{x}_2)}{\text{(no external wavy lines)}} \qquad \qquad \text{just be sure to attach this to a blob} \\ \left(\text{no external wavy lines}\right) \qquad \qquad \mathcal{G}_j^{(\ell)}(\vec{x}_1,\vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)}\,\sigma_{j,\vec{x}_1}^{(\ell-1)}\,\sigma_{j,\vec{x}_2}^{(\ell-1)} \\ \phi_i^{(\ell)}(\vec{x}_1) \qquad \phi_i^{(\ell)}(\vec{x}_2) \qquad \qquad \mathcal{G}_j^{(\ell)}(\vec{x}_2) \qquad \qquad \mathcal$$

$$\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \rangle = \delta_{i_1 i_2} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \delta_{i_1 i_2} \sum_{j} \underbrace{ \begin{array}{c} \frac{1}{n_{\ell-1}} \langle \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle \\ \phi_{i_1}^{(\ell)}(\vec{x}_1) & \phi_{i_1}^{(\ell)}(\vec{x}_2) \end{array} }_{\phi_{i_1}^{(\ell)}(\vec{x}_2)} \underbrace{ \begin{array}{c} \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \hline \begin{pmatrix} \phi_{i_1}^{(\ell)}(\vec{x}_1) & \phi_{i_2}^{(\ell)}(\vec{x}_2) & \phi_{i_3}^{(\ell)}(\vec{x}_3) & \phi_{i_4}^{(\ell)}(\vec{x}_4) \rangle \\ \phi_{i_1}^{(\ell)}(\vec{x}_1) & \phi_{i_2}^{(\ell)}(\vec{x}_2) & \phi_{i_3}^{(\ell)}(\vec{x}_3) & \phi_{i_4}^{(\ell)}(\vec{x}_4) \rangle \\ \hline \end{pmatrix} = \delta_{i_1 i_2} \delta_{i_3 i_4} \underbrace{ \begin{array}{c} \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \hline \end{array} }_{\vec{x}_4} + \operatorname{perms}.$$

Effectively, we can simply use the following Feynman rule to build up diagrams.

Further decompose into vev + fluctuation.

$$\frac{\frac{1}{n_{\ell-1}}\,\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2})}{\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2})} \xrightarrow{\frac{1}{n_{\ell-1}}} \left\langle \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \right\rangle \xrightarrow{\frac{C_{W}^{(\ell)}}{n_{\ell-1}}} \Delta_{j}^{(\ell-1)}(\vec{x}_{1},\vec{x}_{2})$$

$$\mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \equiv C_{b}^{(\ell)} + C_{W}^{(\ell)}\,\sigma_{j,\vec{x}_{1}}^{(\ell-1)}\,\sigma_{j,\vec{x}_{2}}^{(\ell-1)}$$

$$\phi_{i}^{(\ell)}(\vec{x}_{1}) \xrightarrow{\phi_{i}^{(\ell)}(\vec{x}_{2})} \xrightarrow{\phi_{i}^{(\ell)}(\vec{x}_{2})} \xrightarrow{\phi_{i}^{(\ell)}(\vec{x}_{2})} \phi_{i}^{(\ell)}(\vec{x}_{1}) \xrightarrow{\phi_{i}^{(\ell)}(\vec{x}_{2})}$$

$$\Delta_{j}^{(\ell-1)}(\vec{x}_{1},\vec{x}_{2}) \equiv \sigma_{j,\vec{x}_{1}}^{(\ell-1)}\,\sigma_{j,\vec{x}_{2}}^{(\ell-1)} - \left\langle \sigma_{j,\vec{x}_{1}}^{(\ell-1)}\,\sigma_{j,\vec{x}_{2}}^{(\ell-1)} \right\rangle$$

Only fluctuation piece (Δ , single wavy line) contributes to connected correlators.

1/n expansion

$$\frac{1}{n_{\ell-1}} \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1}, \vec{x}_{2}) \qquad \frac{1}{n_{\ell-1}} \left\langle \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1}, \vec{x}_{2}) \right\rangle \qquad \frac{C_{W}^{(\ell)}}{n_{\ell-1}} \Delta_{j}^{(\ell-1)}(\vec{x}_{1}, \vec{x}_{2})$$

$$= \qquad \qquad + \qquad \qquad \leftarrow \qquad \text{Each interaction vertex is } \sim \frac{1}{n}$$

$$\phi_{i}^{(\ell)}(\vec{x}_{1}) \qquad \phi_{i}^{(\ell)}(\vec{x}_{2}) \qquad \phi_{i}^{(\ell)}(\vec{x}_{1}) \qquad \phi_{i}^{(\ell)}(\vec{x}_{2}) \qquad \phi_{i}^{(\ell)}(\vec{x}_{2}) \qquad \phi_{i}^{(\ell)}(\vec{x}_{2})$$

Infinitely-wide network $(n \to \infty) \Rightarrow$ free theory.

Finitely-wide network (most relevant in practice) \Rightarrow weakly-interacting theory.

Observables calculated order by order in 1/n.

Interested in RG flows of connected correlators $\langle \phi^{2k} \rangle_{c} \sim \mathcal{O}(n^{1-k})$.

