Searching for High Frequency GW with Axion Detectors

Sung Mook Lee

Yonsei U. \rightarrow KAIST

2306.03125

with Valerie Domcke (CERN), Camilo Carcia-Cely (Valencia, IFIC), and Nicholas L. Rodd (CERN)

Detection of Gravitational Waves

Detection of Gravitational Waves

Detection of Gravitational Waves

First Detector of Stochastic GW

Stochastic Gravitational Wave Background

High frequency = Early universe

$$f_{\rm GW} \gtrsim O(1) \,\,\mathrm{MHz}\left(\frac{T_*}{10^8 \,\,\mathrm{GeV}}\right)$$

Stochastic Gravitational Wave Background

High frequency = Early universe

$$f_{\rm GW} \gtrsim O(1) \ {\rm MHz} \left(\frac{T_*}{10^8 \ {\rm GeV}} \right)$$

- Constraints from BBN/CMB on ΔN_{eff}

$$\left(\frac{\rho_{\rm GW}}{\rho_{\gamma}}\right) \leq \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff} \lesssim 0.05$$

Stochastic Gravitational Wave Background

High frequency = Early universe

$$f_{\rm GW} \gtrsim O(1) \ {\rm MHz} \left(\frac{T_*}{10^8 \ {\rm GeV}} \right)$$

- Constraints from BBN/CMB on ΔN_{eff}

$$\left(\frac{\rho_{\rm GW}}{\rho_{\gamma}}\right) \leq \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff} \lesssim 0.05$$

Localized Sources

• PBH binaries / exotic compact objects

$$f \simeq 220 \text{ MHz} \left(\frac{10^{-5} M_{\odot}}{m_{\text{PBH}}}\right)$$

Larger signals expected

Localized Sources

• PBH binaries / exotic compact objects

$$f \simeq 220 \text{ MHz} \left(\frac{10^{-5} M_{\odot}}{m_{\text{PBH}}}\right)$$

Larger signals expected

How can we detect GW with f > O(1MHz)?

Axion Detectors

Electromagnetism with Axion

Axion-Photon Coupling

$$\mathcal{L}_{\rm int} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Effective Current

$$\partial_{\nu}F^{\mu\nu} = \partial_{\nu}\left(g_{a\gamma\gamma}a\tilde{F}^{\nu\mu}\right) = g_{a\gamma\gamma}(\partial_{\nu}a)\tilde{F}^{\nu\mu} \equiv j_{\text{eff}}^{\mu}$$

Axion is mainly sensitive to the magnetic field

$$\mathbf{j}_{\mathrm{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\mathrm{DM}}} \cos(m_a t) \mathbf{B} \qquad \rho_{\mathrm{DM}} \simeq 0.3 \ \mathrm{GeV/cm^3}$$

Axion Detectors

• Axion haloscope experiments [2203.14923 for review]

$$\Phi = e^{-i\omega t} g_{a\gamma\gamma} \sqrt{2\rho_{\rm DM}} B_{\rm max} \pi r^2 R \ln(1 + a/R)$$
measurement
$$constraints$$

- Solenoidal: ADMX-SLIC, BASE, DMRadio-m³
- Toroidal: ABRACADABRA, SHAFT

SSC

0.3

0.5

0.8

1

 m_a [neV]

5

[1810.12257]

3

Axion Experiment Zoo

Axion Experiment Zoo

EM-HFGW Program

Detection of GW

[Gertsenshtein '62] [Boccaletti, Sabbata, Fortini, Gualdi '70]

 $\partial_{\nu}F^{\mu\nu} = j^{\mu}$

[Gertsenshtein '62] [Boccaletti, Sabbata, Fortini, Gualdi '70]

[Gertsenshtein '62] [Boccaletti, Sabbata, Fortini, Gualdi '70]

 $\partial_{\nu}F^{\mu\nu} = j^{\mu}$ $\partial \to \nabla$ $\nabla_{\nu}F^{\mu\nu} = \frac{1}{\sqrt{-q}}\partial_{\nu}\left(\sqrt{-g}F^{\mu\nu}\right) = j^{\mu}$ perturbation $\partial_{\nu}F^{\mu\nu} = \left(1 + \frac{1}{2}h^{\mu}{}_{\mu}\right)j^{\mu} + \partial_{\nu}\left(-\frac{1}{2}h^{\alpha}{}_{\alpha}F^{\mu\nu} + F_{\alpha}{}^{\nu}h^{\alpha\mu} + F^{\mu}{}_{\alpha}h^{\alpha\nu}\right) + O(h^2)$ 'effective current'

