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What makes a complicated space of parameters?

▶ Several dimensions

▶ Multimodality

▶ Curved degeneracy

▶ …
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From theory to discovery (or limits)

•••

Experiment Simulation

Theory

Compare

Discoveries Limits

no match

match

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need more powerful and
expensive computers! better

techniques for data analysis
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How we want to improve the data analysis

▶ Neural networks (NN) as generic function approximators

▶ Useful when training a NN could be more efficient than passing
every single point through a heavy calculation

▶ Design a process where the accuracy of the NN becomes proportional
to our interest in sampled regions:

▶ spend, relatively, more time sampling regions of interest,
▶ just enough time for low importance regions

Follow an iterative process similar to others, e.g.
Ren, Wu, Yang and Zhao [arXiv:1708.06615];
Caron, Heskes, Otten and Stienen [arXiv:1905.08628];
Goodsell and Joury [arXiv:2204.13950]
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An iterative process

Predict

Select

Get correct
result

Train

Initial
training
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An iterative process

Predict

Select

Get correct
result

Train

Initial
training

Until some goal accuracy has been reached with the NN
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Monte Carlo integration with stratification
Divide the parameter space according
to values of the function we want to
integrate (Lebesgue integration):

𝑓 ∶ ℝ𝑑 → ℝ≥0

Divide the space in 𝑛 sections (the
classes)

Φ𝑗 = {𝑥 ∣ 𝑙𝑗 < 𝑓(𝑥) ≤ 𝑙𝑗+1}
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The integral becomes

𝐼Φ[𝑓(𝑥)] = ∫
Φ

d𝑑𝑥 𝑓(𝑥) =
𝑛

∑
𝑗=1

∫
Φ𝑗

d𝑑𝑥 𝑓(𝑥) =
𝑛

∑
𝑗=1

𝑉Φ𝑗
⟨𝑓⟩Φ𝑗

where 𝑉Φ𝑗
is the volume or length of Φ𝑗
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Monte Carlo integration with classification

𝐼Φ[𝑓(𝑥)] =
𝑛

∑
𝑗=1

∫
Φ𝑗

d𝑑𝑥 𝑓(𝑥) =
𝑛

∑
𝑗=1

𝑉Φ𝑗
⟨𝑓⟩Φ𝑗

Hard question: ⃗𝑥 ∈ Φ𝑗?
With an anwser for a large sample of 𝑁 points:

𝑉Φ𝑗
≈

𝑁𝑗

𝑁
𝑉Φ , ⟨𝑓⟩Φ𝑗

≈ 1
𝑁𝑗

𝑁𝑗

∑
𝑖=1

𝑓(𝑥𝑖)

Can we get an answer for this question?
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Monte Carlo with classification and ML

NN{~x}

{~x1}1
{~x1}2

...
{~x1}n

set of n-dimensional
coordinates

NN learns the division
of regions

Not necessary to know
f(~x) to know where ~x
belongs

Train the neural network (NN) with an iterative process:

1. Train NN with a sample of points and function value.

2. Get predictions from the NN for a larger sample of new points.

3. Use function to correct wrong predictions.

4. Go back to training.

Repeat the process until NN is accurate enough
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Monte Carlo with classification and ML
Next hard question: How to divide 𝑓( ⃗𝑥)?

▶ Infinite possibilities
▶ a few simple examples, choose limits on 𝑓( ⃗𝑥) such that:

Ü Φ𝑗 with similar lengths 𝑉Φ𝑗

t Φ𝑗 with similar contributions to 𝐼Φ[𝑓(𝑥)]
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Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral
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Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral
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After sixth training step: above 99% accuracy (100 000 test points).
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Function with large cancellation

𝑓(𝑥1, 𝑥2) = 1000[𝑓+(𝑥1, 𝑥2) − 𝑓−(𝑥1, 𝑥2)] + 𝑓bg(𝑥1, 𝑥2)

∫ 𝑓𝑑𝑥1𝑑𝑥2 = ∫ 𝑓bg(𝑥1, 𝑥2)
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Quark pair to electron + positron

Very simple example:

𝑢�̄� → 𝑒−𝑒+

▶ ROOT - TGenPhaseSpace: phase space generator.

▶ Madgraph (standalon mode): matrix element.

▶ NNPDF23: parton density function.

▶ cuts: leptons: 𝑝𝑇 > 10 GeV, |𝜂| < 2.5
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Quark pair to electron + positron
Very simple setup:
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Generate events: 10 usable regions

𝑒−𝑒+ invariant mass projection

▶ Sample each region until
enough events are
accumulated.
NN can tell which
regions points belong to.

▶ Select points using correct
result.
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▶ 105 unweighted events
▶ High 𝑚𝑒𝑒 error expected

from thinning of sample.
▶ Invariant mass around 𝑍

resonance is similar when
comparing to MadGraph

▶ Efficiency of selection of
unweighted events
increases with more
regions. But more regions
requires more points for
training
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Vanity plots: Region 10 as seen by the NN
𝑍 resonance and low 𝑚𝑒𝑒
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Vanity plots: Region 6 as seen by the NN
around 𝑍 resonance
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Vanity plots: Region 5 as seen by the NN
Above 𝑍 resonance
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Summary

▶ Monte Carlo simulations could be challenging due to
$$ Time consuming costly operations

c High dimensional spaces

▶ Machine learning can improve the situation, but many options exist.

Ô We presented an iterative process to accelerate sampling of points in
a parameter space using a neural network.

Ô The main idea is to separate (preclassify) regions according to
importance.

▶ Concentrate on high importance regions
▶ Forget about regions that do not contribute to results

Ô Selection based on a sigle number.
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Thanks for listening!
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