Gauged Quintessence	Misalignment	

Misalignment mechanism for a mass-varying vector boson

Jaeok Yi

Department of Physics, KAIST

November 15, 2023

based on arXiv:2306.01291 with Kunio Kaneta, Hye-Sung Lee, and Jiheon Lee

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

Gauged Quintessence	Misalignment	

Overview

1 Introduction

- 2 Gauged Quintessence
- 3 Misalignment

4 Constraints

Introduction	Gauged Quintessence	Misalignment	
00000			

I. Introduction

<□▶ <圕▶ < ె>▶ < 王▷ < 王▷ 된 = 의 Q (~ 3/27

Introduction	Gauged Quintessence	Misalignment	
0000			

Standard Model

$SU(3)_C \times SU(2)_L \times U(1)_Y$

<ロ><回><個><目><目><日><日><<日><<日><<日><<日><<日><<日><<1/></2>

Introduction 00000	Gauged Quintessence	Misalignment 000000	

Challenges on ACDM Model

Hubble Tension

- Small Scale Problem
- James Webb Telescope

Introduction	Gauged Quintessence	Misalignment 000000	

New Symmetry on Dark Energy Sector?

Gauged Quintessence	Misalignment	
0000000		

II. Gauged Quintessence

Gauged Quintessence	Misalignment 000000	

Quintessence

Dynamic dark energy model proposed by Ratra and Peebles.

[Bharat Ratra and P. J. E. Peebles PRD37(1988)3406]

• A scalar ϕ rolls down a potential slowly in the present universe.

• Equation of state assuming slow roll condition $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$

$$w = \frac{p}{\rho} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \approx -1$$

Gauged Quintessence	Misalignment 000000	

Tracking Behavior

The initial value of \(\phi\) does not matter. Only the potential determines the present time value of and its equation of state (addressing the cosmological coincidence problem).

[Steinhardt, Wang, Zlatev PRL82(1999)896]

Gauged Quintessence	Misalignment 000000	

Gauged Quintessence

• The gauged quintessence model includes complex scalar $\Phi = \phi e^{i\eta}/\sqrt{2}$ and $U(1)_{dark}$ gauge boson \mathbb{X}_{μ} . Φ is charged under the $U(1)_{dark}$ gauge symmetry and ϕ behaves as dark energy. [KK, HL, JL, and JY JCAP02(2023)005]

• Under the unitary gauge, $\eta = 0$ and $X_{\mu} = X_{\mu} + \frac{1}{g_{X}} \partial_{\mu} \eta$, the Lagrangian of gauged quintessence model is given by

$$\mathcal{L} \supset \sqrt{-g} \Big[-rac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - rac{1}{4} X_{\mu
u} X^{\mu
u} - V_0(\phi) - rac{1}{2} (g_X \phi)^2 X_\mu X^\mu \Big]$$

where g_X is the dark gauge coupling constant.

• We chose $V_0(\phi)$ to be the inverse power potential,

[Bharat Ratra and P. J. E. Peebles PRD37(1988)3406]

$$V_0(\phi)=rac{M^{lpha+4}}{\phi^{lpha}}, \quad lpha>0$$

Gauged Quintessence	Misalignment 000000	

Potential

Gauged Quintessence	Misalignment 000000	

Mass-varying Behavior

• The masses of ϕ and X are given as

$$m_{\phi}^2 = rac{\partial^2 V_{\text{eff}}}{\partial \phi^2}, \quad m_X^2 = \frac{g_X^2 \phi^2}{g_X^2}$$

- When the tracking and rolling of quintessence begin, m_X increases. Also, there exists an energy flow from ϕ to X.
- Boltzmann equation of ϕ is given by

$$\dot{
ho}_{\phi} + 3H(
ho_{\phi} + p_{\phi}) = -2 \frac{\dot{m}_{\chi}}{m_{\chi}} V_{\text{gauge}}$$

• Mass-varying behavior indicates the energy flow from ϕ to X.

