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Overview

1. GW Sources

2. Working principle of detector

3. Data analysis

Resonantly excited EM field

External Blfield

‘A

Data Analysis

EM Cavity
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Why Electromagnetic Cavity’?

* There are many cavity experiments that have
extreme sensitivity around the world to detect
the axion that is a candidate for dark matter.

 There are recent studies that these cavity
experiments have reached the level at which
gravitational waves can be measured.

e Reference Papers

e Detecting high-frequency gravitational waves with
microwave cavities / A. Berline+ /2022 PRD

 Novel Search for High-Frequency Gravitational Waves

with Low-Mass Axion Haloscopes / V. Domcke / 2022
PRL
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 Equation of Motion

o mX+ bx+ kx = F(¢)

e Fourier Transformation

do »
o x(t)=J—x(w)e ol
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Credit: LibreTexts

o F (1) = [d_a) F(a)) o "ot Forced Oscillation /

e Amplitude

o X(w)=a (a);a)o, Q) e

. 1 .
la(a);a)O,Q)_F 3,
. (@)

Example: Forced Oscillation

e Dimensionless resonance factor

° 61(0);

w0y, Q) = [((a)/a)o)2 - 1)2 + (a)/a)OQ)2]

o where wy = k/m and Q = maw,/b

log (Q) 1

log (a)

g ............................................

log
log

(wo)
(w)

—1/2



Brief Working Principle of the Detection

e G\W induces a forced oscillation of EM field.
When w — @, the cavity is resonantly excited. Ly,

e Detectable GW frequency:
Resonantly excited EM field

W

External Blfield

signal)

0
0

EM Cavity

: : (wy: resonant frequency, GWs (: frequency)
| ' (Q: quality factor)

Wq
Angular frequency

Curve for resonance factor a (@; @, Q)






Source of Gravitational Waves (GWs)

* |t should be extreme event to emit GWs as strong as enough to detect.

® Source Type

e Transient Source

e Stochastic Source

I\

.l

Transient Signal

Stochastic Water Waves from Distribution of Rain Drops



Sources of GWs: Transient GWs

e Merger of Binary Compact Stars

e Binary Black Holes (BH) Merger
e Binary Neutron Star (NS) Merger
e BH-NS Merger

Insplral Merger Ring-
down
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[| — Numerical relativity u
I Reconstructed (template)
| |

GW Wavetorm of a Transient Source / Merger of Binary Black Holes and Its Gravitational Waves / Credit:
PRL116,061102 (2016) 3 Simulating Extreme Spacetimes



Sources of GWs: Stochastic GWs

e Cosmological origin: Quantum state in early universe

e Astrophysical origin: Distribution of compact binaries

What powered the big bang?

Only gravitational waves can escape from
the earliest moments of the Big Bang

Inflation

. e . . ' (Big Bang plus 103 seconds?)
Big Bang plus -

43 . .
10 -4 seconds e Cosmic microwave background,
distorted by seeds of structure
= and gravitational waves

Big Bang plus
300,000 Years

Gravitational

waves

Big Bang plus
15 Billion Years

Stochastic GW from Big Bang / Credit: NASA Distribution of Compact Binaries / Credit: APS



Ultra-High-Frequency (~GHz) GWs

e Mergers of compact objects with subsolar
masses

e Primordial black holes of ~ 10_5M@ ~ earth mass

e Exotic compact objects: boson stars, fermion
stars, gravitino stars, gravistars, dark matter blobs

e Cosmological stochastic GWs

Chactaristix Sran

e first-order phase transition, cosmic string, 2
inflation, preheating

W

e \We are welcome to your novel scenario! we W

Fregueniy '\

Credit: UHF-GW Initiative
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e Niikura+ PRD 99,

e fr = Einstein Radius / Speed on Lens Plane

083503 (2019)
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Einstein Equation

® Einstein Equation

¢ ab — SﬂGTCZb

¢ Rab — Rcacb

e RY WP =2 VieVgv® for a vector v Albert Einstein

e V: Levi-Civita connection
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Maxwell's Equations

e Fundamental Quantity for e Maxwell Equation
E‘eCtrOmagnet'Sm o g”CVC ab — Y4 James C. Maxwell
e A: Electromagnetic Potential (not field e dF = 0 (trivial because F = dA)

strength F’)

e For observer with 4-velocity u
e cox: Aharonov-Bohm effect

: ° EazFabub
e [agrangian |
1 B =—c, u'F
. fZEM:_ZgacgbdFachd*'AaJa T e T

e \Wave equation form

o VOV, F,=—2VJy—F. R, — 2F, R%,
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Globally Hyperbolic Spacetime

* | et us consider a globally hyperbolic
spacetime (%,g) foliating by spacelike

Cauchy hypersurfaces 2.

e u:the norma\ vector field of 2, such that

g U ayb — 1.

