

Light thermal Dark Matter Beyond *p*-Wave Annihilation

Tian-Peng Tang (唐天鹏)

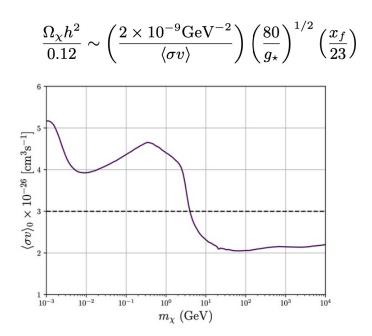
Purple Mountain Observatory,

Chinese Academy of Sciences

Collaborated with Yu-Tong Chen, Shigeki Matsumoto, Yue-Lin Sming Tsai, and Lei Wu

3rd International Joint Workshop on the Standard Model and Beyond 11th KIAS Workshop on Particle Physics and Cosmology

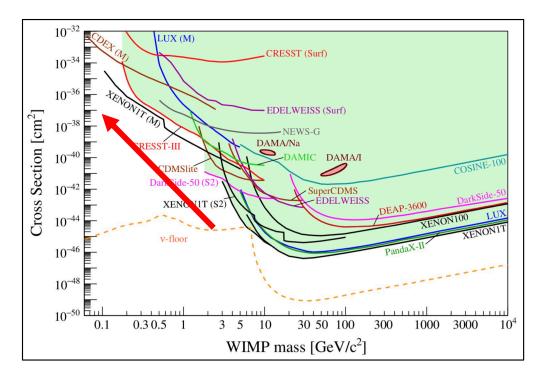
November 15, 2023


Outline

- A brief introduction to sub-GeV dark matter
- minimal dark matter model: one Majorana DM + one new singlet scalar mediator
- Summary

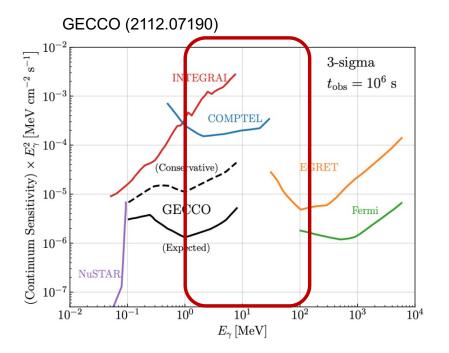
WIMPs

For decades, WIMPs have been the cherish DM candidates


► WIMPs naturally give correct relic density via freeze-out.

▶ Models with NP at EW scale (e.g. Naturalness or Hierarchy Problem) often accommodate a EW scale DM candidate.

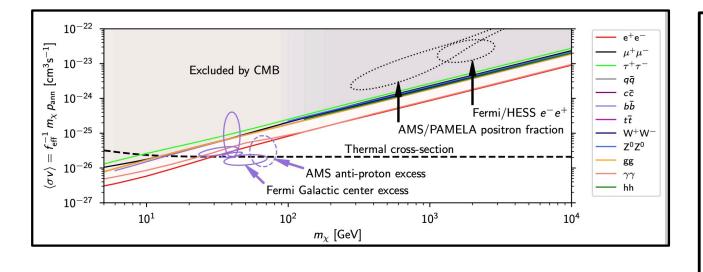
WIMPs Crisis or MeV DM Opportunity?


The answer is : Neutrino floor is coming and No evidence for WIMPs!

Rept. Prog. Phys. 2022, 85(5) 056201

- DM mass region above GeV is highly constrained by direct detection ;
- Sub-GeV DM still has a large parameter space;
- The search for sub-GeV DM is turning to indirect detection.