Gauged Quintessence	Misalignment	
0000000		

Hubble Tension

To relieve Hubble tension, w(DE) < -1 is favored in the recent era. [Bum-Hoon Lee *et al* JCAP04(2022)004]

In the gauged quintessence model,

$$w_{
m eff}(\widetilde{DE}) = -1 + rac{1}{
ho_{\widetilde{DE}}} \left((1 + w_{\phi}^0)
ho_{\phi} + \left(rac{m_{\chi}}{m_{\chi}^0} - 1
ight) rac{
ho_{\chi}^0}{a^3}
ight)$$

where $\rho_{\widetilde{DE}} = \rho_{\phi} + \rho_X - \rho_X^0 a^{-3}$ and ⁰ implies the present value. • $w_{\text{eff}}(\widetilde{DE})$ can be smaller than -1 due to the mass-varying effect.

Gauged Quintessence	Misalignment 000000	

Hubble Tension

 $\rho_X^0 / \rho_{\text{CDM}}^0 = 0.013 \quad \blacksquare \ \rho_X^0 / \rho_{\text{CDM}}^0 = 0.09 \quad \blacksquare \ \rho_X^0 / \rho_{\text{CDM}}^0 = 0.27$

Gauged Quintessence	Misalignment	
	00000	

III. Misalignment

<ロ> < 部 > < 画 > < 画 > < 画 > < 画 > < 画 > 三日 の Q () 16 / 27

Misalignment Mechanism

- The misalignment mechanism is a mechanism for retaining the correct relic density of dark matter.
 - Homogeneous condensate due to inflation.
 - Coherent oscillation.
- Assuming spatial homogeneity, the equation of motion and the energy density of the scalar field φ are given as

$$\ddot{\varphi} + 3H\dot{\varphi} + m_{\varphi}^2 \varphi = 0, \quad \rho_{\varphi} = \frac{1}{2}(\dot{\varphi}^2 + m_{\varphi}^2 \varphi^2)$$

• φ is frozen and ρ_{ϕ} is constant during inflation due to the large Hubble friction. As *H* becomes smaller than m_{φ} , φ begins coherent oscillation and $\rho_{\varphi} \propto a^{-3}$ like usual cold dark matter.

Misalignment Mechanism for Gauge Boson

The misalignment mechanism does not work well for the vector field. [Kazunori Nakayama JCAP10(2019)019]

Assuming homogeneity, the equation of motion and the energy density of the vector boson $X_{\mu} = (0, 0, 0, X)$ are given as

$$\ddot{X} + H\dot{X} + m_X^2 X = 0, \quad \rho_X = \frac{1}{2a^2}(\dot{X}^2 + m_X^2 X^2)$$

By solving the equation of motion, we have

$$\rho_X \propto \begin{cases} m_X^2 a^{-2} & (m_X \ll H) \\ m_X a^{-3} & (m_X \gg H) \end{cases}$$

• Due to the scale factor, ρ_X becomes tiny after inflation.

$$\frac{a_{\text{end}}}{a_{\text{ini}}} = e^{60} \quad \Rightarrow \quad \frac{\rho_X(a_{\text{end}})}{\rho_X(a_{\text{ini}})} \sim e^{-120} \quad (60 \text{ e-folding inflation})$$

Gauged Quintessence	Misalignment 000●00	

Dynamics of ϕ

- ϕ follows the minimum of V.
- m_{ϕ} decreases.

- ϕ shows tracking behavior.
- m_{ϕ} is fixed since H is constant.

Gauged Quintessence	Misalignment 0000●0	

Evolution of Masses

- Initially, m_{ϕ} is determined by minimum of V.
- Once $m_{\phi} \approx H$, the evolution of m_{ϕ} follows that of H (tracking).
- Due to the rolling of ϕ , m_X increases over time.

Gauged Quintessence	Misalignment 00000●	

Evolution of ρ_X

• More ρ_X survives in the gauged quintessence model.

