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Figure taken from Phys. Rev. D 102, 123002

JTA, Marco Fabbrichesi, Piero Ullio (2020). 
Physical Review D, 102(8), 083009.

Deviation from MFVJTA, Patrick Stengel, Piero Ullio (2022). Physical 
Review D, 105, 075007.

T=(1600 K ) f 1/4

JTA, Patrick Stengel, Piero Ullio 
hep-ph/arxiv:2209.12552



Outline
● Primordial black holes (see talk by Po-Yen Tseng, cf. Jongkuk Kim)
● Novel PBH formation mechanism: Fermi ball collapse from dark FOPT

(see talk by Po-Yen Tseng; cf. talks by Tomasz Dutka, Tzu-Chiang Yuan, Ryuusuke Jinno)
● Pulsar timing (cf. talk by Xing-Yu Yang)

– Doppler and Shapiro
– Constraints

● Complementary probe: stochastic gravitational waves (cf. talks by Asuka Ito, Yue-Lin 
Sming Tsai, Kingman Cheung, Jinsu Kim, Liliana Velasco-Sevilla, Qiuyue Liang)

● Generic quartic potential
● Summary
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Novel PBH formation mechanism

Panels (a)-(c) taken from: Kawana, Kiyoharu, and Ke-Pan Xie. 
"Primordial black holes from a cosmic phase transition: The collapse 
of Fermi-balls." Physics Letters B 824 (2022): 136791.

Fermi ball 
formation

Collapse to 
PBH

FV bubbles split
(f

FV
=0.29)

L=
1
2
(∂ ϕ)

2
−V eff (ϕ , T )

+χ(i γμ
∂μ−mχ)χ−gχ ϕχ χ

Percolation sets initial conditions:
-low η

χ

-low chemical potential

FB formation:
-Q

FB
 is conserved

-net χ-anti χ is larger
-huge chemical potential

PBH formation:
-Jeans like instability
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Novel PBH formation mechanism
● Characterized by a continuous 

mass distribution
● PBH distribution determined by[2]

– Generic FOPT parameters: αtr, β/H*, 
T*, Tc

– Derived FOPT parameters: bubble 
wall velocity (Chapman-Jouguet; 
detonations)

– Other parameters: DM asymmetry 
parameter (ηχ), ξ=T/TSM

αtr=
(1−T /4 d /dT )ΔV eff

ρR

ΔV eff≈ϵc (1−
T
T c

)

β

H∗

≃T∗

d
dT

[
S3

T
]
T=T∗

vw=
1

√3

1+√2αd+3αd
2

1+αd

αd=αtrρR /ρd

[2]Lu, Philip, Kiyoharu Kawana, and Ke-Pan Xie. "Old phase remnants in first-order phase transitions." Physical Review D 105.12 (2022): 123503.
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Novel PBH formation mechanism

F (x)≡
1−x

1−3 x /4

T
*
=200 GeV, η

χ
=10-3, 

v
w
=0.2, β/H=60, 

ξ=1, ΔV1/4=100 GeV
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Pulsar timing: Doppler & Shapiro

pulsar

Earth 
observer

Line of 
sight

object

pulsar

object
Earth 
observer

Line of 
sight

δϕ=∫
t

dt ' δ ν(t ')
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Pulsar timing: Detector properties

ϕ(t )=ϕ0+ν t+ ν̇
2
t2
+ ν̈

6
t 3
+.. .

PTA 
property

Value

No. of 
pulsars

200

RMS timing 
residual

50 ns

Cadence 2 weeks

Total 
observation 

time

20 years

σ ν̈/ ν=6 √
2800Δ t

T

t rms
T 3

[3]Liu, X. J., C. G. Bassa, and B. W. Stappers. "High-precision 
pulsar timing and spin frequency second derivatives." Monthly 
Notices of the Royal Astronomical Society 478.2 (2018): 2359-
2367.

[3]Uncertainty in 

ν̈/ ν

Retrieved from: https://www.cv.nrao.edu/~sransom/web/Ch6.html

(~2.8 x 10-33 Hz2)

SNR=
|ν̈/ ν|
σ ν̈ /ν

Dynamical (τ<<T) vs Static (τ>>T)[4] 

(?)