Credit: E. Gourgoulhon
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Ohm's Law in Conductor
yabjb — GgabEb
where
o: conductivity

u: 4-velocity of the conductor.

E = F_,u’: E field with respect to the conductor

-

Georg Ohm

-

High

" = 6%+ u‘uy: projection operator to X, kgl (A

This law would be broken when the charge

-

current is relativistic. We consider only situations

/

(
E
r=-
J
—

AV

- e

\ Low
- potental

L]

in which the law is sufficiently satisfied.

t

Resistance of Conductor

16



Boundary Condition for Surface of Conductor

e | et us consider a conductor and its motion in a cavity
spacetime.

e & 3-dimensional timelike hypersurface tor the
surface ot conductor

* |f the conductor is perfect
® (E”) =PbaEb=Oon@ &

e where

e n: normal vector to & (it is also orthogonal to u)

a — .,a a,, . : :
e P b=1Y h -1y, PI’OJeCtIOﬂ operator Spacetime diagram for cavity conductor

orthogonal to n“.
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Elasticity

 Equation of Motion

° ub Vbl/ta =fa

e The behavior u is determined by the
elasticity theory (Newton's law) with a
boundary condition. (in progress ...)

 The elasticity theory would be break when
the motion of conductor with respect to [ |
B Fie

the equilibrium point is relativistic. We Example of elasticity (?)
consider only situations in which the law is / Credit: TOEI ANIMATION

sufficiently satistied.
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Perturbation

e For a one-parameter foliation of spacetimes ./,

* ¢.: one-parameter group of diffeomorphism

e O(e): perturbed Qin M

) de (p)
« 0(6) = ¢%0(e) = €" |Z+e5Z+ 0 ()]
* n: an integer power for the strength O 5 ()

° O/ i g S
0Z: perturbation of Z y M
: §

e 6Z=1lim— (Z(e)-2) =% Z

0,
c—(0 €

Credit: C. Park / ApJ 940 58
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Gauge for Perturbation

e \We have gauges to choose ¢..
e Gauge Transformation

¢ X ZL—-L7L=L:Z for E€T(M,)
o Stewart-Walker theorem

e 07 is gauge-invariant if and only if

ZZ=0torall¢.

e if and only if Zis zero, constant scalar,

or constructed by identity
endomorphism with constant

coefficients.

21
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Metric

e \We introduce the Minkowski e Gauge Conditions
spacetime in which . Vi — na — 0
ab — a —
_ 2
® “Cup=8uwp+€h,+0 (6 ) e where V is the Levi-Civita connection
e where associated with g

. o \/ M : )
e o:the flat metric acuum up to the First-order

€ _ 2
i Ao o ‘T,=0 (6 )
e R% ., = 0: Riemann tensor

associated with g e Perturbed Einstein Equation
¢ VC Vchab — O

* Note thatitis the wave equation

22



Gravitational Waves

00
]jtab (a), K) eia)(—t+ K - 55)

oy (1,%) = [dzkj

o 2T
e Where szKZ integration over all directions

For k (0, ¢p) = sin @ cos ¢ + sin @sin ¢3 + cos 62

2n T
. Jd2K=J dqu dfsin 6

0 0

Credits: R. Hurt (Caltech-JPL)

From the gauge we chose
e 0=nh, (0, u” 0=h,(w,x) K" 0 = h%, (w, x)

The perturbation of Riemann tensor becomes

= d - . q
o (OR)?,(1,%) = Zjdzkj 2_wk[ak[chb]d] (, ) e =1+ K5
_oo 2T
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Vector Field of 4-velocities

‘U = u+ e (6u)* + O (€2> e Then, we have Transverse-Traceless
1T1T)gauge.
where (TT) gaug
da
ut = (d/()t) such that V,u, =0 s T ety
{t, 55}: globally inertial coordinate //
SyStem Light signals <
We additionally introduce the e
radiation gauge condition as
h,u”=0. )
B

A congruence of geodesics for inertial observers. They
are fixed at the spatial coordinate even if GWs pass.
24 / Credit: M. Nouri-Zonoz and A. Nourizonoz



