Continuous spectrum on cosmological collider Shuntaro Aoki

(Chung-Ang University \Rightarrow IBS)

based on 2301.07920 & ongoing work with Fumiya Sano, Toshifumi Noumi, Masahide Yamaguchi

KIAS seminar 2023/8/22

Inflation

Inflation

rapid expansion of early universe
solve initial condition problems (horizon, flatness)
can be a source for primordial fluctuation

- · slow-roll inflation by a scalar field: inflaton
- · inflaton fluctuation $\delta \phi \Rightarrow$ curvature perturbation ζ

Inflationary observable

scalar power spectrum: $P_{\zeta} \sim \langle \zeta \zeta' \rangle$ tensor power spectrum: $P_{\gamma} \sim \langle \gamma \gamma' \rangle$ spectral tilt: $n_s - 1 = \frac{d \ln P_{\zeta}}{d \ln k}, \dots$

Restrictions on inflaton potential

Beyond 2-pt. function: non-Gaussianity (NG)

• $f_{\rm NL} \sim O(\epsilon)$ for simple model Maldacena '03

simple : single scalar + Einstein gravity + canonical kinetic term + slow-roll

• $f_{\rm NL} \sim O(\epsilon)$ for simple model Maldacena '03

simple : single scalar + Einstein gravity + canonical kinetic term + slow-roll

• $f_{\rm NL} \gg 1$ for more general class of inflation models

• $f_{\rm NL} \sim O(\epsilon)$ for simple model Maldacena '03

simple : single scalar + Einstein gravity + canonical kinetic term + slow-roll

- $f_{\rm NL} \gg 1$ for more general class of inflation models
- · Maldacen's consistency relation, Suyama-Yamaguchi bound, ...

$NG \rightarrow$ strong restrictions on inflation models

 $NG \rightarrow$ strong restrictions on inflation models

There's more: Cosmological collider (CC)

Chen, Wang, '10 Baumann, Green, '12 Noumi, Yamaguchi, Yokoyama, '13 Arkani-Hamed, Maldacena, '15

Chen, Wang, '10 Baumann, Green, '12 Noumi, Yamaguchi, Yokoyama, '13 Arkani-Hamed, Maldacena, '15

• NG can contain information of heavy (new) particle σ with specific oscillation signal (frequency = m_{σ})

Chen, Wang, '10 Baumann, Green, '12 Noumi, Yamaguchi, Yokoyama, '13 Arkani-Hamed, Maldacena, '15

NG can contain information of heavy (new) particle σ with specific oscillation signal (frequency = m_σ)
 m_σ~H~10¹³(GeV) ≫ energy scale of terrestrial experiment

Chen, Wang, '10 Baumann, Green, '12 Noumi, Yamaguchi, Yokoyama, '13 Arkani-Hamed, Maldacena, '15

- NG can contain information of heavy (new) particle σ with specific oscillation signal (frequency = m_{σ})
- $m_{\sigma} \sim H \sim 10^{13} (\text{GeV}) \gg$ energy scale of terrestrial experiment
- Signal can be large!!

Chen, Wang, '10 Baumann, Green, '12 Noumi, Yamaguchi, Yokoyama, '13 Arkani-Hamed, Maldacena, '15

- NG can contain information of heavy (new) particle σ with specific oscillation signal (frequency = m_{σ})
- $m_{\sigma} \sim H \sim 10^{13} (\text{GeV}) \gg$ energy scale of terrestrial experiment
- Signal can be large!!
- CC = new tool for searching high energy physics

Many works

✓ SUSY (Baumann, Green, '12)
✓ EFT approach (Noumi, Yamaguchi, Yokoyama, '13)
✓ Spinning particle (H. Lee, D. Baumann, and G. L. Pimentel, '16, S. Kim, T. Noumi, K. Takeuchi, Siyi Zhou, '19, ...)
✓ Neutrino (Chen, Wang, Xianyu, '16)
✓ Leptogenesis (Cui, Xianyu '21)
✓ GUT (Maru, Okawa, '21)

• • •

Question

Can we really distinguish BSM from CC signal??

