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What makes a complicated

P Several dimensions
» Multimodality
P Curved degeneracy
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space of parameters?
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From theory to discovery (or limits)
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More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.
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How we want to improve the data analysis

P Neural networks (NN) as generic function approximators

P Useful when training a NN could be more efficient than passing
every single point through a heavy calculation

P> Design a process where the accuracy of the NN becomes proportional
to our interest in sampled regions:

P spend, relatively, more time sampling regions of interest,
P just enough time for low importance regions

Follow an iterative process similar to others, e.g.

Ren, Wu, Yang and Zhao [arXiv:1708.06615];
Caron, Heskes, Otten and Stienen [arXiv:1905.08628];
Goodsell and Joury [arXiv:2204.13950]
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An iterative process

Initial
training

Predict

Get correct
result
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An iterative process

Initial
training

Get correct
result

Until some goal accuracy has been reached with the NN
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Monte Carlo integration with stratification

Divide the parameter space according
to values of the function we want to 4.

integrate (Lebesgue integration):
300 A
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The integral becomes

where thj is the volume or length of ®
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Monte Carlo integration with classification

LU@I=Y [ @t s =3V 9,

Hard question: & € @7

With an anwser for a large sample of N points:

Can we get an answer for this question?
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Monte Carlo with classification and ML

{#1h NN learns the division

(7} of regions

set of n-dimensional T1g2

coordinates @ . Not necessary to know
f(Z) to know where ¥

{#}n belongs

Train the neural network (NN) with an iterative process:
1. Train NN with a sample of points and function value.
2. Get predictions from the NN for a larger sample of new points.
3. Use function to correct wrong predictions.
4. Go back to training.

Repeat the process until NN is accurate enough
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Monte Carlo with classification and ML

Next hard question: How to divide f(Z)?

P Infinite possibilities
P a few simple examples, choose limits on f(Z) such that:
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Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

anjeA uolpuny
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Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral
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After sixth training step: above 99% accuracy (100000 test points).
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Function with large cancellation
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function with large cancellation

f(x1,29) = 1000[f, (21, 75) — f_(2q,22)] + fbg<x17x2)
/fdx1d$2 = /fbg Ty, 1)
After first training 1s After second training
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Quark pair to electron + positron

Very simple example:

uu — e et
P> ROOT - TGenPhaseSpace: phase space generator.
P Madgraph (standalon mode): matrix element.

P> NNPDF23: parton density function.

P cuts: leptons: pp > 10GeV, |n] < 2.5
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Quark pair to electron + positron
Very simple setup:

| ———— Hidden layers ———|

Phase space coordinates
Approximate index of region

10 usable divisions + 1 irrelevant region
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Generate events: 10 usable regions

e~ e’ invariant mass projection

P Sample each region until
enough events are
accumulated.

NN can tell which
regions points belong to.

P> Select points using correct
result.

m,, [GeV]
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Number of events

error
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10° unweighted events
High m,, error expected
from thinning of sample.
Invariant mass around Z
resonance is similar when
comparing to MadGraph
Efficiency of selection of
unweighted events
increases with more
regions. But more regions
requires more points for
training
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Vanity plots: Region 10 as seen by the NN

Z resonance and low m,,
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Vanity plots: Region 6 as seen by the NN

around Z resonance
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Vanity plots: Region 5 as seen by the NN

Above Z resonance
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Summary

P Monte Carlo simulations could be challenging due to
$$ Time consuming costly operations
% High dimensional spaces
P Machine learning can improve the situation, but many options exist.

-> We presented an iterative process to accelerate sampling of points in
a parameter space using a neural network.

- The main idea is to separate (preclassify) regions according to
importance.

P Concentrate on high importance regions

P Forget about regions that do not contribute to results

- Selection based on a sigle number.
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Thanks for listening!
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