[Gertsenshtein '62] [Boccaletti, Sabbata, Fortini, Gualdi '70]

 $\partial_{\rho}F_{\mu\nu} + \partial_{\nu}F_{\rho\mu} + \partial_{\mu}F_{\nu\rho} = 0$

 $\partial_{\nu}F^{\mu\nu} = j^{\mu}$ $\partial \to \nabla$ $\nabla_{\nu}F^{\mu\nu} = \frac{1}{\sqrt{-q}}\partial_{\nu}\left(\sqrt{-g}F^{\mu\nu}\right) = j^{\mu}$ perturbation $\partial_{\nu}F^{\mu\nu} = \left(1 + \frac{1}{2}h^{\mu}{}_{\mu}\right)j^{\mu} + \partial_{\nu}\left(-\frac{1}{2}h^{\alpha}{}_{\alpha}F^{\mu\nu} + F_{\alpha}{}^{\nu}h^{\alpha\mu} + F^{\mu}{}_{\alpha}h^{\alpha\nu}\right) + O(h^2)$ 'effective current'

[Gertsenshtein '62] [Boccaletti, Sabbata, Fortini, Gualdi '70]

 $\partial_{\nu}F^{\mu\nu} = j^{\mu}$ $\partial \to \nabla$ $\nabla_{\nu}F^{\mu\nu} = \frac{1}{\sqrt{-q}}\partial_{\nu}\left(\sqrt{-g}F^{\mu\nu}\right) = j^{\mu}$ perturbation $\partial_{\nu}F^{\mu\nu} = \left(1 + \frac{1}{2}h^{\mu}{}_{\mu}\right)j^{\mu} + \partial_{\nu}\left(-\frac{1}{2}h^{\alpha}{}_{\alpha}F^{\mu\nu} + F_{\alpha}{}^{\nu}h^{\alpha\mu} + F^{\mu}{}_{\alpha}h^{\alpha\nu}\right) + O(h^2)$ 'effective current'

Sung Mook Lee

[Gertsenshtein '62] [Boccaletti, Sabbata, Fortini, Gualdi '70]

$$\partial_{\nu}F^{\mu\nu} = \left(1 + \frac{1}{2}h^{\mu}{}_{\mu}\right)j^{\mu} + \partial_{\nu}\left(-\frac{1}{2}h^{\alpha}{}_{\alpha}F^{\mu\nu} + F_{\alpha}{}^{\nu}h^{\alpha\mu} + F^{\mu}{}_{\alpha}h^{\alpha\nu}\right) + O(h^2)$$
'effective current'

Note on Frame

• **TT frame**
$$h_{ij}^{TT} = (h^+ e_{ij}^+ (\phi_h, \theta_h) + h^{\times} e_{ij}^{\times} (\phi_h, \theta_h)) e^{i(\mathbf{k} \cdot \mathbf{r} - \omega \mathbf{t})}$$

Coordinates fixed by geodesic of freely falling test masses

• GW takes the simple form $h_{0\mu} = 0, h_i^i = 0, \partial_j h^{ij} = 0$

Detector (rigid body) looks oscillating in presence of GWs
 → makes the experimental setup & observables obscure

Note on Frame

Proper detector frame

[Berlin, Blas, Tito D'Agnolo, Ellis, Harnik, Kahn, Schutte-Engel '21] [Domcke, Carcia-Cely, Rodd '22]