Electromagnetic Field and Electric Current

¢ °F,=€¢{F,+€(F), +0 ()}
-GJa=€{%+€(5])a+O(€ )}
e where

e [, =¢€“ypB.=constand V_.F_, =0

A

o J9=0

External Blfield

EM Cavity

e 0J and O0F is gauge-invariant because their background vanishes.

e Note that we set“F = O (¢) and J = O (62) then T = O (62) that does not
spoil the vacuum of Minkowski spacetime in the background and does not
give the source term to the wave equation of GWs.
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Maxwell Equation

o VP(6F) , = (8J), — F,.V°h",

* Via(0F)pq =0 -
e [|(oF) A = — ZV[a((SJ)b] — Cd((SR)Cdab "g'
e We have cancelled all terms with V_F , é'” %\

We are in tough section. \wy’)
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Electric Field

e The electric field with respect to u

® — b b 2
(5E), = (5F) , u® + F,, (Su) =S
o SF is spatial. '.
e Note that 0F is gauge-invariant because £, = Fabub = 0. ap 'L’[/
SV UNE AN
Sal)

e Maxwell Equation for 0E

(5E), = DD (6E), + 9, (1", 61), ) = Fuf SR " '% )
) +(-++) (Su) N \/)

o yab (5])b _I_Jg(éy)ab _ 6(5E)a n ((56) g“b B Ghab> % We are in tough section. w

e Ohm's Law
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Boundary Condition for &,

* | et us consider a gauge with cavity

¢.: My— M, such that
o | Po| = P..

: (5’E”)a = Pb,(8'E), + B{(6'P)°, =0

n
on &, by the perturbation with ¢..
e Because OF is gauge-invariant, in P
our TT gauge, we also have G
¢ P’,(8'E), = P, (SE), = 0 on %,
o ‘%O %6
* Due to the boundary condition, the background spacetime perturbed spacetime

eigenmode expansion is possible.

28



e Equation of Motion

o ubV,(6u) + Cohau’ = (f)°

e The behavior éu is determined by
the elasticity theory. (in progress ...)

e The governed equation will be the

wave equation of ou with dissipation
term.

€) :
. (-a% Q()0t+v20’0i> Sut = -

e where visthe speed of the acoustic
wave.

29

Elasticity

e Because vis much smaller than the

speed of light (v <« 1), its resonance

frequency will be much smaller than
the one of EM field.

% 1 o
~N— L — ~ W
Ldet Ldet

acoustic
o W,

e \We expect that the effect of the
acoustic oscillation is negligible in
the frequency band of our interest

(~ @y,



Forced Oscillation Equation

As a result, we get the forced oscillation
equation n

For solenoidal mode: D“(0E), = 0

. (—dtz — 00, + Giﬁi) (OE) =—F Cd((SR)Cdabub SE

For irrotational mode: €%“D, (OE). =0 _ __ [|External Bjiicld
o (=0?—00,) (OE), = — F.,(6R)* ,u’

Boundary Condition

o Pba (5E)b — 0 on g;o EM Cavity

GWs

30



Eigenmode Expansion

. Eingenmode Expansion (depends on the shape of cavity)

. GE) Z g (w)e"

e where real basis e (55) satisfies

e D% =0 (solenoidal mode)

o Ae'' = — w?e” (dispersion)

nm

. J d7 e"-e"=9o, 6V (orthogonality)
7
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Eigenmode Expansion

e Equation for n-th mode o
o0
% a)n% 22 — |B adw 2]2 —iwt
° n n T W6, = ‘ ‘ 2_60 n(a))e 1 wo/ O
Cr —o0 < 2° T
* @, :resonance frequency 1

Wq

¢ Qn: quahty fa ctor Angular frequency

/ 7 A a1 L
o N, (w)= Jd%chab (w, k) (B X K) —J A7 ¢¢ (%) e*™
v

Curve for resonance factor a (a); @y, Q)

>
e Amplitude of torced oscillation

e & (w)=T(w)h, (w)

e T'(w)=a (a);a)n, n) gia(@: . 0) (a)/a)O)2 ‘B‘ : transfer function
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GW Signal

e | et us consider the measurement of OF

using the probe at x;, directed to [

Resonantly excited EM field

o 6(E-1)=@B)-1+£-5 ‘ W
2 do - 7| —iw
. = J 2_71- % (w) ( < p) : l) e il External Blfield