2-point correlator

 $\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \, \phi_{i_2}^{(\ell)}(\vec{x}_2) \rangle = \delta_{i_1 i_2} \sum_j \begin{array}{c} \frac{1}{n_{\ell-1}} \langle \mathcal{G}_j^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle \\ \\ \phi_i^{(\ell)}(\vec{x}_1) \, \phi_i^{(\ell)}(\vec{x}_2) \end{array} = \delta_{i_1 i_2} \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle$

Expand in
$$1/n$$
: $\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \sum_{p=0}^{\infty} \frac{1}{n_{\ell-1}^p} \mathcal{K}_p^{(\ell)}(\vec{x}_1, \vec{x}_2)$

$$\text{Recall:} \quad \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \equiv \frac{1}{n_{\ell-1}} \sum_{i=1}^{n_{\ell-1}} \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2) \,, \qquad \quad \mathcal{G}^{(\ell)}_j(\vec{x}_1, \vec{x}_2) \equiv C_b^{(\ell)} + C_W^{(\ell)} \, \sigma_{j, \vec{x}_1}^{(\ell-1)} \, \sigma_{j, \vec{x}_2}^{(\ell-1)} \qquad \text{(operators of } \phi^{(\ell-1)})$$

Leading order (LO): use LO (free-theory) propagators to evaluate $\langle \cdots \rangle$.

$$\mathcal{K}_{0}^{(\ell)}\!(\vec{x}_{1},\vec{x}_{2}) = \sum_{i} \frac{1}{n_{\ell-1}} \big\langle \mathcal{G}_{j}^{(\ell)}(\vec{x}_{1},\vec{x}_{2}) \big\rangle_{\mathcal{K}_{0}^{(\ell-1)}} = C_{b}^{(\ell)} + C_{W}^{(\ell)} \big\langle \sigma_{\vec{x}_{1}} \sigma_{\vec{x}_{2}} \big\rangle_{\mathcal{K}_{0}^{(\ell-1)}}$$

"Kernel recursion" (RG flow of \mathcal{K}_0 , UV boundary condition $\mathcal{K}_0^{(1)}(\vec{x}_1, \vec{x}_2) = C_b^{(1)} + \frac{C_W^{(1)}}{n_0} \vec{x}_1 \cdot \vec{x}_2$). (well-known in ML literature)

24

Connected 4-point correlator

$$\left\langle \phi_{i_1}^{(\ell)}(\vec{x}_1) \,\phi_{i_2}^{(\ell)}(\vec{x}_2) \,\phi_{i_3}^{(\ell)}(\vec{x}_3) \,\phi_{i_4}^{(\ell)}(\vec{x}_4) \right\rangle_{\mathrm{C}} = \delta_{i_1 i_2} \delta_{i_3 i_4} \,\frac{1}{n_{\ell-1}} \,V_4^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4) + \mathrm{perms.}$$

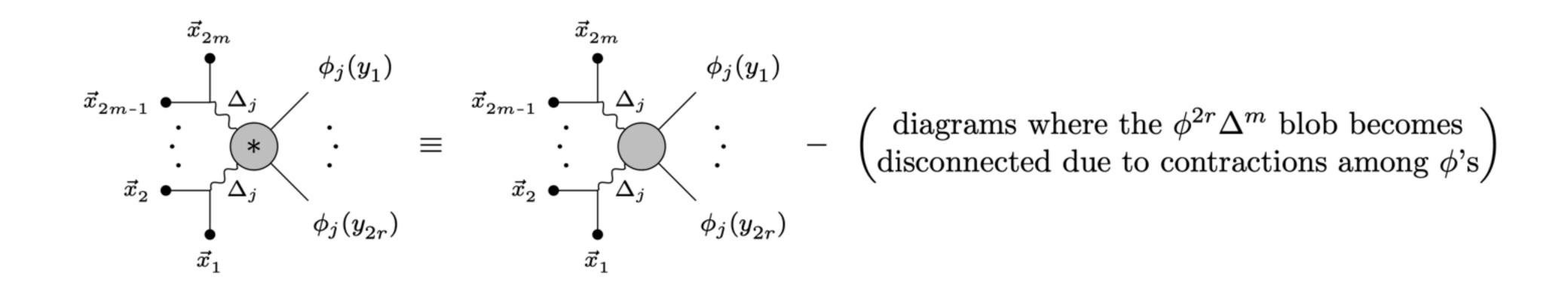
$$\frac{1}{n_{\ell-1}} \underbrace{V_4^{(\ell)}}_{4}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4) = \sum_{j_1, j_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_2}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_4} = \sum_{j_1, j_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_1} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_2} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_3} \underbrace{\sum_{j_1, j_2}^{\vec{x}_3}}_{\vec{x}_4} \underbrace{\sum_{j_1, j_2$$