Future Indirect Detection : Great opportunity to explore MeV dark matter


Telescope	Status	Energy Range	Reference
INTEGRAL	On 2002 October 17	15 keV to 10 MeV	0801.2086 1107.0200
e-ASTROGAM	2029	0.3 MeV to 3 GeV	1711.01265
COSI	2025	0.2 MeV to 5 MeV	2109.10403
GECCO	?	0.1 MeV to 8 MeV	2112.07190
AMEGO	?	0.2 MeV to 10 GeV	1907.07558
VLAST	?	100 MeV to 20 TeV	chinaXiv:202203.00 033V2

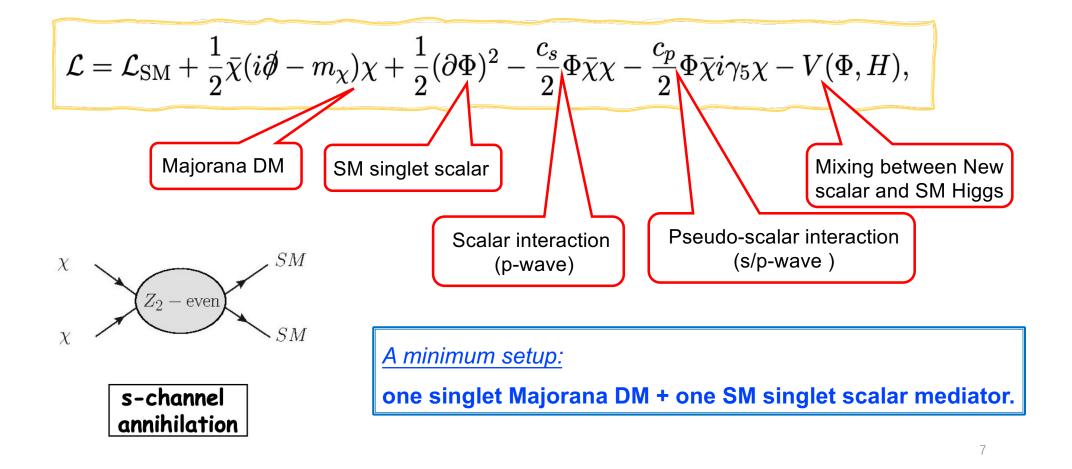
- In the past few decades, there have been no good telescopes focused on the MeV Gap
- Fortunately, many new MeV telescopes have been proposed in recent years.

The challenge to MeV Dark matter: CMB

Planck 2018 constraints on DM mass and annihilation cross section

 $\langle \sigma v \rangle \simeq a + bv^2$

s-wave
$$(b = 0)$$


 s-wave dark matter annihilations with masses less than 1GeV would be difficult to escape CMB limits

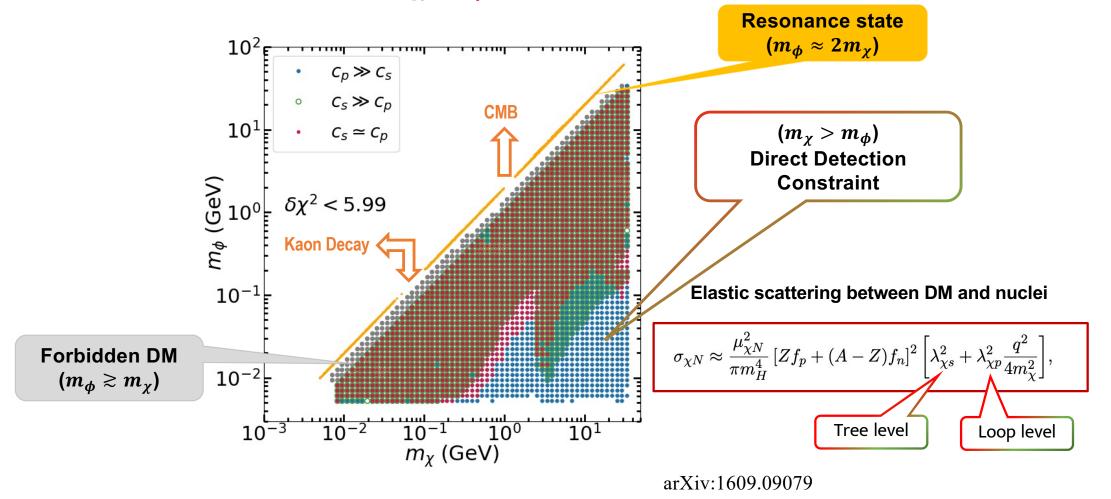
p-wave (a = 0)

p-wave dark matter annihilation can satisfy the CMB but the cross section at the present time is too small to be observed.

