
Phenomenology of discrete flavor symmetries
beyond neutrino masses and mixing

Biswajit Karmakar
University of Silesia
Katowice, Poland

Based on 2203.08185, 2209.08610, , 230x.xxxxx

KIAS Seminar, August 24, 2023

Biswajit Karmakar Neutrinos and Flavor Symmetries



Outline

• Introduction:
∗ Neutrino physics and the known unknowns.

• Flavor Symmetry and Lepton Masses and Mixing:
∗ Flavor symmetries, why?
∗ General framework
∗ Family symmetry, nonzero θ13 and nonzero δCP
∗ Flavor symmetry and CP symmetries, higher order discrete Groups, GUT etc.

• Implications of Flavor Symmetry in Various Frontiers
∗ Dark matter
∗ Baryon asymmetry of the Universe
∗ Collider physics

• Recent Developements
∗ Modular symmetry
∗ How to falsify flavor models?

• Conclusion

Biswajit Karmakar Neutrinos and Flavor Symmetries



Neutrino parameters and the known unknowns

• Neutrinos are special!! It’s flavor and mass eigenstates are related by :
|να⟩ =

∑
i Uαi |νi ⟩.

• Pontecorvo-Maki-Nakagawa-Sakata parametrization:

UPMNS =

 C12C13 S12C13 S13e
−iδ

−S12C23 − C12S13S23e
iδ C12C23 − S12S13S23e

iδ C13S23
S12S23 − C12S13C23e

iδ −C12S23 − S12S13C23e
iδ C13C23


1 0 0

0 e iα21/2 0

0 0 e iα31/2



here Cij = cos θij and Sij = sin θij .

• Large Lepton Mixings

|UPMNS | ∼

0.79− 0.86 0.50− 0.61 0.14− 0.16
0.24− 0.52 0.44− 0.69 0.63− 0.79
0.26− 0.52 0.47− 0.71 0.60− 0.77


• Small Quark Mixings

|VCKM | ∼

0.9745− 0.9757 0.219− 0.224 0.002− 0.005
0.218− 0.224 0.9736− 0.9750 0.036− 0.046
0.004− 0.014 0.034− 0.046 0.9989− 0.9993



Biswajit Karmakar Neutrinos and Flavor Symmetries



Neutrino parameters and the known unknowns

Biswajit Karmakar Neutrinos and Flavor Symmetries



Neutrino parameters and the known unknowns

W
e
ne
ed

a
th
eo
ry
of
fla
vo
r!
!

Biswajit Karmakar Neutrinos and Flavor Symmetries



Flavor symmetries, why?

Biswajit Karmakar Neutrinos and Flavor Symmetries



Flavor symmetries, why?

UPMNS =

 C12C13 S12C13 S13e
−iδ

−S12C23 − C12S13S23e
iδ C12C23 − S12S13S23e

iδ C13S23
S12S23 − C12S13C23e

iδ −C12S23 − S12S13C23e
iδ C13C23


⇓

(Prior to 2012)�� ��s23 = 1/
√
2 (θ23 = 45◦) and θ13 = 0

⇓

U0 =

 c12 s12 0

− s12√
2

c12√
2

− 1√
2

− s12√
2

c12√
2

1√
2

 .

θ12 = 45◦(s12 = 1/
√
2) θ12 = 35.26◦(s12 = 1/

√
3) θ12 = 31.7◦ θ12 = 30◦(s12 = 1/2)

Bimaximal Mixing Tribimaximal Mixing Golden Ratio Mixing Hexagonal Mixing

U0 =


1√
2

1√
2

0

− 1
2

1
2

1√
2

1
2

− 1
2

1√
2




√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2




φ√
2+φ

1√
2+φ

0
−1√
4+2φ

φ√
4+2φ

1√
2

1√
4+2φ

−φ√
4+2φ

1√
2




√
3
4

1
2

0

− 1
2
√

2

√
3

2
√

2
− 1√

2

− 1
2
√

2

√
3

2
√

2
1√
2


Fukugita, Tanimoto, Yanagida PRD98; Harrison Perkins, Scott PLB02; Dutta,Ramond NPB03; Rodejohann et. al. EPJC10

(GR: tan θ12 = 1/ϕ where ϕ = (1 +
√

5)/2)
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Flavor symmetries, why?

• Using the diagonalization relation

mν = U⋆
0 diag(m1,m2,m3)U

†
0 ,

such a mixing matrices can easily diagonalize a µ− τ symmetric (transformations νe → νe , νµ → ντ ,
ντ → νµ under which the neutrino mass term remains unchanged) neutrino mass matrix of the form

mν =

 A B B
B C D
B D C

 ,
With A + B = C + D this matrix yields tribimaximal mixing pattern where s12 = 1/

√
3 i.e., θ12 = 35.26◦

• Observed mixing matrix :

UPMNS ≃


2√
6

1√
3

ϵ

− 1√
6

1√
3

− 1√
2
(?)