$$\text{symmetry} \\ \text{factor} \\ \frac{\left(C_W^{(\ell)}\right)^2}{4\,n_{\ell-2}} \prod_{\alpha=1}^4 \int\! d\vec{y}_\alpha d\vec{z}_\alpha \left(\mathcal{K}_0^{(\ell-1)}\right)^{-1} \! (\vec{y}_\alpha, \vec{z}_\alpha) \, V_4^{(\ell-1)} \! (\vec{y}_1, \vec{y}_2; \vec{y}_3, \vec{y}_4) \, \left\langle \Delta(\vec{x}_1, \vec{x}_2) \, \phi(\vec{z}_1) \, \phi(\vec{z}_2) \right\rangle_{\mathcal{K}_0^{(\ell-1)}} \! \left\langle \Delta(\vec{x}_3, \vec{x}_4) \, \phi(\vec{z}_3) \, \phi(\vec{z}_4) \right\rangle_{\mathcal{K}_0^{(\ell-1)}} + \mathcal{O}\left(\frac{1}{n^2}\right) \\ = \frac{\left(C_W^{(\ell)}\right)^2}{4\,n_{\ell-2}} \prod_{\alpha=1}^4 \int\! d\vec{y}_\alpha \, V_4^{(\ell-1)} \! (\vec{y}_1, \vec{y}_2; \vec{y}_3, \vec{y}_4) \, \left\langle \frac{\delta^2 \Delta(\vec{x}_1, \vec{x}_2)}{\delta \phi(\vec{y}_1) \delta \phi(\vec{y}_2)} \right\rangle_{\mathcal{K}_0^{(\ell-1)}} \left\langle \frac{\delta^2 \Delta(\vec{x}_3, \vec{x}_4)}{\delta \phi(\vec{y}_3) \delta \phi(\vec{y}_4)} \right\rangle_{\mathcal{K}_0^{(\ell-1)}} + \mathcal{O}\left(\frac{1}{n^2}\right) \\ \text{Wick contraction} \\ \end{aligned}$$

(in agreement with Yaida '19, Roberts, Yaida, Hanin '21)

Progressing to higher orders

Basic building blocks are *-blobs:



$$= \left(\frac{C_W^{(\ell)}}{n_{\ell-1}}\right)^m \int \prod_{\alpha=1}^{2r} d\vec{z}_\alpha \, \mathcal{K}_0^{(\ell-1)}(\vec{y}_\alpha, \vec{z}_\alpha) \left\langle \frac{\delta^{2r} \left(\Delta(\vec{x}_1, \vec{x}_2) \, \cdots \, \Delta(\vec{x}_{2m-1}, \vec{x}_{2m})\right)}{\delta \phi(\vec{z}_1) \, \cdots \, \delta \phi(\vec{z}_{2r})} \right\rangle_{\mathcal{K}_0^{(\ell-1)}}$$