Gauged Quintessence	Misalignment	Constraints	
		0000	

IV. Constraints

<ロト <部 > < E > < E > 差目 のQ (* 22/27

Gauged Quintessence	Misalignment 000000	Constraints 0000	

Constraint from Misalignment

• Initial ρ_X should be smaller than the inflaton energy density.

$$\rho_X(a_{\rm ini}) \ll \rho_{\rm inf}(a_{\rm ini})$$

• ρ_X at the present should be comparable to CDM density.

$$\rho_X(a_0) \approx \rho_{\mathsf{CDM}}(a_0)$$

- In the minimal vector boson model, these relations exhaust all the parameter space.
- However, this constraint becomes weaker in the gauged quintessence model.

Quantum Fluctuations

- The fluctuation of X is an independent degree of freedom from the inflaton fluctuation, so the isocurvature fluctuation is generated from the quantum fluctuation of the X.
- Since it is constrained by CMB spectrum, the isocurvature fluctuation suggests a constraint.
- The fluctuation of ϕ can generate stochastic random jumps of ϕ .
- This stochastic perturbation should be small for the homogeneous mode of \u03c6 to dominate so it suggests another constraint.

Gauged Quintessence	Misalignment 000000	Constraints 000●	

Constraint Plot

 Misalignment production is available for the gauged quintessence model.

Gauged Quintessence	Misalignment	Summary
		00

V. Summary

< □ ▷ < 큔 ▷ < 분 ▷ < 분 ▷ 분 ⊨ < 연 ○ ↔ 26 / 27

Gauged Quintessence	Misalignment 000000	Summary ○●

Summary

- ACDM model is severely challenged these days.
- Gauged quintessence model is a U(1) charged quintessence model.
- Due to the mass-varying effect of gauged quintessence model, the misalignment mechanism can provide a sufficient amount of dark gauge boson.
- More researches on dark energy sector including gauged quintessence model are warranted.

Thank you for listening

Back-up Slides

Quantum Correction

 From Coleman-Weinberg potential, the quantum correction for V and m_φ can be calculated.

$$\begin{split} V_{\text{eff}} &= V_0 + \frac{1}{2} g_X^2 X_\mu X^\mu \phi^2 + \frac{\Lambda^2}{32\pi^2} V_0^{\prime\prime} \\ &\quad + \frac{(V_0^{\prime\prime})^2}{64\pi^2} \left(\ln \frac{V_0^{\prime\prime}}{\Lambda^2} - \frac{3}{2} \right) + \frac{3(m_X^2|_0)^2}{64\pi^2} \left(\ln \frac{m_X^2|_0}{\Lambda^2} - \frac{5}{6} \right) \\ m_\phi^2 &= V_0^{\prime\prime} + g_X^2 X_\mu X^\mu + \frac{\Lambda^2}{32\pi^2} V_0^{\prime\prime\prime\prime} \\ &\quad + \frac{V_0^{\prime\prime} V_0^{\prime\prime\prime\prime}}{32\pi^2} \left(\ln \frac{V_0^{\prime\prime}}{\Lambda^2} - 1 \right) + \frac{9g_X^2 m_X^2|_0}{16\pi^2} \left(\ln \frac{m_X^2|_0}{\Lambda^2} + \frac{1}{3} \right) \end{split}$$

To satisfy dark energy density and tracking condition, we need

$$V_{\rm eff} \sim 3 imes 10^{-47} {
m GeV}^4, \quad m_\phi^2 \sim H_0^2 \sim 10^{-42} {
m GeV}$$

Back-up Slides 0000

Constraint from Quantum Correction

<ロ> < 回> < 回> < 目> < 目> のへの 3/4

Baryon Acoustic Oscillation and Hubble Tension

• To relieve Hubble tension, w(DE) < -1 is favored in the recent era.

[Bum-Hoon Lee et al JCAP04(2022)004]