− 1√
6

1√
3

1√
2
(?)


New approximate symmetry?
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General Framework

Anarchy

Neutrino mixing anarchy is the hypothesis that the leptonic mixing matrix can be described as the result of
a random draw from an unbiased distribution of unitary 3 × 3 matrices.

Random analysis without imposing prior theories or symmetries on the mass and mixing matrices.

This hypothesis does not make any correlation among the neutrino masses and mixing parameters

de Gouvea, Haba, Hall, Murayama : 9911341, 0009174, 1204.1249

Texture

More specific studies with imposed mass or mixing textures for which models with underlying symmetries
can be sought.

It’s an intermediate approach

Some texture zeros of neutrino mass matrices can be eliminated.

Alejandro Ibarra, Graham Ross: Phys.Lett.B 2003

Symmetry

Theoretical studies where some explicit symmetries at the Yukawa Lagrangian level are assumed and
corresponding extended particle sector is defined.

The symmetry-based approach to explain the non-trivial mixing in the lepton sector known as family
symmetry or horizontal symmetry

Reviews: Tanimoto et.al. 1003.3552, Altarelli, Feruglio 1002.0211, King 1301.1340
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General Framework: Symmetry based approach

Why we are interested in flavor symmetries?

SM flavor problem


Why there are three families?

Fermion mass hierarchy

Different quark and lepton mixing

Flavor Symmetries :
Models based on discrete
flavor symmetric groups
: A4, S3, S4,∆(27) etc

Models based on continuous
groups: GF = U(1), SU(2) etc
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General Framework: Symmetry based approach
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General Framework: Symmetry based approach

Fundamental symmetry in the lepton sector can easily explain the origin of neutrino mixing which is
considerably different from quark mixing.

Incidentally, both Abelian or non-Abelian family symmetries have potential to shade light on the Yukawa
couplings.

The Abelian symmetries (such as Froggatt-Nielsen symmetry) only points towards a hierarchical structure
of the Yukawa couplings.

Non-Abelian symmetries are more equipped to explain the non-hierarchical structures of the observed
lepton mixing as observed by the oscillation experiments.

S. F. King 1301.1340�� ��Gf → Ge , Gν typically, Ge = Z3 and Gν = Z2 × Z2.
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An example:

• Let us consider Gf = S4 as a guiding symmetry.
• Geometrically, it’s a symmetry group of a rigid cube (group of permutation 4 objects).
• the order of the group is 4! = 24 and the elements can be conveniently generated by the generators S,T and U
satisfying the relation

S2 = T 3 = U2 = 1 and ST 3 = (SU)2 = (TU)2 = 1.

• irreducible triplet representations:

S =
1

3

 −1 2 2
2 −1 2
2 2 −1

 ;T =

 1 0 0

0 ω2 0
0 0 ω

 and U = ∓

 1 0 0
0 0 1
0 1 0



T†M†
ℓ
MℓT = M

†
ℓ
Mℓ, STMνS = Mν and UTMνU = Mν

[T ,M
†
ℓ
Mℓ] = [S,Mν ] = [U,Mν ] = 0

• The non-diagonal matrices S,U can be diagonalized by

UTBM =


2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

 ,

Tribimaximal Mixing: A4- Ma, Rajasekaran 0106291; Altarelli, Feruglio 0504165; ∆(27)-Varzielas, King, Ross-

0607045; Bimaximal Mixing: Frampton, Petcov, Rodejohann 0401206; Golden Ratio Mixing: Feruglio, Paris

1101.0393; Hexagonal Mixing: Albright, Dueck, Rodejohann-1004.2798.
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Non-zero θ13

�� ��Decendents of fixed pattern mixing schemes
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Non-zero θ13: Decendents of tribimaximal mixing

UTBM =


2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

 , UPMNS ≃


2√
6

1√
3

ϵ

− 1√
6

1√
3

− 1√
2
(?)

− 1√
6

1√
3

1√
2
(?)



|UTM1
| =


2√
6

∗ ∗
1√
6

∗ ∗
1√
6

∗ ∗

 |UTM2
| =


∗ 1√

3
∗

∗ 1√
3

∗
∗ 1√

3
∗

 ,

• If S4 is considered to be broken spontaneously into Z3 = {1,T ,T 2} (for the charged lepton sector)

Z2 = {1, SU} (for the neutrino sector) such that it satisfies : [T ,M
†
ℓ
Mℓ] = [SU,Mν ] = 0

UTM1
=


2√
6

cθ√
3

sθ√
3
e−iγ

− 1√
6

cθ√
3
− sθ√

2
e iγ − sθ√

3
e−iγ − cθ√

2

− 1√
6

cθ√
3
− s√

2
e iγ − sθ√

3
e−iγ +

cθ√
2

 ,UTM2
=


2cθ√

6
1√
3

2sθ√
6
e−iγ

− cθ√
6
+ s√

2
e iγ 1√

3
− sθ√

3
e−iγ − cθ√

2

− cθ√
6
+ s√

2
e iγ 1√

3
− sθ√

3
e−iγ +

cθ√
2

 (1)
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Non-zero θ13: Decendents of tribimaximal mixing