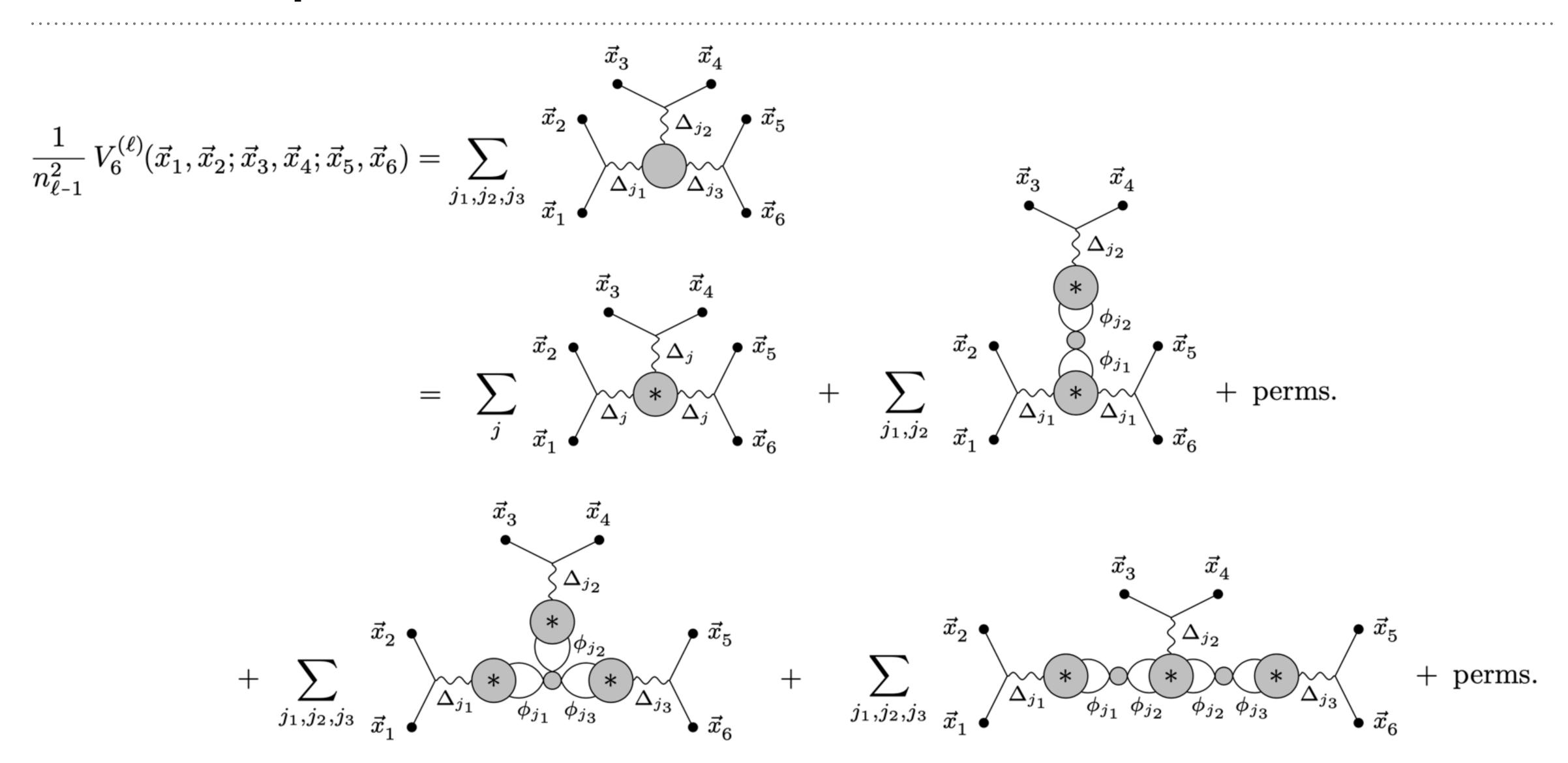
2-point correlator, NLO

$$\left\langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \right\rangle = \sum_{p=0}^{\infty} \frac{1}{n_{\ell-1}^p} \mathcal{K}_p^{(\ell)}(\vec{x}_1, \vec{x}_2)$$

$$\frac{1}{n_{\ell-1}} \, \mathcal{K}_1^{(\ell)}(\vec{x}_1, \vec{x}_2) = \sum_j \underbrace{\sum_{\vec{x}_1}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_1}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_3}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_3}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_3}^{-1} \, \sum_{\vec{x}_2}^{-1} \, \sum_{\vec{x}_3}^{-1} \, \sum_{\vec{x}_3}^$$

(in agreement with Roberts, Yaida, Hanin '21)

Connected 6-point correlator



Connected 8-point correlator

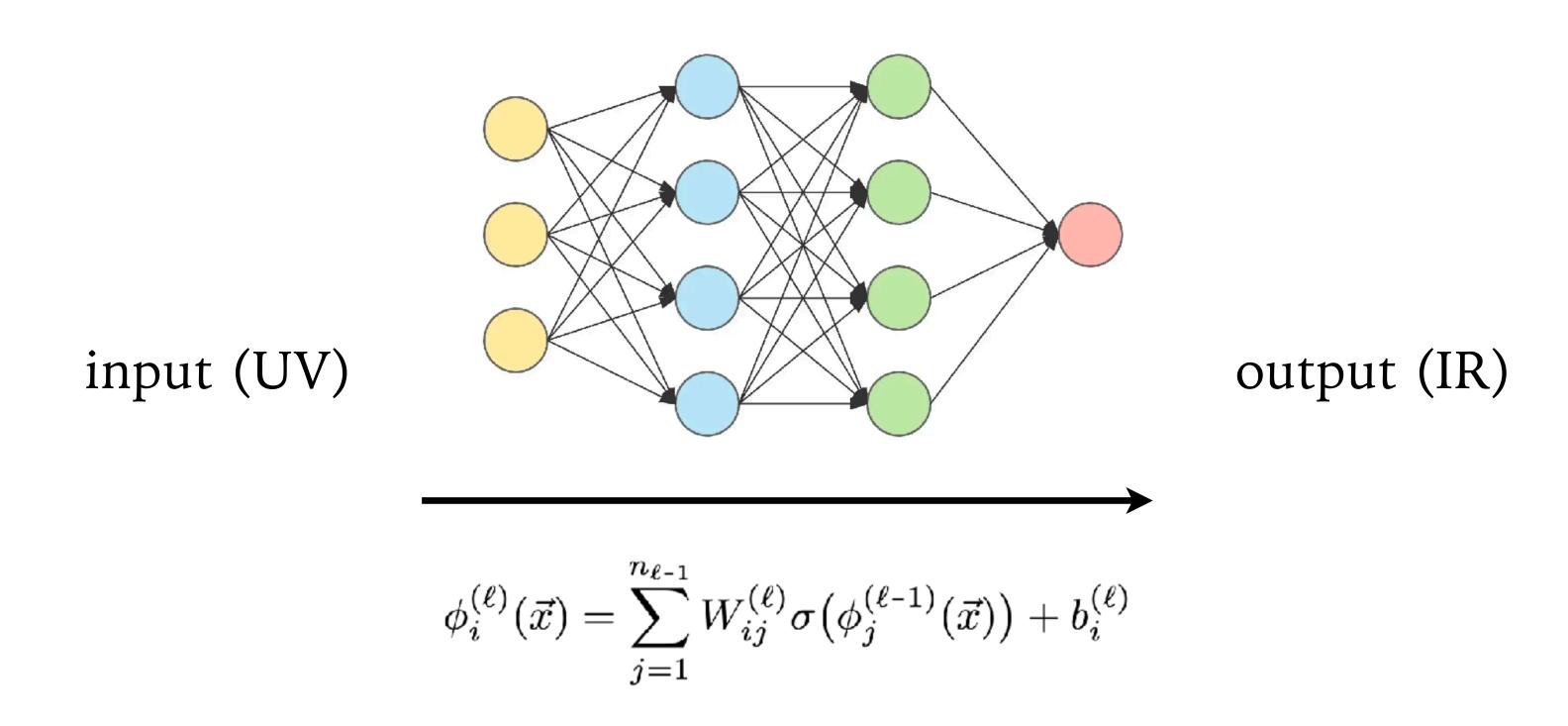
# of j sums	diagrams	degenerate limit result $/(C_W^{(\ell)})^4$
1	- (> - (> + perms.)	$\frac{1}{n_{\ell^{-1}}^3} \left(\left< \Delta^4 \right> - 3 \left< \Delta^2 \right>^2 \right)$
2	- (>	$\left \frac{1}{4} \cdot \frac{V_4^{(\ell-1)}}{n_{\ell-1}^2 n_{\ell-2}} \cdot 4 \left(\left\langle \partial^2 \Delta^3 \right\rangle \! \left\langle \partial^2 \Delta \right\rangle - 3 \left\langle \partial^2 \Delta \right\rangle^2 \! \left\langle \Delta^2 \right\rangle \right) \right $
	+ perms.	$\frac{1}{4} \cdot \frac{V_4^{(\ell-1)}}{n_{\ell-1}^2 n_{\ell-2}} \cdot 3 \left\langle \partial^2 \Delta^2 \right\rangle^2$
3	+ perms.	$\frac{1}{8} \cdot \frac{V_6^{(\ell-1)}}{n_{\ell-1} n_{\ell-2}^2} \cdot 6 \left< \partial^2 \Delta^2 \right> \left< \partial^2 \Delta \right>^2$
	- (> (>	$\frac{1}{16} \cdot \frac{\left(V_4^{(\ell-1)}\right)^2}{n_{\ell-1} n_{\ell-2}^2} \cdot 6 \left(\left\langle \partial^4 \Delta^2 \right\rangle \! \left\langle \partial^2 \Delta \right\rangle^2 - 2 \left\langle \partial^2 \Delta \right\rangle^4 \right)$
	+ perms.	$\frac{1}{16} \cdot \frac{\left(V_4^{(\ell-1)}\right)^2}{n_{\ell-1} n_{\ell-2}^2} \cdot 12 \left\langle \partial^4 \Delta \right\rangle \! \left\langle \partial^2 \Delta^2 \right\rangle \! \left\langle \partial^2 \Delta \right\rangle$