[4]Dror, Jeff A., et al. "Pulsar timing probes of primordial 
black holes and subhalos." Physical Review D 100.2 
(2019): 023003.
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Pulsar timing: sensitivity limits[5,6]

[5]Lee, Vincent SH, et al. "Probing small-scale power spectra with 
pulsar timing arrays." Journal of High Energy Physics 2021.6 
(2021): 1-30

(f,M) -> size of 
simulation volume

fρ
DM

/M -> # density

Maxwell-Boltzmann -> 
velocity assignment

[6]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. 
Zurek. "Observability of dark matter substructure with 
pulsar timing correlations." Journal of Cosmology and 
Astroparticle Physics 2020.12 (2020): 033.

δϕ=∫
t

dt ' δ ν(t ')

NB: We developed a 
parallelizable 
FORTRAN code to 
perform the simulation 
on a 72-core cluster
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Pulsar timing: sensitivity limits[5,6]

1 2 3 4

1

2

3

4

5

6

7

8

9

10

Pulsar label

Mock 
universe

label

SNR>4

SNR<4 Sensitivity criterion: 90% of 
mock universes have max 
SNR > 4

[5]Lee, Vincent SH, et al. "Probing small-scale power spectra with 
pulsar timing arrays." Journal of High Energy Physics 2021.6 
(2021): 1-30

[6]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. 
Zurek. "Observability of dark matter substructure with 
pulsar timing correlations." Journal of Cosmology and 
Astroparticle Physics 2020.12 (2020): 033.
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[4]Dror, Jeff A., et al. "Pulsar timing probes of primordial black holes and subhalos." 
Physical Review D 100.2 (2019): 023003.
[7]D. Croon, D. McKeen, N. Raj and Z. Wang, Subaru-HSC through a different lens:
Microlensing by extended dark matter structures, Phys. Rev. D 102 (2020) 083021
[2007.12697]

Plots from: JTA, Po-yen Tseng 
JHEP 08 (2023) 117

Novel PBH formation scenario
w/ P(M)

Monochromatic PBH mass (benchmark)
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Complementary signal: Stochastic GWs

● GW through sound waves, 
nonrunaway regime

● Assess sensitivity reach 
using some SNR

● Peak-integrated sensitivity 
curves (PISC)[8] as a 
means to calculate SNR

[8] Schmitz, Kai. "New sensitivity curves for gravitational-
wave signals from cosmological phase transitions." 
Journal of High Energy Physics 2021.1 (2021): 1-62.
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SKA is sensitive to ~1 keV 
(~0.1 keV) for η

χ
 = 10-5 (10-4)

Plot from: JTA, Po-yen Tseng 
JHEP 08 (2023) 117

Sensitivity criterion: sGW SNR > 1
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Generic quartic potential

[9]Marfatia, Danny, and Po-Yen Tseng. "Correlated signals of first-
order phase transitions and primordial black hole evaporation." 
Journal of High Energy Physics 2022.8 (2022): 1-14.

cf. Ref. [9]

Observables:
-Ave. PBH mass
-PBH fraction
-Peak GW 
abundance
-Peak GW 
frequency

FOPT parameters Effective potential 
parameters
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PTA only

PTA+GW only

PTA+GW+relic

Plot from: JTA, Po-yen Tseng 
JHEP 08 (2023) 117
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Summary
● Presented dark FOPT scenario to produce PBHs and sGWs
● PTA facility can be used to also search for PBHs
● Parameter region: PBH mass of 10-8~10-4, GW frequency of 

nHz~μHz
● Parameter region: keV-scale FOPT, FOPT rate of 103~104, 

FOPT strength from 10-6~0.1
● Obtained a viable class of generic quartic potentials



Tram Acuña - NTHU 23

Acknowledgments
● NSTC grant # NSTC 111-2811-M-007-018-MY2
● NTHU IoA CICA cluster

Thank you for your attention!고맙습니다 !