• TM1 vs TM2

TM1 TM2

|Ue2|
∣∣∣ cos θ√

3

∣∣∣ 1√
3

|Ue3|
∣∣∣ sin θ√

3
e−iγ

∣∣∣ ∣∣∣ 2 sin θ√
6

e−iγ
∣∣∣

|Uµ3|
∣∣∣ cos θ√

2
+ sin θ√

3
e−iγ

∣∣∣ ∣∣∣− cos θ√
2

− sin θ√
6
e−iγ

∣∣∣
sin2 θ12 1 − 2

3−sin2 θ
1

3−2 sin2 θ

sin2 θ13
1
3
sin2 θ 2

3
sin2 θ

sin2 θ12
1
2

(
1 −

√
6 sin 2θ cos γ

3−sin2 θ

)
1
2

(
1 +

√
3 sin 2θ cos γ

3−sin2 θ

)
JCP − 1

6
√

6
sin 2θ sin γ − 1

6
√

3
sin 2θ sin γ

sin δCP -
(5+cos 2θ) sin γ√

(5+cos 2θ)2−24 sin2 2θ cos2 γ
-

(2+cos 2θ) sin γ√
(2+cos 2θ)2−3 sin2 2θ cos2 γ
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Non-zero θ13: Decendents of tribimaximal mixing

• TM1, TM2 Vs Current data: B.K. et al. 230x.xxxxx

★★

NO

TM1

TM2

1σ, 2σ, 3σ

★ best-fit
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0.0
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sin
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θ23

δ
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●●

IO
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● best-fit

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.5

1.0

1.5

2.0

sin
2
θ23

δ
/π

NuFit 5.2
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Origin of neutrino mass?

Dirac or Majorana Particle??
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Neutrino Mass : Cosmology to 0νββ

CMB + BAO

CMB-S4 + BAO
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Neutrino Mass Generation

�� ��Seesaw frameworks

• Type-I Seesaw, Type-II Seesaw, Type-III Seesaw, etc.: Minkowski 77; Gellman, Ramond, Slansky 80; Glashow,
Yanagida 79; Mohapatra, Senjanovic 80; Lazarides, Shafi, Schechter, Valle 80, 82; Mohapatra, Senjanovic 81;
Lazarides, Shafi, Wetterich 81; Foot, Lew, He, Joshi 89; Ma 98; Bajc, Senjanovic 07....�� ��Radiative neutrino mass

• Radiative models, started in 80s: Zee 80, Cheng, Li 80; Zee 86; Babu 88; Ma 06;

• For a review of radiative models: Cai, Herrero-Garcia, Schmidt, Vicente, Volkas 17;�� ��Hybrid Scenarios??
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Neutrino and Drak Matter:

Are they connected?

Neutrino
Mass

Dark
Matter

Standard
Model

Caldwell, Mohapatra 1993; Asaka, Blanchet, Shaposhnikov 2005; Boehm 2008; Kubo, Ma, Suematsu 2006;

Hambye, Kannike, Ma, Raidal 2007; Lindner, Schmidt, Schwetz 2011; Borah, Adhikari 2012; Restrepo, Zapata,

Yaguna 2013; Huang, Deppisch 2014; Escudero, Rius, Sanz 2016; Borah, Karmakar, Nanda 2018;..many more..
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Non-zero θ13 and dark matter: Explicit Model for TM2

Standard Model with A₄ discrete flavor symmetry
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Flavor symmetric scoto-seesaw mechanism

Standard Model with A₄ discrete flavor symmetry

A4 is considered to be a favored symmetry in the
neutrino sector

Even permutation of 4 objects/invariant group of
a tetrahedron

Minimal group which contains 3 dim.
representation (can accommodate three flavors of
leptons)

Product rule: 3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3A ⊕ 3S

1⊗ 1 = 1, 1′ ⊗ 1′ = 1′′, 1′ ⊗ 1′′ = 1
1′′ ⊗ 1′′ = 1′ etc
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Flavor symmetric scoto-seesaw mechanism

Type-I Seesaw

Standard Model with A₄ discrete flavor symmetry

TBM Mixing
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Flavor symmetric scoto-seesaw mechanism

Type-I Seesaw Scotogenic Contribution

Standard Model with A₄ discrete flavor symmetry

TBM Mixing Required θ13
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Flavor symmetric scoto-seesaw mechanism

Type-I Seesaw Scotogenic Contribution

Standard Model with A₄ discrete flavor symmetry

TBM Mixing Required θ13

Dark Matter 
Candidates
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Flavor symmetric scoto-seesaw mechanism