4		$rac{1}{16} \cdot rac{V_8^{(\ell-1)}}{n_{\ell-2}^3} \left<\partial^2 \Delta ight>^4$
	+ perms.	$\frac{1}{32} \cdot \frac{V_6^{(\ell-1)} V_4^{(\ell-1)}}{n_{\ell-2}^3} \cdot 12 \left\langle \partial^4 \Delta \right\rangle \! \left\langle \partial^2 \Delta \right\rangle^3$
	+ perms.	$\frac{1}{64} \cdot \frac{\left(V_4^{(\ell-1)}\right)^3}{n_{\ell-2}^3} \cdot 4 \left\langle \partial^6 \Delta \right\rangle \! \left\langle \partial^2 \Delta \right\rangle^3$
	+ perms.	$\frac{1}{64} \cdot \frac{\left(V_4^{(\ell-1)}\right)^3}{n_{\ell-2}^3} \cdot 12 \left\langle \partial^4 \Delta \right\rangle^2 \! \left\langle \partial^2 \Delta \right\rangle^2$

Outline

- 1. Neural networks \leftrightarrow field theories (high-level summary).
- 2. EFT of deep neural networks (at initialization).
- 3. Diagrammatic approach.
- 4. Structures of neural network EFTs and criticality.

Criticality



Exponential behavior is generic \Rightarrow numerical instability or loss of information.

To avoid this, need to fine-tune network hyperparameters to critical values.

2-point correlator

$$\left\langle \mathcal{G}^{(\ell-1)}(\vec{x}_1,\vec{x}_2) \right\rangle \rightarrow \left\langle \mathcal{G}^{(\ell-1)}(\vec{x}_1,\vec{x}_2) \right\rangle + \delta \left\langle \mathcal{G}^{(\ell-1)}(\vec{x}_1,\vec{x}_2) \right\rangle$$