感謝各位的聆聽 !
Tram Acuña
Email: jtacuna@gapp.nthu.edu.tw



Tram Acuña - NTHU 24

Extra slides
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Figure from: B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, Constraints on primordial black holes, Rept. Prog. Phys. 84(11), 116902 (2021)
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● Recall: Po-yen’s PBH talk
● Overdensities in the early Universe 

may trigger collapse to PBH
● M>10-18 Msol survive until today

● Potential DM candidate
● Formation mechanism:

Collapse of Fermi balls from 
filtered out DM during dark FOPT[1]

Primordial black holes

[1]Kawana, Kiyoharu, and Ke-Pan Xie. "Primordial black holes from a cosmic phase transition: The collapse of Fermi-balls." Physics Letters B 824 (2022): 136791.

τ=1064 y (M /M sol)
3

ρ=
3

8πGN

1

(1 /H )
2ρBH=

3
8 πGN

1

Rs
2

ξ( t )=
T (t )
T SM( t )

g∗ s ,d (T (t ))T 3
(t )

g∗ s, v (T SM (t ))T SM
3

( t )
=const .
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Extra: Novel PBH formation mechanism

Fermi ball 
formation

Collapse to 
PBH

m
χ
=0

<φ>=0

m
χ
=gw

<φ>=w
gw >> T

*

QFB=
ηχ sv (t∗)

f FV ( t∗)
A

4 π R∗

3

3

FV bubbles split
(f

FV
=0.29)[4]

U(1) 
charge in 
FV bubble

M FB=QFB (12π
2
ΔV eff (T∗))

1 /4

Panels (d)-(f) taken from: Kawana, Kiyoharu, and Ke-Pan Xie. "Primordial 
black holes from a cosmic phase transition: The collapse of Fermi-balls." 
Physics Letters B 824 (2022): 136791.
[4]Rintoul, Mark D., and Salvatore Torquato. "Precise determination of the 
critical threshold and exponents in a three-dimensional continuum 
percolation model." Journal of physics a: mathematical and general 30.16 
(1997): L585.

U tot=
3π

4
(

3
2π

)
2/3 QFB

4 /3

R
+

4 π

3
ΔV R3

f χ , χ=
1

exp [( p±μ)/T ]+1

ρ=
3
4
(

3
π

2 )
1/4

(nχ−nχ)
3 /4

-FB cools down via χ → χ f f*
-Collapse via Jeans instability from 
additional Yukawa attractive force (see 
also 2110.00005 where they included 
gravity effects)
-What if you gauge dark U(1)? Additional 
repulsive force, cooling can be achieved 
by emitting the dark photon
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Extra: Novel PBH formation mechanism

Panels (a)-(c) taken from: Kawana, Kiyoharu, and Ke-Pan Xie. "Primordial 
black holes from a cosmic phase transition: The collapse of Fermi-balls." 
Physics Letters B 824 (2022): 136791.
[4]Rintoul, Mark D., and Salvatore Torquato. "Precise determination of the 
critical threshold and exponents in a three-dimensional continuum 
percolation model." Journal of physics a: mathematical and general 30.16 
(1997): L585.

1=∫t c

t n
dt '

Γ(t ' )

H3
( t ' )

Γ=T 4
[
S3(T )

2πT
]

3/2

exp [
−S3(T )

T
]

f FV (t)≡exp [− I (t )]

I ( t)≃
4π

3
vw

3∫t c

t

dt ' ' (t−t ' ' )3
Γ(T (t ' ' ))

f
FV

=0.71[4
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Extra: Novel PBH formation mechanism

● Mass distribution comes from distribution of 
radii of FV remnants

dn
dRr

=
β

4

192 vw
4 I∗

4 exp (4βRr /vw)exp [−I (t )]{1−exp [−I (t )]}

[5]Lu, Philip, Kiyoharu Kawana, and Ke-Pan Xie. "Old phase remnants in first-order phase transitions." Physical Review D 105.12 (2022): 123503.
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Extra: Novel PBH formation mechanism

● Characterized by a continuous 
mass distribution

● PBH distribution determined by[5]

– Generic FOPT parameters: αtr, β/H*, 
T*, Tc

– Derived FOPT parameters: bubble 
wall velocity (Chapman-Jouguet; 
detonations)