Type-I Seesaw Scotogenic Contribution

Standard Model with A₄ discrete flavor symmetry

TBM Mixing Required θ13

Dark Matter 
Candidates

Observed Neutrino Mixing,
Prediction on neutrino mass,  

0νββ and LFV decays

J. Ganguly, J. Gluza and B. Karmakar, JHEP 11 (2022) 074, arXiv: 2209.08610
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Flavor symmetric scoto-seesaw mechanism:�� ��Type-I Seesaw contribution:

LTREE =
yN1

Λ
(L̄ϕs )H̃NR1

+
yN2

Λ
(L̄ϕa)H̃NR2

+
1

2
MN1

N̄c
R1

NR1
+

1

2
MN2

N̄c
R2

NR2
+ h.c.,

• L, ϕa and ϕs → A4 triplets; H,NR1
,NR2

→ A4 singlets

• A4 multiplication rules: If we have two triplets (a1, a2, a3) and (b1, b2, b3), their products are given by
⇒ 3 ⊗ 3 = 1 + 1′ + 1′′ + 3A + 3S

1 ∼ a1b1 + a2b3 + a3b2, 1
′ ∼ a3b3 + a1b2 + a2b1, 1

′′ ∼ a2b2 + a3b1 + a1b3,

3S ∼

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

 , 3A ∼

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

 .
• flavon fields get VEVs along ⟨ϕs⟩ = (0, vs ,−vs ), ⟨ϕa⟩ = (va, va, va)

yN1

Λ
(L̄ϕs )1H̃NR1

=
yN1

Λ
(L̄1ϕs1 + L̄2ϕs3 + L̄3ϕs2)1H̃NR1

=
yN1

Λ
(0 − L̄2vs + L̄3vs )1H̃NR1

yN2

Λ
(L̄ϕa)1H̃NR2

=
yN2

Λ
(L̄1ϕa1 + L̄2ϕa3 + L̄3ϕa2)1H̃NR2

=
yN2

Λ
(L̄1va + L̄2va + L̄3va)1H̃NR2

• Dirac neutrino mass matrix :

MD =
v

Λ

 0 yN2
va

−yN1
vs yN2

va
yN1

vs yN2
va

 = vYN , MR =

(
MN1

0

0 MN2

)
.
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Flavor symmetric scoto-seesaw mechanism:�� ��Scotogenic contribution:

LLOOP =
ys

Λ2
(L̄ϕs )ξiσ2η

∗f +
1

2
Mf f̄

c f + h.c.,

(Mν )LOOP = F(mηR
,mηI

,Mf )Mf Y
i
f Y

j
f
.

YF = (Y e
F , Y

µ
F
, Y τ

F )T = (ys
vs

Λ

vξ

Λ
, 0,−ys

vs

Λ

vξ

Λ
)T .

Therefore, the corresponding mass matrix takes the form

(Mν )LOOP = C

 1 0 −1
0 0 0
−1 0 1

 , C = F(mηR
,mηI

,Mf )y
2
s

v2s v
2
ξ

Λ4
.

Here F(mηR
,mηI

,Mf ) is the loop function

Effective neutrino mass matrix:

Mν = −MDM−1
R MT

D + (Mν )LOOP

= (Mν )TREE + (Mν )LOOP

=

−B+C −B −B−C
−B −A−B A−B

−B−C A−B −A−B+C

 .
After rotation by TBM matrix:

M′
ν = UT

TBMνUTB

=
1

2

 3C 0 −
√
3C

0 −6B 0

−
√
3C 0 −4A + C

 ,
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Flavor symmetric scoto-seesaw mechanism:

■ Effective neutrino mixing matrix (TM2 mixing):

Uν =


√

2
3
cos θ 1√

3

√
2
3
e iϕ sin θ

− cos θ√
6

+ eiϕ sin θ
√

2
1√
3

− cos θ√
2

− eiϕ sin θ
√

6

− cos θ√
6

− eiϕ sin θ
√

2
1√
3

cos θ√
2

− eiϕ sin θ
√

6

Um.

■ Corelations:

tanϕ =
α sinϕAC

1 − α cosϕAC

, tan 2θ =

√
3

cosϕ + 2α cos(ϕAC + ϕ)
.

■ Comparing with UPMNS :

sin θ13e
−iδCP =

√
2

3
e−iϕ sin θ, tan2 θ12 =

1

2 − 3 sin2 θ13
,

tan2 θ23 =

(
1 +

sin θ13 cosϕ√
2−3 sin2 θ13

)2
+

sin2 θ13 sin2 ϕ

(2−3 sin2 θ13)(
1 − sin θ13 cosϕ√

2−3 sin2 θ13

)2
+

sin2 θ13 sin2 ϕ

(2−3 sin2 θ13)

.
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Non-zero θ13: Flavor symmetric scoto-seesaw framework

Ganguly, Gluza, BK, 2209.08610
■ Predictions:
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Dark Matter Phenomenology: Preliminary

2 viable DM candidates ⇒ the lightest neutral scalar and the singlet fermion.