- Coordinates fixed by laboratory frame
- More involved form

$$h_{00} = \omega^2 e^{-i\omega t} F(\mathbf{k} \cdot \mathbf{r}) r_m r_n \sum_{A=+,\times} h^A e^A_{mn}(\hat{\mathbf{k}}), \qquad F(\xi) = (e^{i\xi} - 1 - i\xi)/\xi^2$$

$$h_{0i} = \frac{1}{2} \omega^2 e^{-i\omega t} [F(\mathbf{k} \cdot \mathbf{r}) - iF'(\mathbf{k} \cdot \mathbf{r})] [\hat{\mathbf{k}} \cdot \mathbf{r} r_m \delta_{ni} - r_m r_n \hat{k}_i] \sum_{A=+,\times} h^A e^A_{mn}(\hat{\mathbf{k}}),$$

$$h_{ij} = -i\omega^2 e^{-i\omega t} F'(\mathbf{k} \cdot \mathbf{r}) [|\mathbf{r}|^2 \delta_{im} \delta_{jn} + r_m r_n \delta_{ij} - r_n r_j \delta_{im} - r_m r_i \delta_{jn}] \sum_{A=+,\times} h^A e^A_{mn}(\hat{\mathbf{k}})$$

Description of the experimental setup and observables is straightforward

Note on Frame

Proper detector frame

[Berlin, Blas, Tito D'Agnolo, Ellis, Harnik, Kahn, Schutte-Engel '21] [Domcke, Carcia-Cely, Rodd '22]

- Coordinates fixed by laboratory frame
- More involved form $\begin{aligned} & \text{Leading order : } O(\omega^2 L^2) \\ & h_{00} = \omega^2 e^{-i\omega t} F(\mathbf{k} \cdot \mathbf{r}) r_m r_n \sum_{A=+,\times} h^A e^A_{mn}(\hat{\mathbf{k}}), \qquad F(\xi) = (e^{i\xi} - 1 - i\xi)/\xi^2 \\ & h_{0i} = \frac{1}{2} \omega^2 e^{-i\omega t} [F(\mathbf{k} \cdot \mathbf{r}) - iF'(\mathbf{k} \cdot \mathbf{r})][\hat{\mathbf{k}} \cdot \mathbf{r} r_m \delta_{ni} - r_m r_n \hat{k}_i] \sum_{A=+,\times} h^A e^A_{mn}(\hat{\mathbf{k}}), \\ & h_{ij} = -i\omega^2 e^{-i\omega t} F'(\mathbf{k} \cdot \mathbf{r})[|\mathbf{r}|^2 \delta_{im} \delta_{jn} + r_m r_n \delta_{ij} - r_n r_j \delta_{im} - r_m r_i \delta_{jn}] \sum_{A=+,\times} h^A e^A_{mn}(\hat{\mathbf{k}}). \end{aligned}$
- Description of the experimental setup and observables is straightforward

Strategy

[Domcke, Carcia-Cely, Rodd '22]

$$\Phi_{\text{Axion}}(g_{a\gamma\gamma}) \equiv \Phi_{\text{GW}}(h_{+,\times};\theta_h,\phi_h)$$

Strategy

[Domcke, Carcia-Cely, Rodd '22]

$$\Phi_{\text{Axion}}(g_{a\gamma\gamma}) \equiv \Phi_{\text{GW}}(h_{+,\times};\theta_h,\phi_h)$$

• Axion detector is not optimized for GW signals

Strategy

[Domcke, Carcia-Cely, Rodd '22]

$$\Phi_{\text{Axion}}(g_{a\gamma\gamma}) \equiv \Phi_{\text{GW}}(h_{+,\times};\theta_h,\phi_h)$$

• Axion detector is not optimized for GW signals

Strategy

[Domcke, Carcia-Cely, Rodd '22]

$$\Phi_{\text{Axion}}(g_{a\gamma\gamma}) \equiv \Phi_{\text{GW}}(h_{+,\times};\theta_h,\phi_h)$$

• Axion detector is not optimized for GW signals

 $Q^{-1} \sim \frac{\Delta \omega}{\omega}$

Coherence Ratio Factor

$$R_c = \left(\frac{Q_a}{Q_h}\right)^{1/4}$$
 (persistent signal)

For more general cases, [Domcke, Carcia-Cely, SML, Rodd 23']

Sung Mook Lee

• For single pickup loop [Domcke, Carcia-Cely, SML, Rodd '23]

$$\Phi_{\rm GW} = \frac{e^{-i\omega t}}{144} \omega^2 B_z lr (30R^2 - 13r^2) \sin \theta_h (h^+ \cos \theta_h \sin \phi_L + h^\times \cos \phi_L) + \mathcal{O}[(\omega L)^3]$$