Personal view: still far from practical application

Many technical problems:

Question

Can we really distinguish BSM from CC signal??

However, even at this stage, there are some models that predict distinctly different signals that are distinguishable from others.

 \Rightarrow Today's topic: Continuous spectrum on CC & time-dependent mass

Multifield on CC

In realistic model building, natural setup = existence of multiple heavy states

Example: SUSY \rightarrow Sparticles with soft masses $\sim H$ Extra dimensions \rightarrow infinite tower of KK states

Multifield on CC

Whole signal is governed by lightest particle even if there are several heavy particles due to Boltzmann suppression ~ $e^{-\pi m/H}$

 \Rightarrow almost the same signal by a single heavy state

Exception: degenerate case

SA, M. Yamaguchi, JHEP 04 (2021) 127 L. Pinol, SA, S. Renaux-Petel, M. Yamaguchi, 2112.05710

Continuous spectrum??

Example from Extra dimension

S. Kumar and R. Sundrum' 18

Setup

 ϕ : inflaton σ : field with continuous spectrum characterized by spectral density $\rho(m^2)$

Setup

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} f(\sigma) \left(\partial_\mu \phi \right)^2 - \frac{1}{2} \left(\partial_\mu \sigma \right)^2 - V(\phi) - U(\sigma) \right]$$

 ϕ : inflaton σ : field with continuous spectrum

Setup

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} f(\sigma) \left(\partial_\mu \phi \right)^2 - \frac{1}{2} \left(\partial_\mu \sigma \right)^2 - V(\phi) - U(\sigma) \right]$$

ϕ : inflaton σ : field with continuous spectrum

Quantization of fluctuations

$$\delta\phi = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left(u_k a_k + u_k^* a_{-\mathbf{k}}^\dagger \right) e^{i\mathbf{k}\cdot\mathbf{x}},$$

$$\delta\sigma = \int \frac{dm^2}{2\pi} \sqrt{\rho(m^2)} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left(v_{k,m} b_{\mathbf{k},m} + v_{k,m}^* b_{-\mathbf{k},m}^\dagger \right) e^{i\mathbf{k}\cdot\mathbf{x}},$$

E. Meg1as, M. Quirsos,'19 C. Csaki, S. Hong, G. Kurup, S. J. Lee, M. Perelstein, W. Xue, '22 $\rho(m^2)$: spectral density

Interactions

$$\mathcal{L}_{2,\text{int}} = a^3 f_\sigma \dot{\phi}_0 \delta \sigma \delta \dot{\phi},$$
$$\mathcal{L}_{3,\text{int}} = \frac{a^3}{2} f_\sigma \delta \sigma \left((\delta \dot{\phi})^2 - \frac{1}{a^2} (\partial \delta \phi)^2 \right),$$

Observable: $\langle \delta \phi^3 \rangle |_{\kappa \equiv k_{1,2}/k_3 \gg 1} \propto F$

Observable:
$$\langle \delta \phi^3 \rangle |_{\kappa \equiv k_{1,2}/k_3 \gg 1} \propto F$$

Usual case (single particle with definite mass):

$$F_{\text{particle}} = e^{-\pi\mu_{\sigma}} \mathcal{A}(\mu_{\sigma}) \sin\left(\mu_{\sigma}\log\kappa + \varphi(\mu_{\sigma})\right)$$
$$\mu_{\sigma} = \sqrt{\left(\frac{m_{\sigma}}{H}\right)^2 - \frac{9}{4}}$$

Observable:
$$\langle \delta \phi^3 \rangle |_{\kappa \equiv k_{1,2}/k_3 \gg 1} \propto F$$

Usual case (single particle with definite mass):

$$F_{\text{particle}} = e^{-\pi\mu_{\sigma}} \mathcal{A}(\mu_{\sigma}) \sin\left(\mu_{\sigma}\log\kappa + \varphi(\mu_{\sigma})\right)$$
$$\mu_{\sigma} = \sqrt{\left(\frac{m_{\sigma}}{H}\right)^2 - \frac{9}{4}}$$