Scalar dark matter:

Dolle, Su 2009; Diaz, Koch, Urrutia-Quiroga 2015;
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Dark Matter Phenomenology: Preliminary

2 viable DM candidates ⇒ the lightest neutral scalar and the singlet fermion.

Fermionic dark matter: WIMP

dnf

dt
+ 3Hnf = −⟨σv⟩eff(n2f − (neqf )2)

Ganguly, Gluza, Karmakar, Mahapatra 230x:xxxxx

Biswajit Karmakar Neutrinos and Flavor Symmetries



Non-zero θ13:Cobimaximal Mixing

µ− τ permutation symmetry : νe → νe , νµ → ντ , ντ → νµ

µ− τ symmetry + CP : νe → νce , νµ → νcτ , ντ → νcµ

The mixing matrix satisfy the condition :

|Uµi | = |Uτ i | with i = 1, 2, 3.

Predicts specific values for the atmospheric mixing angle θ23 = 45◦ and Dirac CP phase δ = −90◦.

The neutrino mixing matrix can be parametrized as

U0 =

 u1 u2 u3
v1 v2 v3
v∗1 v∗2 v∗3

 ,
where the entries in the first row, ui ’s are real (and non-negative) with trivial values of the Majorana
phases.

The mass matrix leading to the above mixing matrix can be written as

mν =

 a b b⋆

b c d
b⋆ d c⋆

 ,
where b and c are in general complex while c and d remain real.

Fukuura, Miura, Takasugi, Yoshimura PRD 99; Miura, Takasugi, Yoshimura PRD01; Harrison, Scott PLB02;
Grimus, Lavoura PLB04; Babu, Ma, Valle, PLB03
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Cobimaximal Mixing: A flavor model

ℓe,µ,τ eR , µR , τR H NR ϕ1,2,3 ξ ϕS

A4 1, 1′, 1′′ 1, 1′′, 1′ 1 3 3 1 3

Z3 1 1 1 ω2 ω ω2 ω2

Z4 -i,-1,i i,-1,- i 1 1 i,-1,- i 1 1

BK, arXiv:230x.xxxxx
■ Neutrinos:

− Lν =
y1

Λ

(
ℓ̄e
)
1
H̃ (NRϕ1)1 +

y2

Λ

(
ℓ̄µ
)
1′ H̃ (NRϕ2)1′′ +

y3

Λ

(
ℓ̄τ
)
1′′ H̃ (NRϕ3)1′

+(yxξ + yϕϕS )N
c
R
NR + h.c.

■ Light neutrino mass via type-I seesaw:

mν ∼ − mDM−1mT
D

∼λ

 1 − κ2
1 (κ1κ2 − κ2)ω (κ1κ2 − κ2)ω

2

(κ1κ2 − κ2)ω (1 − κ2
2)ω

2 κ2
2 − κ1

(κ1κ2 − κ2)ω
2 κ2

2 − κ1 (1 − κ2
2)ω

 ;

mν = U⋆
diag(m1,m2,m3)U

†

U = =


cosϑ12 cosϑ13 − sinϑ12 cosϑ13 − sinϑ13

sinϑ12−i cosϑ12 sinϑ13√
2

cosϑ12+i sinϑ12 sinϑ13√
2

− i cosϑ13√
2

sinϑ12+i cosϑ12 sinϑ13√
2

cosϑ12−i sinϑ12 sinϑ13√
2

i cosϑ13√
2

 .
δ = arcsin

[
Im[U23U

⋆
13U12U

⋆
22]

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13

]
= −π/2; sin2 θ23 =

|U23|2

1 − |U13|2
=

1

2
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Beyond Cobimaximal Mixing (µ− τ Reflection Symmetry)

Partial µ− τ Reflection Symmetry B.K. et al. 230x.xxxxx

★★

NO

|Uμ1 | = |Uτ1 |

|Uμ2 | = |Uτ2 |

1σ, 2σ, 3σ

★ best-fit
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Partial µ− τ Reflection Symmetry

3+1 neutrino scenario B.K. et al. 230x.xxxxx
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Flavor symmetry with CP invariance:

µ− τ symmetry + CP : νe → νce , νµ → νcτ , ντ → νcµ.

Residual symmetries with CP transformations may lead to new invariance conditions on the mass matrices.

The cobimaximal matrix

M0 =

 a b b⋆

b c d
b⋆ d c⋆


is invariant under

STM0S = M∗
0 ,

where the transformation matrix is given by

S =

 1 0 0
0 0 1
0 1 0


and such transformations are usually referred to as generalized CP symmetry transformation.

The existence of both discrete flavor and generalized CP symmetries determines the possible structure of
the generalized CP symmetry matrices and predictions involving Dirac and Majorana CP phases are made.