• For single pickup loop [Domcke, Carcia-Cely, SML, Rodd '23]

$$\Phi_{\rm GW} = \frac{e^{-i\omega t}}{144} \omega^2 B_z lr (30R^2 - 13r^2) \sin \theta_h (h^+ \cos \theta_h \sin \phi_L + h^\times \cos \phi_L) + \mathcal{O}[(\omega L)^3]$$

leading order

$$O(\omega^2)$$

• For single pickup loop [Domcke, Carcia-Cely, SML, Rodd '23]

$$\Phi_{\rm GW} = \frac{e^{-i\omega t}}{144} \omega^2 B_z lr(30R^2 - 13r^2) \sin \theta_h (h^+ \cos \theta_h \sin \phi_L + h^\times \cos \phi_L) + \mathcal{O}[(\omega L)^3]$$

leading order volume effect
$$O(\omega^2)$$

• For single pickup loop [Domcke, Carcia-Cely, SML, Rodd '23]

$$\Phi_{\rm GW} = \frac{e^{-i\omega t}}{144} \omega^2 B_z lr(30R^2 - 13r^2) \sin \theta_h (h^+ \cos \theta_h \sin \phi_L + h^\times \cos \phi_L) + \mathcal{O}[(\omega L)^3]$$

leading order volume effect angular dependence
 $O(\omega^2)$

• For single pickup loop [Domcke, Carcia-Cely, SML, Rodd '23]

$$\Phi_{\rm GW} = \frac{e^{-i\omega t}}{144} \omega^2 B_z lr(30R^2 - 13r^2) \sin \theta_h (h^+ \cos \theta_h \sin \phi_L + h^\times \cos \phi_L) + \mathcal{O}[(\omega L)^3]$$

leading order volume effect angular dependence
$$O(\omega^2)$$

• Toroidal loop (ϕ_L integration) : $\Phi_{GW,Sol} = O(\omega^3)$

 ϕ_{L}

• For single pickup loop [Domcke, Carcia-Cely, SML, Rodd '23]

$$\Phi_{\rm GW} = \frac{e^{-i\omega t}}{144} \omega^2 B_z lr(30R^2 - 13r^2) \sin \theta_h (h^+ \cos \theta_h \sin \phi_L + h^\times \cos \phi_L) + \mathcal{O}[(\omega L)^3]$$
leading order volume effect angular dependence
$$O(\omega^2)$$
• Toroidal loop (ϕ_L integration): $\Phi_{\rm GW,Sol} = O(\omega^3)$

This cancellation *always* happens for *cylindrically symmetric* axion detectors

 ϕ_L

Example: Toroidal Geometry

Normal Loop

$$\Phi_{\rm GW} = \frac{ie^{-i\omega t}}{48} \omega^3 B_{\rm max} \pi r^2 Ra(a+2R)h^{\times} \sin^2\theta_h$$

Figure-8 Loop

$$\Phi_{\rm GW, Fig-8} = \frac{e^{-i\omega t}}{3} \omega^2 B_{\rm max} r^3 R \ln\left(1 + \frac{a}{R}\right) s_{\theta_h} (h^{\times} s_{\phi_h} - h^+ c_{\theta_h} c_{\phi_h})$$
[2202.00695]

Kills axion sensitivity

Result: Reinterpreting Axion Detectors

BASE

Result: Reinterpreting Axion Detectors

[Domcke, Carcia-Cely, SML, Rodd '23]

Future Prospects

WISPLC

• DMRadio Proposal

Future Prospects

Different Geometries

Selection Rule 1: For an instrument with azimuthal symmetry, $\Phi_h \propto h^+$ at $\mathcal{O}[(\omega L)^2]$.¹⁶

Selection Rule 1: For an instrument with azimuthal symmetry, $\Phi_h \propto h^+$ at $\mathcal{O}[(\omega L)^2]$.¹⁶

$$\Phi_{\rm GW}(\hat{\mathbf{k}}) = \Phi_{\rm GW}(R_z(\varphi)\hat{\mathbf{k}})$$

$$\Phi_{\rm GW}(\hat{\mathbf{k}}) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \ \Phi_{\rm GW}(R_z(\varphi)\hat{\mathbf{k}}) \propto D^{mn} \int_0^{2\pi} d\varphi \ \sum_A h_A e_{mn}^A(R_z\hat{\mathbf{k}})$$

$$\propto e^{-i\omega t} h^+ \sin^2 \theta_h D^{mn} \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix}_{mn}$$

