Emergent particles of a dS universe:

Thermal interpretation of the stochastic formalism and beyond

TaeHun Kim,

School of Physics, KIAS.

arXiv: 2310.15216 [gr-qc]

Table of contents

- Introduction
 - Stochastic formalism of slow-rolling scalar field in inflation
- Giving thermal interpretation
 - General formalism / Heat bath model
- And beyond
 - 1st slow-roll condition / Hubble expansion
- Discussion and Conclusion

Introduction

- The stochastic formalism
 - Effective theory of a slow-rolling scalar field in inflation
 - Wave number below a cutoff scale at $k = \epsilon a H$ ($\epsilon \ll 1$); "coarse-grained field"
 - Classicality of superhorizon modes
 - Measurement outcome of quantum state = Ensemble of classical random fields Kiefer, Polarski (2009)
 - Langevin equation ("classical" random evolution)

$$d\phi = -\frac{V'(\phi)}{3H}dt + \sqrt{\frac{H^3}{4\pi}} \, dW$$

Starobinsky (1986) Starobinsky, Yokoyama (1994)

Polarski, Starobinsky (1996)

Kiefer, Polarski (1998)

Lesgourgues, Polarski, Starobinsky (1997)

Introduction

Finelli, Marozzi, Starobinsky, Vacca, Venturi (2009) Rigopoulos (2013) & (2016)

- Some similarities with thermal effects, but not a thermal effect
 - Despite the appearance of $T_{dS} = H/2\pi$ in many points...
 - Intuitive understanding of the formalism
 - It is for the field at the superhorizon limit, instead of at the horizon scale
 - T_{dS} originates from the inaccessibility of a local observer by the horizon
 - Has spin dependence; not a universal effect from spacetime structure
 - Happens only for spin 0 and 2 fields
 - The field's spectrum is scale invariant, not thermal ($\rho \sim e^{-\beta k}$)

Introduction

- Thermal interpretation by Rigopoulos (2013) & (2016)
 - Effective action of superhorizon modes has a term responsible for stochastic force
 - Schwinger-Keldysh formalism; effective action expressed in the Keldysh basis
 - Satisfies the fluctuation-dissipation relation with the Hubble friction at T_{dS}
 - Interprets stochastic evolution as Brownian motion in a medium at T_{dS}
- Can we reach the same conclusion from physical observations?
 - Proposing by a general formalism & a heat bath model

• We treat horizon-sized spatial regions as "particles" in a virtual space

 x_3

 x_1

1-

 x_2

 $\phi_1(\vec{x}_a)$

 $\phi_2(\vec{x}_a)$

Patch *a*

The general formalism

Real 3D space Two fields ϕ_1 and ϕ_2

Time slice of dS universe = flat slicing of dS space (in this talk!)

Causal patch \simeq Hubble volume

• The formalism depicts the space

composed of many causal patches

- "Horizon in an objective manner"
- Note: We are developing a formalism, NOT a new theory!
- Each patch has its field value for the coarse-grained fields

• Each patch is regarded as a particle in another space

• "Emergent particle"

• "The abstract space"

- Two principles assumed:
 - 1. Field value ∝ momentum
 - "Dual description"
 - 2. The usual classical mechanics in the abstract space
 - Set of relations between physical
 - quantities in there

- We translate several aspects of dS universe into the dynamics in the abstract space
 - Stochastic field evolution
 - 1st slow-roll condition and Hubble expansion
- We stick to the "minimal non-minimal" setup
 - $V_0 = 3M_P^2 H^2$: Unspecified background energy density
 - ϕ : One real minimally coupled slow-rolling spectator scalar field (coarse-grained)

- Identifying physical quantities in the abstract space
 - Uniquely identified through the assumed classical mechanics

Causal patch in dS	Emergent particle in the Abstract space	Equation
Field value ϕ	Momentum <i>k</i>	$k = \frac{4\pi M_P m_\phi}{\sqrt{3}H^2} \phi$
Potential $V_{oldsymbol{\phi}}$	Kinetic energy E_k	$E_k = \frac{4\pi}{3H^3} V_{\phi}$
Background energy V_0	Mass M	$M = \frac{4\pi M_P^2}{H}$
Potential slope $V_{m \phi}'$	Velocity v	$\nu = \frac{1}{\sqrt{3}M_P H m_{\phi}} V_{\phi}'$