= W \
e where we choose a specific mode with n and [ signal)

frequency band w; < w, < w,.
EM Cavity

(w,: resonant frequency,  GWs (w: frequency)

determine &, (w) in (a)l, a)z) Q,: quality factor)

e From the measurement, we can

33



Antenna Pattern

e Orthogonalization for real and imaginary parts of £
e h,=H (cosne;z + isinne;b) e'

e H: GW strength

e 1: ellipticity

e O: phase adjustment

e Pattern Function

o %n (w) = JdZKH(w, K) Fn (w, K)

~ VaN

o F, (w,Kk)= (cos n(w,x)e’, (w, k) +isinn (w, k) e’ (o, K)) (B 5 K) &b (w, k) e0@X)

n
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Example: TM010 mode of Cylindrical Cavity
®* €10 (P» 45,2) = |B| Jo (60010,0) Z B CBD

e B:strength of external magnetic field K

* wy0 = Jo.1/R: resonance frequency a

* Jjo.1: first zero of Bessel function J;

e of = L/R: aspectratio GWs

e R:radius of cylinder

. 1 .
S1n (5527]0,1 COS a) J, (j(),l Sin a)

1 . - 2
~ 4 Jo,1 COS Jo,1 €O5~

~J

F (60010» K) =2

A
+ . X 5 2b ,i0
x (cos e, (@0 x) + isinnel, (o) ) (Bxx) 22
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Example: TM010 mode of Cylindrical Cavity

(@) 6=0 (b) 6 =n/6

e B=B/|B| = sin6% + cos 0%

® X = SInaCos fX + sina sin fy + cos az 0.1 01
£ 00 | £ 00
® Ul = COS (2W> U + S1n (21//) Vo 0.1 —0.1
. —0. . -0.2 -0.2
_ . . 0.0 0.0
* V= —3l (2llj> Up + COS (lef) U y 02 02 x y 02 02 x
(c) @=n/3 (d) @ =n/2
o F(a,p;0) = \/<FF*>
Y
0.1 | 0.1 |
£ 00 | £ 00
01 1 -0.1
_0\/—0.2 _0\/_0.1
0.0 0.0 0.0 0.0
y 0.2 0.2 X y 0.2 0.1 X

F (a,p;0) for 0 € {0,n/6,x/3,7/2}
36






Thermal Noise

e Equation for n-th mode with * Total Noise
thermal noise W’ 1 1
v o 5,(0)=4 VB2Q, w* haw ) phw/kT _ + ka4

PN S U N T
— %H+E%n+a)n%n =— 2—0) h(w)e ™ +f(1)
7 w; J_ 2n

° _V‘B‘J"o dw

o5

n

w? (iz (w) + 7 (a))> e L1t

i
* Fluctuation-Dissipation Theorem

S (@) = 4 |% " 1 1
® C() — a) -
/ w,0, ) phwlkT _ |

S @) =4—"" (] :
o S ()= w|——
VB%0, w*
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Example: TM010 mode of Cylindrical Cavity

e R~ 5cm

e R/IL ~ 1

10—41 -

e V=1R’L ~3.1L
e B~ KT

¢ Oy~ 10°

1
® f()l() — _j() IC/R ~ 229 GHZ
2

e 7T~ 60mK

cav

Noise Spectral Density (Hz™1)
'.—l
o
<

° Tadd ~ 150 mK L 40° 22935 % 10? 40° 2:2945 X 10? 40?2295 X 10°
) 293 2 2% 2 292
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2-Detector Correlation

e Maximal Signal to Noise Ratio for 2-Detector Correlation

12
- ® do |- 2 S7 (w)
- ﬁ [ J _oo 2T H@) S5p.1 (@) 5,5 (w)

S
°N
e T observation time

¢ §,;(w): noise spectral density for i-th detector

e ['(w): overlap reduction that depends on a configuration of cavities.
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Example: Two Identical Cavities with TM010

e ['(w) = C(6)

dli> Y

rr}2

Ahn-Im-Park Curve 41

GWs



e Can EM cavities be utilized to detect GWs?

Discussions

* Yes. | have reviewed intensively.

* |sthere any source of GWs that can be
observed by the EM cavity detector?

e Maybe there is. Earth mass PBH?

* |sthere any possible cavity to apply our

concepts?

e \We can propose our idea to
Axion and Precision Physics

(CAPP) in IBS. One of our co

Center for
Research

leagues is

associated with CAPP-IBS and is experts

on EM cavity experiment.

42

* |s the sensitivity of detector enough to
detect GWs?

* \We need more analysis.

* |sthere data analysis method for our
detector concept?

* \We have developed a correlation
method tor the detector.

e Thank you for listening &