Selection Rule 1: For an instrument with azimuthal symmetry, $\Phi_h \propto h^+$ at $\mathcal{O}[(\omega L)^2]$.¹⁶

Selection Rule 2: For an instrument with azimuthal symmetry, the flux is proportional to either h^+ or h^{\times} , but not both. This holds to all orders in (ωL) .¹⁷

Selection Rule 1: For an instrument with azimuthal symmetry, $\Phi_h \propto h^+$ at $\mathcal{O}[(\omega L)^2]$.¹⁶

Selection Rule 2: For an instrument with azimuthal symmetry, the flux is proportional to either h^+ or h^{\times} , but not both. This holds to all orders in (ωL) .¹⁷

 $\Phi \sim h^{\times} \omega^3 L^5$

Selection Rule 1: For an instrument with azimuthal symmetry, $\Phi_h \propto h^+$ at $\mathcal{O}[(\omega L)^2]$.¹⁶

Selection Rule 2: For an instrument with azimuthal symmetry, the flux is proportional to either h^+ or h^{\times} , but not both. This holds to all orders in (ωL) .¹⁷

$\Phi \sim h^{\times} \omega^3 L^5$

Selection Rule 3: For an instrument with full cylindrical symmetry, Φ_h will contain only even or odd powers of ω .

Leading Orders

[Domcke, Carcia-Cely, SML, Rodd '23]

		$\widehat{m{n}}'$				
		\hat{e}_{z}	$\hat{e}_{oldsymbol{\phi}}$	$\hat{e}_{ ho}$		
B	$\begin{array}{c c} \hat{e}_z \\ \textbf{(Sol)} \end{array}$	h_+ , even : $O[(\omega L)^2]$	h_{\times} , odd : $O[(\omega L)^3]$ BASE	h_+ , odd : $O[(\omega L)^3]$ off-center: $O[(\omega L)^2]$		
	\hat{e}_{ϕ} (Toro)	h_{\times} , odd : $O[(\omega L)^3]$ ABRA	h_+ , even : $O[(\omega L)^{\checkmark 4}]$	h_{x} , even : $O[(\omega L)^{4}]$ off-center: $O[(\omega L)^{3}]$		

Optimal axion detection forbids optimal GW detection

Conclusion

- Detection of HFGW is a smoking gun of BSM
 - new opportunities, interesting theoretical questions, and experimental challenges.

Conclusion

- Detection of HFGW is a smoking gun of BSM
 - new opportunities, interesting theoretical questions, and experimental challenges.

- We can use and reinterpret the results of axion haloscope experiments to observe/constrain high-frequency GWs (above 100 kHz).
 - Current: ADMX-SLIC, BASE, ABRACADABRA, …
 - Future: DMRadio, WISPLC, ...

Conclusion

- Detection of HFGW is a smoking gun of BSM
 - new opportunities, interesting theoretical questions, and experimental challenges.

- We can use and reinterpret the results of axion haloscope experiments to observe/constrain high-frequency GWs (above 100 kHz).
 - Current: ADMX-SLIC, BASE, ABRACADABRA, …
 - Future: DMRadio, WISPLC, ...

Symmetry is always good for theory, but sometimes bad for experiments.

Need to break cylindrical symmetry

Back Ups

Axion/Scalar Electrodynamics

$$\partial_{\nu} F^{\mu\nu}_{\varphi} = \partial_{\nu} (g_{\varphi\gamma\gamma} \varphi F^{\nu\mu}_{0}) = g_{\varphi\gamma\gamma} (\partial_{\nu} \varphi) F^{\nu\mu}_{0} - g_{\varphi\gamma\gamma} \varphi j^{\mu},$$

$$\partial_{\nu} F^{\mu\nu}_{a} = \partial_{\nu} (g_{a\gamma\gamma} a \tilde{F}^{\nu\mu}_{0}) = g_{a\gamma\gamma} (\partial_{\nu} a) \tilde{F}^{\nu\mu}_{0},$$