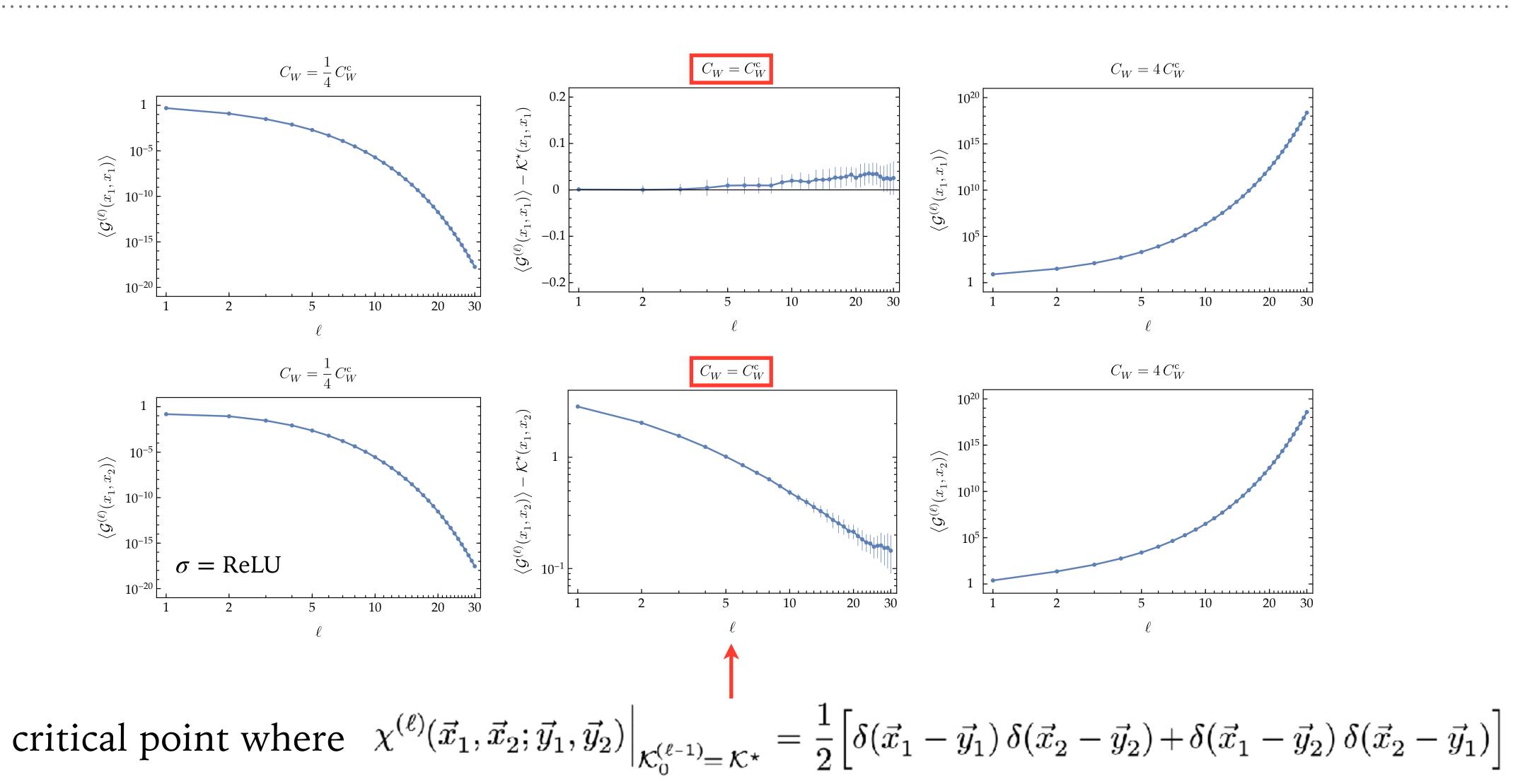
Roughly speaking,
$$\begin{cases} \chi > \mathbf{1} \Rightarrow |\langle G^{(\ell)} \rangle - K^{\star}| \sim e^{\ell} \\ \chi < \mathbf{1} \Rightarrow |\langle G^{(\ell)} \rangle - K^{\star}| \sim e^{-\ell} \end{cases}$$

RG fixed point

Tune to criticality:
$$\chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_1, \vec{y}_2) \Big|_{\mathcal{K}_0^{(\ell-1)} = \mathcal{K}^{\star}} = \frac{1}{2} \Big[\delta(\vec{x}_1 - \vec{y}_1) \, \delta(\vec{x}_2 - \vec{y}_2) + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \Big]$$

$$\Rightarrow \delta \langle \mathcal{G}^{(\ell)}(\vec{x}_1, \vec{x}_2) \rangle = \delta \langle \mathcal{G}^{(\ell-1)}(\vec{x}_1, \vec{x}_2) \rangle \Rightarrow \text{power-law scaling: } |\langle G^{(\ell)} \rangle - K^{\star}| \sim \ell^{\gamma} \leftarrow \text{critical exponent}$$

Hyperparameter tuning



Higher-point connected correlators?

All of them must have power-law scaling.

Naively more constraints than tunable hyperparameters.

However, they have a common structure!

$$\Rightarrow \frac{n_{\ell-2}}{n_{\ell-1}} \frac{\delta V_4^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{x}_3, \vec{x}_4)}{\delta V_4^{(\ell-1)}(\vec{y}_1, \vec{y}_2; \vec{y}_3, \vec{y}_4)} = \frac{1}{2} \left[\chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_1, \vec{y}_2) \chi^{(\ell)}(\vec{x}_3, \vec{x}_4; \vec{y}_3, \vec{y}_4) + \chi^{(\ell)}(\vec{x}_1, \vec{x}_2; \vec{y}_3, \vec{y}_4) \chi^{(\ell)}(\vec{x}_3, \vec{x}_4; \vec{y}_1, \vec{y}_2) \right]$$

same susceptibility introduced in the 2-point correlator analysis!

Higher-point connected correlators?

All of them must have power-law scaling.

Naively more constraints than tunable hyperparameters.

However, they have a common structure!

$$\Rightarrow \left(\frac{n_{\ell-2}}{n_{\ell-1}}\right)^{k-1} \frac{\delta V_{2k}^{(\ell)}(\vec{x}_1, \vec{x}_2; \dots; \vec{x}_{2k-1}, \vec{x}_{2k})}{\delta V_{2k}^{(\ell-1)}(\vec{y}_1, \vec{y}_2; \dots; \vec{y}_{2k-1}, \vec{y}_{2k})} = \text{sym.} \left[\prod_{k'=1}^k \chi^{(\ell)}(\vec{x}_{2k'-1}, \vec{x}_{2k'}; \vec{y}_{2k'-1}, \vec{y}_{2k'})\right]$$

same susceptibility introduced in the 2-point correlator analysis!