For further readings: Feruglio, Hagedorn 1211.5560; Nishi 1306.0877; Li, Ding 1408.0785; Ding, King
1510.03188; Penedo Petcov, Titov 1803.11009; Iura, López-Ibáñez Meloni 1811.09662

Flavor symmetry and GUT S. F. King, Unified Models of Neutrinos, Flavour and CP Violation, 1701.04413
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Flavor symmetry and Higher Order Discrete Groups:

Fixed mixing schemes such as BM, TBM, GR, HG are dead after measurement of non-zero θ13

Mixing schemes such as TM1 ,TM2, CBM are still consistent with observations.

Smaller discrete groups such as S3, A4, S4, A5,∆(27) etc. can be used to reproduce TM1 ,TM2, CBM or
to generate appropriate “clever/ugly” modifications to BM, TBM, GR, HG mixings.

Lepton mixing with larger groups : Gf → Ge , Gν , Gf any higher order group.

Example : Ge = Z3 Gν = Z2

Holthausen, Lim, Lindner 1212.2411; Joshipura, Patel 1610.07903

The values of n ≤ 50 and |q′ − q| (q, q′ = 0, 1, ..., n − 1) leading to the viable columns of leptonic
mixing matrix. The blue squares (red dots) indicate that the corresponding prediction is consistent with
the first (third) column of UPMNS matrix within 3σ. Each point represents a unique solution obtained by
the smallest possible values of n and |q′ − q|.
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Flavor Symmetries in Various Frontiers: Leptogenesis

The origin of tiny neutrino mass is often best explained by various seesaw mechanisms.

New heavy fermions and scalar are introduced to justify lightness of the active neutrinos.

Out-of-equilibrium decay of these heavy particles can generate observed matter anti-matter asymmetry

Type-I seesaw, heavy right-handed neutrinos are introduced.

The CP-violating out-of-equilibrium decay of RH neutrinos into lepton and Higgs doublets in the early
universe produces a net lepton asymmetry Fukugita, Yanagida, 1986; Covi, Roulet, Vissani 9605319

The CP asymmetry parameter :

ϵ
α
i =

Γ(Ni → ℓαH) − Γ(Ni → ℓαH̄)

Γ(Ni → ℓαH) + Γ(Ni → ℓαH̄)
=

1

8π

∑
j ̸=i

Im

[(
(Ŷ †

ν Ŷν )ij

)2]
(Ŷ

†
ν Ŷν )ii

f

m2
i

m2
j

 ,

f (x) =
√
x

[
2 − x

1 − x
− (1 − x) ln

(
1 +

1

x

)]
with x = m2

i /m
2
j

Flavor symmetry dictates the structure of Yν and MR , hence leaves its imprint on leptogenesis

(Altarelli-Feruglio) models with tribimaximal mixing:

Ŷ
†
ν0Ŷν0 ∝ |y2|1

ϵi = 0

Jenkins, Manohar 0807.4176
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Flavor Symmetries in Various Frontiers: Leptogenesis

• Possible remedy: NLO correction in Yukawa sector
• Relevant contribution Yukawa sector:

y(LNc )Hu + xCNc (LϕT )3S Hu/Λ + xDNc (LϕT )3AHu/Λ

BK, Sil PRD 2015
• Yukawa matrix and Ŷν Ŷ †

ν :

Yν = Yν0 + δYν

= y

1 0 0
0 0 1
0 1 0

 +
xC vT

Λ

2 0 0
0 0 −1
0 −1 0

 +
xDvT

Λ

0 0 0
0 0 −1
0 1 0

 ,
• Charged lepton mass-matrix remains diagonal

ϵ1 =
−1

2π

(
vT

Λ

)2
[
sinα21

(
2Re(xC )2 cos2 θ +

2Re(xD )2

3
sin2 θ +

2Re(xC )Re(xD )
√
3

sin 2θ

)
f

(
m1

m2

)

+ sinα31

(
Re(xC )2 sin2 2θ +

Re(xD )2

3
cos2 2θ +

Re(xC )Re(xD )
√
3

sin 4θ

)
f

(
m1

m3

)]

and similar expressions for ϵ2 and ϵ3.

Biswajit Karmakar Neutrinos and Flavor Symmetries



Flavor Symmetries in Various Frontiers: Leptogenesis

Leptogenesis with cobimaximal mixing (BK, arXiv:230x.xxxxx):
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Flavor Symmetries in Various Frontiers: Dark Matter

Can we extend flavor symmetry to the dark sector as well?

Can discrete symmetry play any role to ensure the stability of dark matter?

Example :

Lint =

(
ϕ

Λ

)n

ψ̄H̃χ0 +
(HLT LH)ϕη

Λ3
with Y =

(
ϕ

Λ

)n

= ϵ
n

θ13 6= 0

through 〈f〉

T
B
M

lepton
m
ixing

through 〈φ〉
DM interaction with SM

flavons

flavon

A4

(φ)

(f)

Sector U(1)

Fo
rb
id
de
n

Dark

(ψ, χ0)

A schematic representation of dark matter (ψ, χ0) interaction with SM to generate non-zero θ13 in the
presence of the U(1) flavor symmetry. The A4 flavons help in generating base TBM mixing.