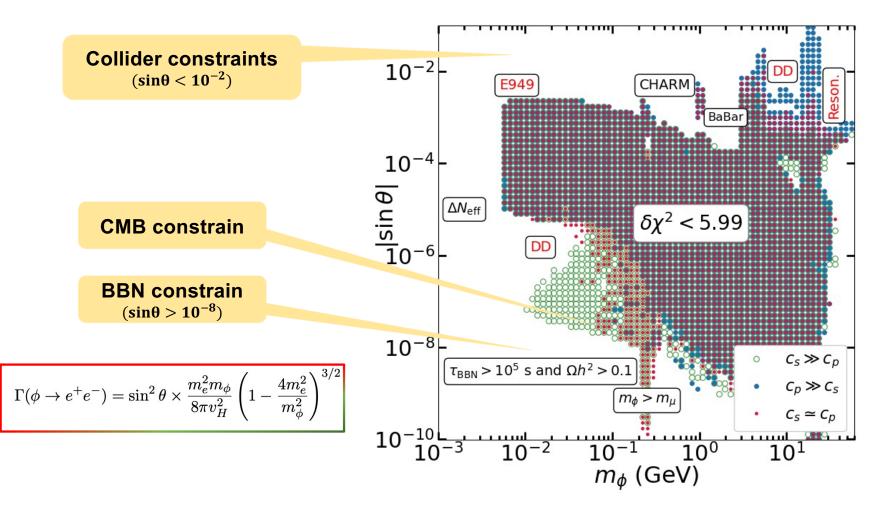
Can we find a sub-GeV DM signal in future telescope but also escape from CMB limits ?

Basic and minimum Lagrangian

	Likelihood	Constraints
Relic abundance	Gaussian	$\Omega_{\chi}^{\exp}h^2 = 0.1193 \pm 0.0014$ [10];
		$\sigma_{ m sys} = 10\% imes \Omega_{\chi}^{ m th} h^2.$
Equilibrium	Conditions	either $(\Gamma_{\chi \text{SM}}^{\text{FO}} \ge H_{\text{FO}})$, or
		$(\Gamma^{ m FO}_{\chi m SM} \ge H_{ m FO} ext{ and } \Gamma^{ m FO}_{\chi\phi} \ge H_{ m FO})$
DM direct detection	Half Gaussian	$9 { m GeV} < m_{\phi} < 10 { m TeV} ({ m LZ} \mbox{[12]}),$
		$3.5{\rm GeV} < m_\phi < 9{\rm GeV}$ (PANDAX-4T [13]),
		$60{\rm MeV} < m_\phi < 5{\rm GeV}$ (DarkSide [11]).
$ riangle N_{ m eff}$	Half Gaussian	$\triangle N_{\rm eff} < 0.17$ for 95% C.L. [19]
BBN	Conditions	if $(m_{\phi} \ge 2m_{\pi})$ then $\tau_{\phi} \le 1$ s [15],
		if $(m_{\phi} \le 2m_{\pi})$ then $\tau_{\phi} \le 10^5$ s [16].