Higher-point connected correlators?

All of them must have power-law scaling.

Naively more constraints than tunable hyperparameters.

However, they have a common structure!

$$=\sum_{j_1,\ldots,j_k} \sum_{\Delta_{j_2}} \sum_{\phi_{j_2},\ldots,\phi_{j_k}} \sum_{\phi_{j_k}} \sum_{\Delta_{j_k}} \sum_{\phi_{j_k}} \sum_{$$

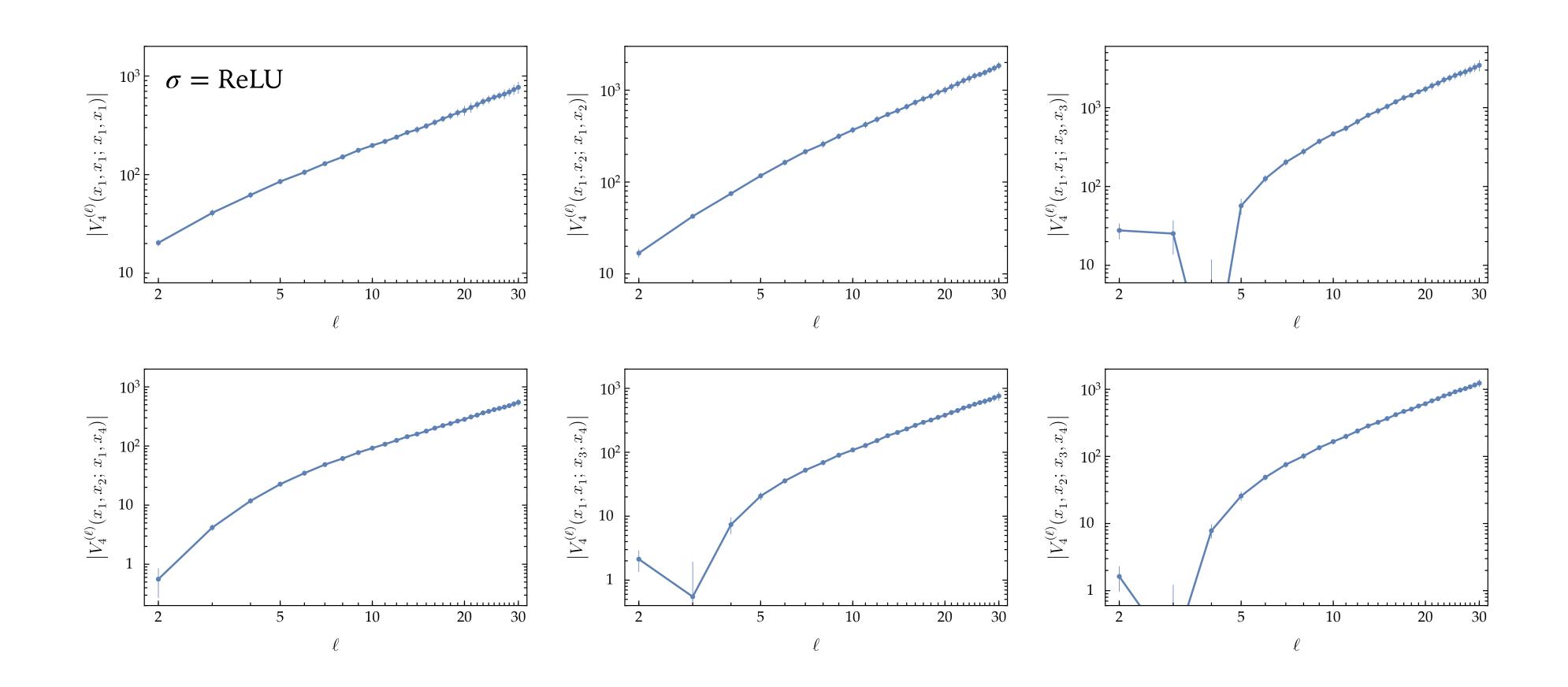
$$\Rightarrow \left(\frac{n_{\ell-2}}{n_{\ell-1}}\right)^{k-1} \frac{\delta V_{2k}^{(\ell)}(\vec{x}_1, \vec{x}_2; \dots; \vec{x}_{2k-1}, \vec{x}_{2k})}{\delta V_{2k}^{(\ell-1)}(\vec{y}_1, \vec{y}_2; \dots; \vec{y}_{2k-1}, \vec{y}_{2k})} = \text{sym.} \left[\prod_{k'=1}^{k} \chi^{(\ell)}(\vec{x}_{2k'-1}, \vec{x}_{2k'}; \vec{y}_{2k'-1}, \vec{y}_{2k'})\right]$$