– Other parameters: DM asymmetry 
parameter (ηχ), ξ=T/TSM

αtr=
(1−T /4 d /dT )ΔV eff

ρR

ΔV eff≈ϵc (1−
T
T c

)

β

H∗

≃T∗

d
dT

[
S3

T
]
T=T∗

vw=
1

√3

1+√2αd+3αd
2

1+αd

αd=αtrρR /ρd

-Numerical simulation of bubble 
wall dynamics requires us to 
solve hydrodynamical equations 
to track the fluid evolution, and 
KG equation + friction term due 
to heavy species colliding with 
the bubble wall
-Classification of steady state 
solutions:

v
-
2 < 1/3 v

-
2 > 1/3

v
+

2 > 1/3 Weak 
deflagration

Strong 
deflagration

v
+

2 < 1/3 Strong 
detonation

Weak 
detonation

Deflagration: wall drags 
behind shock 
Detonation: shock drags 
behind wall
Jouguet: v

-
 = c

s
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Pulsar timing: Doppler & Shapiro

pulsar

Earth 
observer

Line of 
sight

object

pulsar

object
Earth 
observer

Line of 
sight

ΓD∼π v n1/3
∼0.1 f 1/3

(
M

10−8 M sun

)
−1/3

yr−1

ΓS∼π
1/2v (nL)1 /2

∼0.17 f 1 /2
(

M

10−4 M sun

)
−1/2

(
L

10kpc
)

1/2

yr−1
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Example: monochromatic, pointlike PBHs

ϕ(t )=ϕ0+ν t+ ν̇
2
t2
+ ν̈

6
t 3
+.. .

SNR=
|ν̈ / ν|
σ ν̈ / ν

σ ν̈/ ν=6 √
2800Δ t

T

t rms
T 3

(~2.8 x 10-33 Hz2)

τ=b/v

(~10-34 N
p
f Hz2)

Dynamical (τ<<T) vs Static (τ>>T) 

[4]Dror, Jeff A., et al. "Pulsar timing probes of 
primordial black holes and subhalos." Physical 
Review D 100.2 (2019): 023003.
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Pulsar timing array

Doppler 
induced

Shapiro 
induced
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Pulsar timing: sensitivity limits[4,5]

[4]Lee, Vincent SH, et al. "Probing small-scale power spectra with 
pulsar timing arrays." Journal of High Energy Physics 2021.6 
(2021): 1-30

[5]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. 
Zurek. "Observability of dark matter substructure with 
pulsar timing correlations." Journal of Cosmology and 
Astroparticle Physics 2020.12 (2020): 033.

Typical signal waveform
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Why this choice of SNR?

[7]Lee, Vincent SH, et al. "Probing small-scale power spectra with pulsar 
timing arrays." Journal of High Energy Physics 2021.6 (2021): 1-30
[8]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. Zurek. 
"Observability of dark matter substructure with pulsar timing correlations." 
Journal of Cosmology and Astroparticle Physics 2020.12 (2020): 033.

1 2 3 4

1

2

3

4

5

6

7

8

9

10

Pulsar label

Mock 
universe

label

SNR>4

SNR<4

T=⟨∫ dt (h( t)+n (t))Q (t)⟩=∫ df h( f )Q( f )

N2
=∫∫ dt dt ' Q( t)Q (t ') ⟨n(t )n(t ' )⟩=ν

2t rms
2

Δ t∫df Q2
(f )

SNR2
=
T 2

N2

⟨n( f )n( f ' )⟩=ν
2t rms

2
Δ t δ( f−f ')

Similar to matched filter analysis in 
GW physics: desired signal is known, 
so perform an appropriate convolution 
using some kernel to extract it

Why threshold SNR=4?
-Null hypothesis: SNR follows a 
one-sided Gaussian, p-value 
0.05 and 200 pulsars gives 
SNR=4
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Example: monochromatic, pointlike PBHs

ϕ(t )=ϕ0+ν t+ ν̇
2
t2
+ ν̈

6
t 3
+.. .