S. Bhattacharya , B.K., N. Sahu, A. Sil 1603.04776
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Flavor Symmetries in Various Frontiers: Collider Physics

The high-energy CP phases present in YD that are responsible for leptogenesis are in general unrelated to
the low-energy CP phases in UPMNS .

Since the experiments are only sensitive to the low-energy CP phases

As discussed earlier, incorporating residual flavor and CP symmetries the high- and low-energy CP phases
can be related.

Since in this case the PMNS mixing matrix depends on a single free parameter, this turns out to be highly
constraining and predictive for both low- and high-energy CP phases as well as the lepton mixing angles

Example : ∆(6n2) × CP

G. Chauhan, P. S. Bhupal Dev 2112.09710
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Flavor Symmetry : Drawbacks
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Flavor Symmetry : Drawbacks

Criticism for conventional model building with flavor symmetry :

Traditionally discrete flavor symmetry groups are very useful to explain correct
neutrino masses and mixing due to its high predictability.

The spectrum of the models here is so large that it is difficult to obtain clear
clue of the underlying flavour symmetry.

Often introduces many parameters and auxiliary symmetries → non-minimal.

Reason for non-minimality:

Introduce flavons (gauge singlet scalars) to discuss dynamics of flavours. Write down
an effective Lagrangian including flavons. Flavour symmetry is broken spontaneously

by VEV of flavons.

Possible Origin −→ Unknown
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New Ideas: Modular Symmetry

Possible Origin:
Superstring theory on certain compactifications may lead

to Modular groups. In fact, torus compactification leads to Modular symmetery, which
includes S3,A4, S4,A5 as its congruence subgroup.

Use of Modular Symmetry:

Very recently, it has been showed that neutrino mass might be of modular form
(F. Feruglio, [arXiv:1706.08749 [hep-ph]]), introducing modular invariance
approach to the lepton sector.

The primary advantage is that the flavon fields might not be needed and the
Yukawa couplings are written as modular forms, functions of only one complex
parameter.

T. Kobayashi, K. Tanaka, T. H. Tatsuishi 1803.10391, J. T. Penedo, S. T.
Petcov 1806.11040,F. J. de Anda, S. F. King, E. Perdomo 1812.05620, Wang,
Zhou 2102.04358

Rich phenomenology : Yet to be explored
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How to falsify flavor models

Neutrino Oscillation Experiments

Neutrinoless Double Beta Decay Experiments
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Flavor Symmetry and Oscillation Experiments:

We need to test the existence underlying flavor symmetry Gf , if any.

We look for the possibilities of testing its predictions at the current and future neutrino experiments.

Such studies crucially depend on the breaking pattern of Gf into its residual subgroups for charged lepton
sector Ge and neutrino sector Gν .

Example : Ge = Zk , k > 2 or Zm × Zn , m, n ≥ 2 and Gν = Z2 × CP

Correlations among θ23, θ12, θ12 and δCP are obtained and studied in the context of various experiments.

Biswajit Karmakar Neutrinos and Flavor Symmetries



Flavor Symmetry and Oscillation Experiments:

M. Blennow, M. Ghosh, T. Ohlsson, A. Titov 2005.12277
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Flavor Symmetry and Oscillation Experiments:

M. Blennow, M. Ghosh, T. Ohlsson, A. Titov 2005.12277
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Flavor Symmetry and Oscillation Experiments:

M. Blennow, M. Ghosh, T. Ohlsson, A. Titov 2005.12277
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Flavor Symmetry and 0νββ Experiments:

Models with generalized CP Denton, Gehrlein 2308.09737
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Flavor Symmetry and 0νββ Experiments:

• Generalised mass sum rules:

A1m̃
p
1e

iχ1 + A2m̃
p
2e

iχ2 + A3m̃
p
3e

iχ3 = 0

where p ̸= 0, χ1 ∈ [0, 2π],Ai > 0

• Simplified Sum Rules obtained from various flavor models:

Sum Rule Group Seesaw Type
m̃1 + m̃2 = m̃3 A4; S4; A5 Weinberg
m̃1 + m̃2 = m̃3 ∆(54); S4 Type II
m̃1 + 2m̃2 = m̃3 S4 Type II
2m̃2 + m̃3 = m̃1 A4 Weinberg