 $\begin{aligned} & \textbf{Single criticality condition:} \quad \chi^{(\ell)}(\vec{x}_1,\vec{x}_2;\vec{y}_1,\vec{y}_2) \Big|_{\mathcal{K}_0^{(\ell-1)} = \, \mathcal{K}^\star} \\ &= \frac{1}{2} \left[\delta(\vec{x}_1 - \vec{y}_1) \, \delta(\vec{x}_2 - \vec{y}_2) + \delta(\vec{x}_1 - \vec{y}_2) \, \delta(\vec{x}_2 - \vec{y}_1) \right] \end{aligned}$

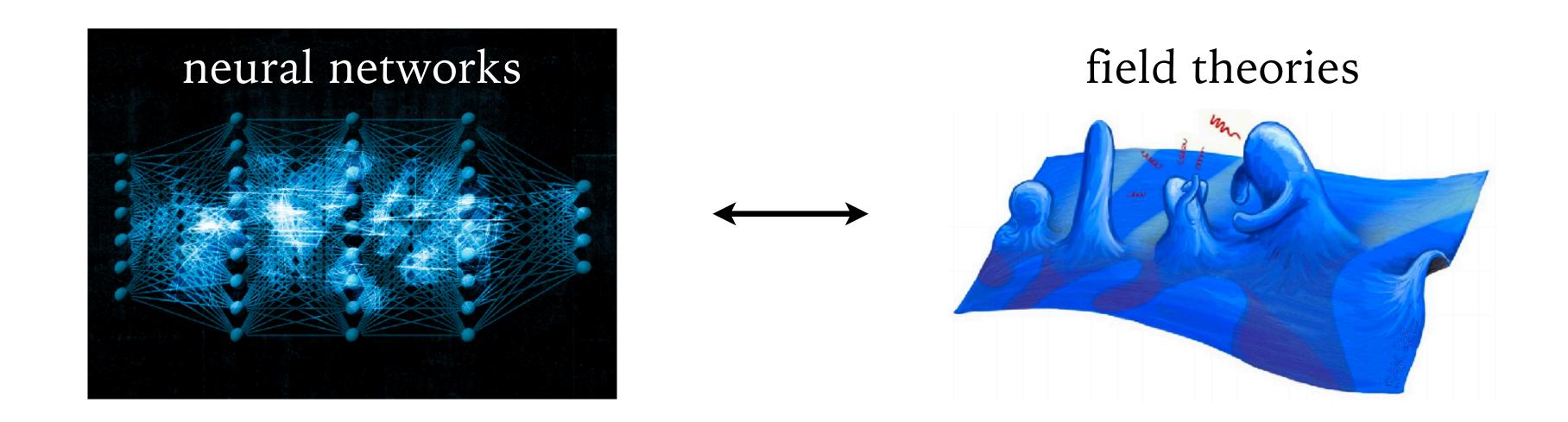
⇒ Power-law scaling for all connected correlators!

Numerical verification

Connected 4-pt correlator at criticality.



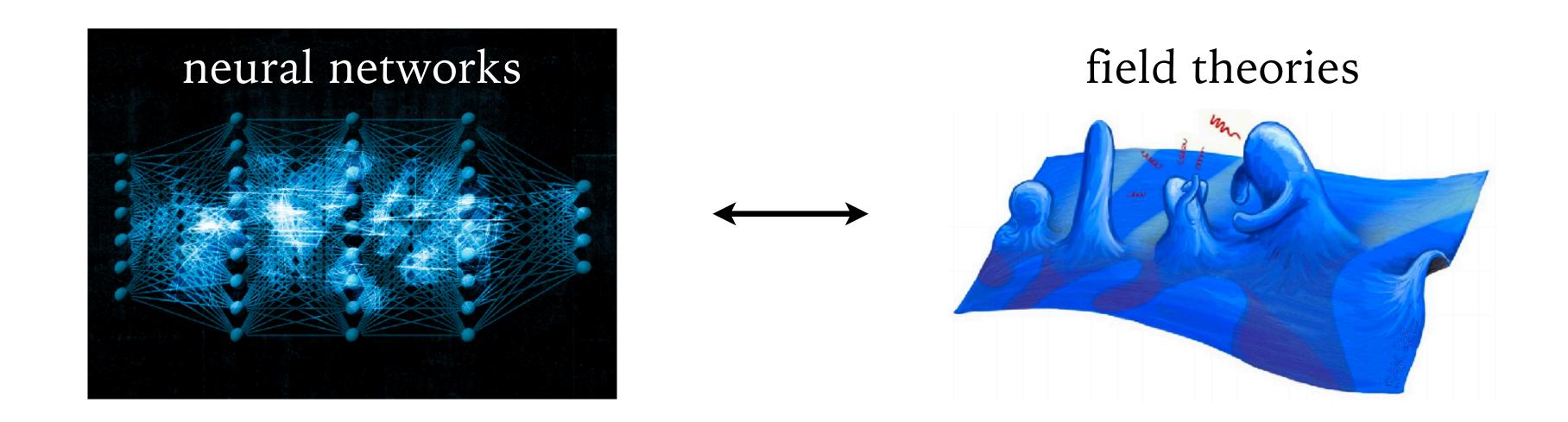
Summary



Diagrammatic approach to EFTs corresponding to neural networks.

Structures of RG calculation \Rightarrow successful tuning to criticality.

Summary



Diagrammatic approach to EFTs corresponding to neural networks.

Structures of RG calculation \Rightarrow successful tuning to criticality.