• Langevin equation of $\phi \rightarrow$ Brownian motion of emergent particle

$$d\phi = -\frac{V'(\phi)}{3H}dt + \sqrt{\frac{H^3}{4\pi}} \, dW \qquad \Longrightarrow \qquad dk = -\frac{4\pi M_P^2 m_{\phi}^2}{3H^2} \, v \, dt + \sqrt{\frac{4M_P^2 m_{\phi}^2}{3H}} \, dW$$

- Drag force $\propto -v$
- Continuous random impulses (momentum kicks)
- Classical Brownian motion in a medium at a finite temperature
 - We build a concrete particle model of the heat bath

- Abstract space filled with a heat bath of another type of particle
- Successful model: massless bath particles
 - c: "Speed of light (massless particles)"
 - T: Bath temperature
 - *λ*: Number density of bath particle
 - Bath particles are absorbed by emergent particles upon collision
 - Just like photons in our world

- Momentum conservation at each collision
 - Kinetic theory of bath particles + central limit theorem gives
 - $\Delta t \gtrsim (H^2/M_P^2 \ll 1) \times \frac{1}{H}$ is sufficient to have Gaussianity

$$\Delta k = -\left[2\lambda \int_0^\infty pf(p)dp\right] v \,\Delta t + \left[2\lambda c \int_0^\infty p^2 f(p)dp\right]^{1/2} \,\Delta W$$

- Deterministic force $\propto -v$ and Gaussian-distributed random kicks
 - Desired thermal motion, hence thermal interpretation is now available
- Three model parameters, two equations from coefficients?

- Energy conservation?
 - Bath particles are absorbed. Kinetic energy is lost.
 - On the other hand, the Hubble expansion is massive particle production
 - By virtue of energy conservation, we equate the amount of kinetic energy loss from collisions to the one required for Hubble expansion

$$-\frac{\langle \Delta E \rangle}{\Delta t} \simeq 2\lambda c^2 \int_0^\infty pf(p)dp = 12\pi M_P^2$$

• Parameters of the successful model

Giving thermal interpretation

Stochastic field evolution

- Superhorizon fluctuation modes
- Quantum field evolution

Emergent particle formalism

- 1. Dual description of scalar field
- 2. Usual classical mechanics in the abstract space

Brownian motion in the abstract space

- Heat bath of massless particles
- Thermal motion

$$k = \frac{4\pi M_P m_\phi}{\sqrt{3}H^2} \phi$$
$$E_k = \frac{4\pi}{3H^3} V_\phi$$
$$M = \frac{4\pi M_P^2}{H}$$
$$v = \frac{1}{\sqrt{3}M_P H m_\phi} V'_\phi$$

Giving thermal interpretation

- Arrived at the same conclusion of Rigopoulos (2013) & (2016)
 - Brownian motion in a medium at T_{dS}
- But our approach is simply started from sudden assumptions
 - Although we set the principles based on physical observations of dS universe...
 - We can always give a thermal interpretation for any Langevin equation if we "declare" the LHS to be a momentum
 - E.g. Thermal interpretation of stock market price? Nonsense.

And beyond (1st slow-roll condition)

- The physical significance is given by the reappearance of other seemingly unrelated quantities and phenomena in consistent ways
- $c = \frac{3H}{m_{\phi}}$: the "speed of light" in the abstract space
 - Would be the speed limit for massive particles
 - Already assumed in deriving the model parameters
 - What would be the value of *c* when reverted to the usual field variables?

And beyond (1st slow-roll condition)

• $v = \frac{1}{\sqrt{3}M_P H m_{\phi}} V'_{\phi}$. What is the potential slope when v = c is reached?

$$V_{\phi}'\Big|_{v=c} = 3\sqrt{3}M_P H^2$$

- 1st (potential) slow-roll parameter $\epsilon_V = \left(V_{\phi}'/3\sqrt{2}M_P H^2\right)^2$
- Surprisingly, $V'_{\phi}\Big|_{v=c}$ is where $\epsilon_V \simeq 1$ (only $\sqrt{2/3} \approx 0.82$ difference)

And beyond (1st slow-roll condition)

- Unexpected agreement but consistent with the picture
 - Abs. space: c is the speed of light (speed limit for massive particles)
 - This would be the point at which the physics in $v \ll c$ regime breaks down
 - Our space: $\epsilon_V \simeq 1$ is the potential slope that (quasi-) dS expansion is terminated
 - The two are connected by $v = \frac{1}{\sqrt{3}M_P H m_{\phi}} V'_{\phi}$ from the general formalism
- \therefore 1st slow-roll condition is reinterpreted as the speed of light (speed limit) in the abstract space

And beyond (Hubble expansion)

- $c = \frac{3H}{m_{\phi}}$ relies on the energy conservation with Hubble expansion
 - Result of the energy conservation in the abstract space
- : Hubble expansion is reinterpreted as transfer of conserved energy in

the abstract space

- Thermal interpretation is extended also to the Hubble expansion
- Particle creation should be realized in the quantum version

Summary

- Stochastic formalism for slow-rolling fields in inflation has similarities with thermodynamics but not a thermal effect
- We arrived at the thermal interpretation through the emergent particle formalism and the Heat bath model
- Consistent reinterpretation of the 1st slow-roll condition and the Hubble expansion are also achieved

Thank you for the attention!