S4; T
′; T7

2m̃2 + m̃3 = m̃1 A4 Type II
m̃1 + m̃2 = 2m̃3 S4 Dirac
m̃1 + m̃2 = 2m̃3 Le − Lµ − Lτ Type II

m̃1 +
√

3+1
2

m̃3 =
√

3−1
2

m̃2 A′
5 Weinberg

m̃−1
1 + m̃−1

2 = m̃−1
3 A4; S4; A5 Type I

m̃−1
1 + m̃−1

2 = m̃−1
3 S4 Type III

2m̃−1
2 + m̃−1

3 = m̃−1
1 A4; T

′ Type I

m̃−1
1 + m̃−1

3 = 2m̃−1
2 A4; T

′ Type I

m̃−1
3 ± 2im̃−1

2 = m̃−1
1 ∆(96) Type I

m̃
1/2
1 − m̃

1/2
3 = 2m̃

1/2
2 A4 Type I

m̃
1/2
1 + m̃

1/2
3 = 2m̃

1/2
2 A4 Scotogenic

m̃
−1/2
1 + m̃

−1/2
2 = 2m̃

−1/2
3 S4 Inverse
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Flavor Symmetry and 0νββ Experiments:
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m� 2
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Models with Sum Rules; King, Marle, Stuart 1307.2901
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Flavor Symmetry and 0νββ Experiments:

Models with Sum Rules ; Snowmass White paper Cirigliano et al. 2203.12169
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⇒ m̃−1
1 + m̃−1

2 = m̃−1
3
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Flavor Symmetry and 0νββ Experiments:

Sum Rule Group Seesaw Type
m̃1 + m̃2 = m̃3 A4; S4; A5 Weinberg
m̃1 + m̃2 = m̃3 ∆(54); S4 Type II
m̃1 + 2m̃2 = m̃3 S4 Type II
2m̃2 + m̃3 = m̃1 A4 Weinberg

S4; T ′; T7

2m̃2 + m̃3 = m̃1 A4 Type II
m̃1 + m̃2 = 2m̃3 S4 Dirac
m̃1 + m̃2 = 2m̃3 Le − Lµ − Lτ Type II

m̃1 +
√
3+1
2

m̃3 =
√
3−1
2

m̃2 A′
5 Weinberg

m̃−1
1 + m̃−1

2 = m̃−1
3 A4; S4; A5 Type I

m̃−1
1 + m̃−1

2 = m̃−1
3 S4 Type III

2m̃−1
2 + m̃−1

3 = m̃−1
1 A4; T ′ Type I

m̃−1
1 + m̃−1

3 = 2m̃−1
2 A4; T ′ Type I

m̃−1
3 ± 2im̃−1

2 = m̃−1
1 ∆(96) Type I

m̃
1/2
1 − m̃

1/2
3 = 2m̃

1/2
2 A4 Type I

m̃
1/2
1 + m̃

1/2
3 = 2m̃

1/2
2 A4 Scotogenic

m̃
−1/2
1 + m̃

−1/2
2 = 2m̃

−1/2
3 S4 Inverse
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Conclusion

Is there any guiding principle behind the observed pattern of lepton
mixing?

(Discrete) flavor symmetry is one such potential candidate.

What is the origin of such symmetries?

What additional role they can play?

How to falsify this plethora of models?

If flavor symmetry is not the guiding principle, what else?
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Thank you for your attention!!
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• Multiplication Rules:
It has four irreducible representations: three one-dimensional and one three dimensional which are denoted by
1, 1′, 1′′ and 3 respectively. The multiplication rules of the irreducible representations are given by

1 ⊗ 1 = 1, 1′ ⊗ 1′ = 1′′, 1′ ⊗ 1′′ = 1, 1′′ ⊗ 1′′ = 1′, 3 ⊗ 3 = 1 + 1′ + 1′′ + 3a + 3s (2)

where a and s in the subscript corresponds to anti-symmetric and symmetric parts respectively. Now, if we have

two triplets as A = (a1, a2, a3)
T and B = (b1, b2, b3)

T respectively, their direct product can be decomposed into

the direct sum mentioned above. The product rule for this two triplets in the S diagonal basis1 can be written as

(A × B)1 ∽ a1b1 + a2b2 + a3b3, (3)

(A × B)1′ ∽ a1b1 + ω2a2b2 + ωa3b3, (4)

(A × B)1′′ ∽ a1b1 + ωa2b2 + ω2a3b3, (5)

(A × B)3s ∽ (a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1), (6)

(A × B)3a ∽ (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1), (7)

here ω (= e2iπ/3) is the cube root of unity

1Here S is a 3× 3 diagonal generator of A4.
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YB ≈
∑

YBi (8)

where
YBi ≃ −1.48 × 10−3

ϵiηii . (9)

YBi ’s are coming from decay of each RH neutrinos and ηii stands for efficiency factor [hep-ph/0310123] when

Mi < 1014 GeV,

1

ηii
≈

3.3 × 10−3 eV

m̃i

+

(
m̃i

0.55 × 10−3 eV

)1.16

, (10)

with washout mass parameter, m̃i =
(Ŷ

†
ν Ŷν )ii v

2
u

Mi
.
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