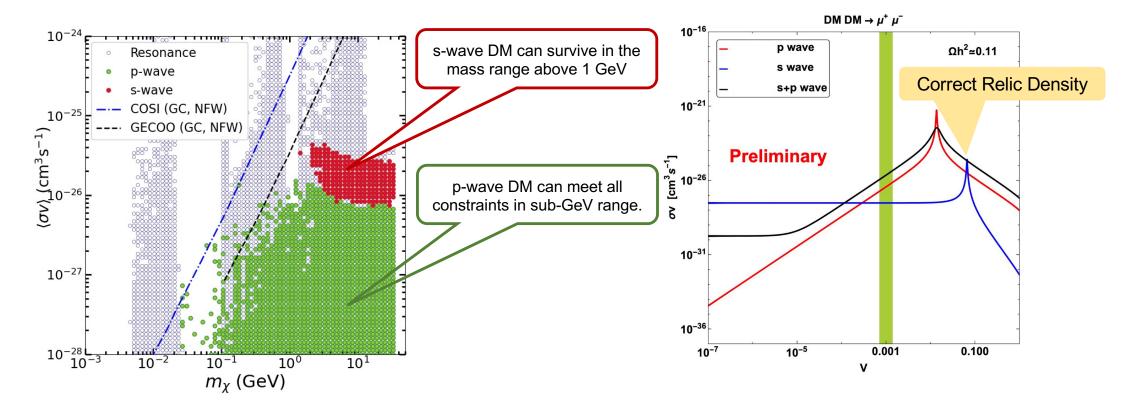

Cosmological and astrophysical constraints

Collider experiments constraints


	ϕ signature	Constraints	
Higgs decay	Prompt*	See the upper limits of $\mathrm{BR}(h\to\phi\phi)\mathrm{BR}(\phi\to ll)^2$	
		from Fig. 12 of Ref. [19] and Fig. 7 of Ref. [23].	
	Displaced*	See Ref. [20, 21]	
	Long-lived*	$\mathrm{BR}(h \to \mathrm{inv.})_{BSM} \leq 0.145 \ [24]$	
B decay	Prompt	${\rm BR}(B^{\pm}\to K^{\pm}\mu^{-}\mu^{+})\lesssim 3\times 10^{-7}~{\rm [31]}$	
		(1) $\sin^2\theta \gtrsim 2 \times 10^{-8}$ for the region	
	Displaced	$0.5 < m_{\phi}/{\rm GeV} < 1.5$ and $1 < c\tau_{\phi}/{\rm cm} < 20$ [34]	
		(2) See Fig. 5 of Ref. [33] for details.	
	Long-lived	$P_p \ \mathrm{BR}(B^{\pm} \to K^{\pm} \nu \bar{\nu}) \le 2.4 \times 10^{-5} \ [35]$	
Kaon decay		(1) BR($K^+ \to \pi^+ \mu^- \mu^+$) $\leq 4 \times 10^{-8}$ [36]	
	Prompt	(2) BR $(K_L \to \pi^0 e^- e^+) \le 2.8 \times 10^{-10} \ [37]$	
		(3) BR $(K_L \to \pi^0 \mu^- \mu^+) \le 3 \times 10^{-10}$ [38]	
	Displaced	$ CHARM detected events \gtrsim 2.3 [43] $	
		(1) ${ m BR} (K_L o \pi^0 u ar{ u}) \le 3.0 imes 10^{-9} [25]$	
	Long-lived*	(2) See BR $(K^+ \to \pi^+ \nu \bar{\nu})$ limits from	
		Fig. 18 of Ref. $[\overline{39}]$ and Fig. 4 of Ref. $[\overline{18}]$ for details	

Based on previous work: JHEP 07(2019)050 (Red indicates update limits)

Preliminary Result: (m_{χ}, m_{ϕ})



Preliminary Result: $(m_{\phi}, |\sin\theta|)$

10

Preliminary Result: Indirect Detection

Only resonant state can be observed in future indirect detection experiments!

SUMMARY

- We investigate a minimal dark matter model that incorporates a light Majorana dark matter and a new scalar mediator;
- Our comprehensive likelihood analysis considers constraints from direct detection experiments, collider searches, cosmological and astrophysical observations;
- We find that light dark matter through p-wave can escape CMB constraint, but only the resonance state can offer a promising prospect in the future indirect detection.

THANK YOU ! 감사합니다 !