SNR=
|ν̈ / ν|
σ ν̈ / ν

σ ν̈/ ν=6 √
2800Δ t

T

t rms
T 3

(~2.8 x 10-33 Hz2)

τ=b/v

(~10-34 N
p
f Hz2)

Dynamical (τ<<T) vs Static (τ>>T) 

vT∼6×10−3 pc (
v

300 km /s
)(

T
20 yr

)

b∼10−3 pc(N p f )
−1 /3

(
M

10−9 M sun

)
1 /3
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[7]D. Croon, D. McKeen, N. Raj and Z. Wang, Subaru-HSC through a different lens:
Microlensing by extended dark matter structures, Phys. Rev. D 102 (2020) 083021
[2007.12697]

Plots from: JTA, Po-yan Tseng 
JHEP 08 (2023) 117

Microlensing
-multiple images are formed, but
not resolved as separate
-change the magnification
-microlensing event is registered
if magnification is >1.34

Number of expected microlensing 
events:

- N
*
T

obs
 (rate per source star) 

(transit time)
-rate per source star ~ 1/M
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[9]Dynamical regime (blips): τ 
(=b/v) << T 
Static regime (contribution to 2nd 
derivative of ν): τ >> T

Trend:
-low M

PBH
: dynamical regime, 

and tugging acceleration too 
small
-intermediate M

PBH
: static 

regime, and 3rd order phase shift 
scales as M/b3~Mn~f ρ 

[4]Dror, Jeff A., et al. "Pulsar timing probes of primordial black 
holes and subhalos." Physical Review D 100.2 (2019): 023003.

Plots from: JTA, Po-yan Tseng 
JHEP 08 (2023) 117
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Pulsar timing limits: 
Novel PBH 
scenario

Recall:
-f depends on: α1/4 T

*

-<M> depends on α1/4, s/β3

Plot from: JTA, Po-yan Tseng 
JHEP 08 (2023) 117
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Complementary signal: Stochastic GWs

● GW through
– Bubble collisions
– Turbulence
– Compression waves

[8] Schmitz, Kai. "New sensitivity curves for gravitational-wave 
signals from cosmological phase transitions." Journal of High 
Energy Physics 2021.1 (2021): 1-62.
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JHEP 08 (2023) 117
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Why jagged?



Tram Acuña - NTHU 43

Generic quartic potential 
● (NB: The GW spectrum we are using is based 

on a fit on the numerical results of 1504.03291, 
using the same generic quartic potential in our 
paper, setting C = 0)
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Generic quartic potential 
● Potential connection with nonperturbative 

dynamics: proper calculation of GW spectrum 
from a generic quartic potential [JHEP 04 
(2021) 055,JHEP04(2021)057]
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Pulsar timing
● How do you get sensitivity limits?[6,7] 

– Monte Carlo simulation
● Pick PBH fraction and PBH mass (f,M)
● 1 simulation: assign random positions 

and velocities to a fixed number of PBHs
● Calculate total phase shift, subtract away 

intrinsic phase shift
● Calculate SNR per pulsar, take the max 

SNR in the simulation
● Repeat for N simulations, pulsar timing is 

sensitive to (f,M) if >90% of the 
simulations have SNR above threshold

Take away point: signal manifests at 3rd order

[6]Lee, Vincent SH, et al. "Probing small-scale power spectra with pulsar timing arrays." Journal of High Energy 
Physics 2021.6 (2021): 1-30
[7]Ramani, Harikrishnan, Tanner Trickle, and Kathryn M. Zurek. "Observability of dark matter substructure with 
pulsar timing correlations." Journal of Cosmology and Astroparticle Physics 2020.12 (2020): 033.
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Stochastic GWs
● FOPT produces GW 

– Bubble wall collisions
– Sound waves
– Turbulence

● Complementary signal for probing FOPT
● Relevant experiments

– SKA, THEIA, muAres
– Look for correlated angular displacements of 

stars (THEIA), or even changes in timing 
signal (SKA)

● Assess sensitivity reach using some SNR

[9] Schmitz, Kai. "New sensitivity curves for gravitational-wave signals from cosmological phase transitions." Journal of High Energy Physics 2021.1 
(2021): 1-62.
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PTA only

PTA+GW only

PTA+GW+relic

Plot from: JTA, Po-yan Tseng 
JHEP 08 (2023) 117
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