THK; 2310.15216 [gr-qc]

Backup slides

Appearance of T_{dS} in the stochastic formalism

- $\langle \Delta \phi^2 \rangle \sim T_{dS}$ per Hubble time
- $d\rho/d \ln k \sim T_{dS}^4$ at horizon crossing
- $\langle V(\phi) \rangle \sim T_{dS}^4$ after reaching the equilibrium
- Background spacetime having only one energy scale *H*

Deducing the formalism

- After depicting the time slice as composed of causal patches
- Similarities with quantum particles
 - All equivalent
 - Can be created (Hubble expansion)
- Proposal for properties of the abstract space
 - Paralleling our situation to basic QFT

Deducing the formalism

- Case 1: minimal dS universe
 - A positive cosmological constant, no other fields
 - Space is homogeneous (nothing to fluctuate), all the causal patches are identical
 - The corresponding emergent particles are identical too
- Case 2: with *n* independent scalar fields
 - *n* fields vary their values on positions
 - The causal patches equivalent but no longer identical
 - Each emergent particle has *n* continuous degrees of freedom

Deducing the formalism

- The abstract space
 - Number of scalar fields \rightarrow dimension
 - Field value of a patch \rightarrow momentum of the emergent particle
 - "Dual description" of the usual field space approach

Deducing the Abstract space variables

- Starting point is the dual description: $k \propto \phi$
- If $k \propto \phi$, then $E_k \propto V_{\phi}$.
 - Energy density depending on $\phi \rightarrow$ energy depending on k = kinetic energy
 - A conversion factor with volume dimension is needed.
 - We "choose" to use the Hubble volume (we also checked how our results varies according to this choice)

•
$$E_k = \frac{4\pi}{3H^3} V_{\phi}$$

Deducing the Abstract space variables

- If $E_k \propto V_{\phi}$, then $M \propto V_0$
 - Energy density depending on ϕ vs energy density independent on ϕ
 - \rightarrow Energy depending on k vs energy independent of k
 - We "choose" to use the same volume factor

•
$$M = \frac{4\pi M_P^2}{H}$$

Deducing the Abstract space variables

- Work energy theorem
 - We assumed the same classical mechanics in the abstract space

•
$$E_k = W = \int F \, dx = \int v \, dk$$
 while $E_k = \frac{4\pi}{3H^3} V_{\phi} = \frac{4\pi}{3H^3} \int V'_{\phi} \, d\phi$

• Following the dual description, if we have $k \propto \phi$ then $v \propto V'_{\phi}$

• Coefficients are fixed by the "Newtonian" form near $\phi = 0$:

$$E_k \simeq \frac{1}{2M} \left(\frac{4\pi M_P m_\phi}{\sqrt{3}H^2} \phi \right)^2 = \frac{1}{2} M \left(\frac{m_\phi}{\sqrt{3}M_P H} \right)^2$$

• $k = \frac{4\pi M_P m_\phi}{\sqrt{3}H^2} \phi$ and $v = \frac{1}{\sqrt{3}M_P H m_\phi} V'_\phi$

Achieving the Gaussianity

- Numerical simulation result
- $\lambda c \Delta t \simeq$ total number of collisions in Δt
- Gaussianity achieved for $\lambda c \Delta t \gtrsim O(100)$
 - Holds even for $v \simeq c$
 - Expressing in terms of field variables gives

 $\Delta t \gtrsim \left(H^2/M_P^2\right) \times \frac{1}{H}$

Conjecture for quantum emergent particles

- Quantum field theoretical description of emergent particles
- Two interacting quantum fields in the abstract space
 - Emergent particle field absorbs energy from bath particle field
 - Particle creation should happen
- Classical (MB) statistics with quantum particles:
 - Reproduces the equilibrium distribution of the Fokker-Planck equation
- 1st law of thermodynamics: $S_{dS} = \frac{8\pi^2 M_P^2}{H^2}$ is entropy per emergent particle