$$\nabla \cdot \mathbf{E}_{\varphi} = -g_{\varphi\gamma\gamma} \mathbf{E} \cdot \nabla \varphi - g_{\varphi\gamma\gamma} \varphi \rho,$$

$$\nabla \cdot \mathbf{E}_{a} = -g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a,$$

$$\nabla \times \mathbf{B}_{\varphi} = \partial_{t} \mathbf{E}_{\varphi} - g_{\varphi\gamma\gamma} (\nabla \varphi) \times \mathbf{B} + g_{\varphi\gamma\gamma} (\partial_{t} \varphi) \mathbf{E} - g_{\varphi\gamma\gamma} \varphi \mathbf{j},$$

$$\nabla \times \mathbf{B}_{a} = \partial_{t} \mathbf{E}_{a} + g_{a\gamma\gamma} (\nabla a) \times \mathbf{E} + g_{a\gamma\gamma} (\partial_{t} a) \mathbf{B}.$$

Axion/Scalar Electrodynamics

	Solenoid: $\mathbf{B}_0 \propto \hat{\mathbf{e}}_z$	Toroid: $\mathbf{B}_0 \propto \hat{\mathbf{e}}_{\phi}$		
$\hat{\mathbf{n}}' \propto \hat{\mathbf{o}}$	scalar	axion (ABRA)		
$\mathbf{n} \propto \mathbf{e}_z$	$\Phi_a \equiv 0, \ \Phi_{\varphi} \neq 0$	$\Phi_a \neq 0, \ \Phi_{\varphi} \equiv 0$		
$\hat{\mathbf{n}}' \propto \hat{\mathbf{n}}$	axion (BASE)	scalar		
$\mathbf{n} \propto \mathbf{e}_{\phi}$	$\Phi_a \neq 0, \ \Phi_{\varphi} = 0$	$\Phi_a \equiv 0, \ \Phi_\varphi \neq 0$		
$\hat{\mathbf{n}}' \propto \hat{\mathbf{o}}$	scalar	axion		
$\mathbf{n} \propto \mathbf{e}_{\rho}$	$\Phi_a \equiv 0, \ \Phi_\varphi = 0$	$\Phi_a = 0, \ \Phi_\varphi = 0$		

Benchmark Signals

Superradiance

■ PBH

(B1)
$$T_h = \tau_h = 1 \text{ s}, Q_h = f_* \tau_h$$

(B2) $T_h \gg T_m, Q_h = 10^{10}$

	Q_r	T_{m}	f_*	$\mathcal{R}_c^{(\mathrm{B1})}$	$\mathcal{R}_{c}^{(\mathrm{B2})}$
ADMX SLIC [16]	3×10^3	$320 \mathrm{s}^{15}$	$50\mathrm{MHz}$	1.6	0.1
BASE [17]	4×10^4	$1 \min$	$0.7\mathrm{MHz}$	3.0	0.39
WISPLC [19]	10^{4}	$1 \min$	(30 kHz, 5 MHz)	(6.7, 1.9)	(0.86, 0.24)
DMRadio [21]	2×10^7	$(8\mathrm{mins},60\mathrm{ns})$	$(100 \mathrm{kHz}, 30 \mathrm{MHz})$	(787, 1)	(0.18,1)

Persistent signal and a long interrogation time

$$\mathcal{R}_{c} = \sqrt{\frac{Q_{a}}{Q_{h}}} \left(\frac{\max[Q_{h}, Q_{r}]}{\max[Q_{a}, Q_{r}]} \right)^{1/4} \left(\frac{1}{\max[1, \min[Q_{a}, Q_{r}]/Q_{h}]} \right)^{1/4}$$
$$= \begin{cases} (Q_{a}/Q_{h})^{1/2} & Q_{a} < Q_{h} < Q_{r}, \\ (Q_{a}^{2}/Q_{r}Q_{h})^{1/4} & Q_{a} < Q_{r} < Q_{h}, \\ (Q_{a}/Q_{h})^{1/4} & \text{otherwise.} \end{cases}$$

Transient signal of equal duration and coherence time

$$\mathcal{R}_c = \sqrt{\frac{\tau_a}{T_{m,h}}} \frac{\tau_r}{\min[T_{m,h}, \tau_r]} \left(\frac{T_{m,a}}{\max[\tau_a, \tau_r]}\right)^{1/4}$$