Continuous case:

$$F_{\text{conti.}} = \int_{m_0^2}^{\infty} \frac{dm^2}{2\pi} \rho\left(m^2\right) e^{-\pi\mu} \mathcal{A}(\mu) \sin\left(\mu \log \kappa + \varphi(\mu)\right)$$
$$\mu = \sqrt{\left(\frac{m}{H}\right)^2 - \frac{9}{4}}.$$

Result

choose a specific spectral density

$$\rho\left(m^2\right) = \frac{2\pi}{m_0^2}\sqrt{\frac{m^2}{m_0^2} - 1},$$

E. Meg1as, M. Quirsos,'19

C. Csaki, S. Hong, G. Kurup, S. J. Lee, M. Perelstein, W. Xue, '22

✓ Damping amplitude = signal of continuous spectrum ✓ $dm \sin(m\kappa) \rightarrow 1/\kappa$ factor (consequence of integration)

Time dependent mass

In general, inflationary background gives a time-dependence to σ -mass

$$\mathcal{L}_{ ext{int}} \supset -rac{1}{2}g(\phi)\sigma^2.$$

$$m_{\rm eff}^2 = m_0^2 + g(\phi)$$

Time-dependent mass (scale dependence) Effects on CC signal??

So far, studied only by numerical simulation

M. Reece, L.T. Wang, Z.Z. Xianyu' 2022

Analytic approach

SA, T. Noumi, F. Sano, M.Yamaguch, 2309.XXXX

Linear app.

$$\phi_0(\tau) = \phi_{0*} - \sqrt{2\epsilon} M_{\rm Pl} \left(1 - \frac{\tau}{\tau_*} \right) + \cdots,$$

$$m_{\rm eff}^2(\tau) = g_* - g_{\phi,*} \sqrt{2\epsilon} M_{\rm Pl} \left(1 - \frac{\tau}{\tau_*}\right) + \cdots,$$

Mode function of σ :

$$v_k = \frac{e^{\pi\kappa/2}}{\sqrt{2k}} H(-\tau) W_{-\mathbf{i}\kappa,\mathbf{i}\mu}(2\mathbf{i}k\tau),$$

$$\kappa(v) = -\frac{\sqrt{2\epsilon}g_{\phi,*}(v)M_{\rm Pl}}{2H^2}$$

 $\kappa = 0 \rightarrow \text{constant mass}$

Analytic approach

$$\mathcal{I}_{\pm\mp}^{p_1p_2}(u_1, 1, v(k_3)) / H^2 = \left\{ \frac{-e^{\mp i\frac{\pi}{2}(p_1 - p_2)} e^{\pi\kappa} \cosh\left[\pi(\mu - \kappa)\right]}{2^{\frac{5}{2} + p_2} \operatorname{sech}(2\pi\mu)} \Gamma \left[\begin{array}{c} -2 - p_2 \mp i\kappa \frac{5}{2} + p_2 \pm i\mu \\ \frac{1}{2} + i\mu \mp i\kappa \frac{1}{2} - i\mu \mp i\kappa - \frac{3}{2} - p_2 \pm i\mu \end{array} \right] + (\mu \to -\mu) \right\} \\
\times \left\{ 2^{\pm i\mu} \left(\frac{u_1}{2}\right)^{\frac{5}{2} + p_1 \pm i\mu} \pi \operatorname{csch}(2\pi\mu)_2 \mathcal{F}_1 \left[\begin{array}{c} p_1 + \frac{5}{2} \pm i\mu, \frac{1}{2} \pm i\mu \mp i\kappa \\ 1 \pm 2i\mu \end{array} \middle| u_1 \right] + (\mu \to -\mu) \right\}, \quad (3.51)$$

Results (preliminary)

$$g(\phi) = m_0^2 \left(1 + \alpha \frac{\phi}{M_{\rm Pl}} \right) \implies \kappa \sim \alpha$$

Large deviation from standard (constant) mass → existence of time-dependent mass

 $x \equiv k_3/k_{1,2}$

Squeezed limit: correlation between a long mode (k_3) and short ones $(k_{1,2})$

Exit horizon at τ_{early}

at τ_{late}

Super-horizon evolution of long mode:

$$v_{k3}(\tau_{\text{late}}) \propto v_{k3}(\tau_{\text{early}}) \times Exp \left\{ -\frac{\pi}{2} \frac{m(\tau_{\text{late}}) - m(\tau_{\text{early}})}{H} \right\}$$

enhancement/suppression depending on sign of α

Summary

Cosmological collider (CC) is a new attractive tool for exploring high energy

1. Continuous spectrum on CC (motivated by some extra dimensional models)

✓ damping effects in deep squeezed limit
 ✓ universal feature independently of ρ(m²)
 ✓ the signal cannot be mimicked by single particle with a definite mass → Strong evidence of continuous spectrum
 ✓ interesting to think about embedding into concrete UV setup

Summary

Cosmological collider (CC) is a new attractive tool for exploring high energy

2. Time-dependent mass on CC (coming from inflaton couplings)

 \checkmark non-derivative coupling \rightarrow sizable effects

 \checkmark analytic estimation

✓ amplitude enhancement/suppression & change of wavelength in squeezed limit

 \checkmark large deviation from the standard case (constant mass)

Thank you for your attention !!

Details

Observable:

Curvature perturbation

$$\zeta \sim -\frac{H}{\dot{\phi}_0}\delta\phi$$

def. of shape function ($\sim f_{\rm NL}$)

$$\langle \zeta_{\mathbf{k_1}} \zeta_{\mathbf{k_2}} \zeta_{\mathbf{k_3}} \rangle = (2\pi)^7 P_{\zeta}^2 \frac{1}{(k_1 k_2 k_3)^2} \delta^{(3)}(\mathbf{k_1} + \mathbf{k_2} + \mathbf{k_3}) S(k_1, k_2, k_3)$$

Result

coefficient (analytic expression)

$$J_{+}(i\mu) = -\frac{\sqrt{\pi}2^{-1-2i\mu} \left(e^{\pi\mu} - i\right) \Gamma\left(i\mu + \frac{7}{2}\right) \left(\operatorname{csch}(\pi\mu) + \operatorname{sech}(\pi\mu)\right)}{(2\mu - i)\Gamma(i\mu + 1)},$$

$$J_{-}(i\mu) = J_{+}(-i\mu)e^{2\pi\mu}.$$

Result

$$S = -\frac{\pi}{4} M_{\rm Pl}^2 \epsilon \left(\frac{f_{\sigma}}{f}\right)^2 \kappa^{-1/2} F_{\rm conti.}$$

Continuous case:

$$F_{\text{conti.}} = \int_{m_0^2}^{\infty} \frac{dm^2}{2\pi} \rho\left(m^2\right) e^{-\pi\mu} \mathcal{A}(\mu) \sin\left(\mu \log \kappa + \varphi(\mu)\right)$$

$$\mathcal{A}(\mu) = \left[\left\{ \mathrm{Im}J_{-}(i\mu) + \mathrm{Im}J_{+}(i\mu) \right\}^{2} + \left\{ \mathrm{Re}J_{-}(i\mu) - \mathrm{Re}J_{+}(i\mu) \right\}^{2} \right]^{1/2},$$

$$\varphi(\mu) = \arctan\left(\frac{\mathrm{Im}J_{-}(i\mu) + \mathrm{Im}J_{+}(i\mu)}{\mathrm{Re}J_{-}(i\mu) - \mathrm{Re}J_{+}(i\mu)} \right).$$

Usual case (single particle with definite mass):

$$F_{\text{particle}} = e^{-\pi\mu_{\sigma}} \mathcal{A}(\mu_{\sigma}) \sin\left(\mu_{\sigma}\log\kappa + \varphi(\mu_{\sigma})\right)$$