New Physics Search at Long-Lived Particle Search Experiments

Institute for Cosmic Ray Research, Univ. of Tokyo

The 3rd International Joint Workshop on the Standard Model and Beyond and the 11th KIAS Workshop on Particle Physics and Cosmology @ The Suite Hotel Jeju Island, Korea, November 14, 2023

Outline

1, Introduction

Brief theoretical review of BSM search in forward direction

2, ILC beam dump experiment Motivations and setup

3, New physics search @ ILC beam dump

1, Long-lived particle

"New physics search at ILC positron and electron beam dumps", **K. Asai**, S. Iwamoto, Y. Sakaki, and D. Ueda, <u>JHEP 09 (2021) 183</u>, arXiv:<u>2107.07487</u>

2, Sub-GeV dark matter

"Sub-GeV dark matter search at ILC beam dumps", **K. Asai**, S. Iwamoto, <u>M. Perelstein, Y. Sakaki, and D. Ueda, arXiv:2301.03816</u>

Introduction

Why forward region?

 Light particles produced at particle beam experiments fly in forward direction because of boost factor

pp-reaction cross section @ LHC is very large in the direction of beam axis

Inelastic scattering cross section of pp collision @ 13TeV LHC

TOTEM Collaboration, EPJC 79 (2019) 10, 861

Why long-lived particles?

 Strong coupling between SM & BSM particle has been already excluded for light mass case

For background reduction, thick shield needs

Ex.) muons with EM/HD shower

Various experiments

		Place	Year	Beam	Shield length
Fixed target	CHARM	CERN	1979	p, 400GeV	480m
	v-Cal I	Serpkhov	1989	p, 68.6GeV	64m
	E137	SLAC	1988	<i>e</i> -, 20GeV	179m
	BDX	JLab	2027?	<i>e</i> -, 11GeV	20m
	SHiP	CERN	LHC Run4	p, 400GeV	120m
	ILC beam dump	Iwate ?	?	<i>e⁻/ e⁺</i> , 125Ge\	/ 70m
Beam- beam		Place	Year	Beam \sqrt{s}	Distance
	FASER	ATLAS	Present	p, 14TeV	480m
	FASER2	ATLAS	HL-LHC	p, 14TeV	620m?
Γ	Various future experiments in forward region				
	Light & teeply interacting particles will become hotter!				

Kento ASAI (ICRR, Univ. of Tokyo) New Physics Search at Long-Lived Particle Search Experiments 3rd International Joint Workshop @ Jeju (Nov 14, 2023)

6/34

ILC (International Linear Collider)

- Electron-positron linear collider
- 250 GeV center-of-mass energy (-> upgrade to 500 GeV, 1TeV)
- 250 fb^{-1} integrated luminosity

Beam dumps at ILC

Main beam dump

- Absorber : liquid water
- Covered by iron shield and concrete
- 11 m length

Water outlet

Beam dumps at ILC

Main beam dump

- Absorber : liquid water
- Covered by iron shield and concrete
- 11 m length

<u>Almost all e⁺ & e⁻ are dumped</u> at main beam dump

Use them for beam dump experiment

What a waste !!

Beam dump experiment at ILC

<u>Advantage</u>

\bigcirc Intensity frontier

 Produce large number of light weakly-interacting BSM particles by high-intensity beam & fixed target

ILC beam dump experiment and ILC main experiment are in complementary relation

ILC experiment

○ Energy frontier

- Produce heavy interactive BSM particle by high energy beam

\bigcirc Low cost of construction and operation

- Possible to use beams and beam dumps for ILC main experiment

<u>Advantage</u>

- Can use positron beam
 - Production by pair annihilation between e^+ beam and e^- in H_2O

Kento ASAI (ICRR, Univ. of Tokyo) New Physics Search at Long-Lived Particle Search Experiments 3rd International Joint Workshop @ Jeju (Nov 14, 2023) 13/34

Long-lived Particle @ ILC beam dump

Based on

"New physics search at ILC positron and electron beam dumps", **K. Asai**, S. Iwamoto, Y. Sakaki, and D. Ueda, <u>JHEP 09 (2021) 183</u>, arXiv:<u>2107.07487</u>

Basic strategy

Production & Detection

- 1, LLPs are produced and fly in forward direction
- 2, LLPs pass through long shied
- 3, LLPs decay into SM visible particles in decay volume
- 4, Visible particles are detected at detectors

(# of signal event)

= (# of produced BSM particles) × (Acceptance) × (Branching ratio)

(Acceptance)

= (Probability of decay in decay volume) \times (Angular cut)

= (Probability of decay in decay volume) × (Angular cut)

BSM particles reach decay volume and are detected by decay into visible particles Probability of decay between $0 \sim l_{\rm dec}$

$$\frac{\mathrm{d}P_{\mathrm{dec}}}{\mathrm{d}z} = \frac{1}{l_X^{(\mathrm{lab})}} \exp\left(-\frac{l_{\mathrm{dump}} + l_{\mathrm{sh}} + z}{l_X^{(\mathrm{lab})}}\right) \qquad l_X^{(\mathrm{lab})}: \text{Decay length in laboratory frame}$$

<u>Calculation of event number</u>

Produced particles have angles with respect to initial particles

For large angle (deviation from beam axis r_{\perp}), visible particles in decay volume do not hit detector

Angular cut :
$$\Theta(r_{
m det}-r_{ot})$$

<u>Calculation of event number (e[±] beam dump experiment)</u>

(Number of signals)

= (# of produced new particles) × (Acceptance) × (Branching ratio)

$$= N_{e^{\pm}} n_{j} \int dE_{i} \frac{dl_{i}}{dE_{i}} \int dE_{X} \int_{0}^{\pi} d\theta_{X} \frac{d^{2}\sigma(i+j\to X+\text{others})}{dE_{X}d\theta_{X}} \times \int_{z_{1}}^{z_{2}} dz \frac{1}{l_{\text{dec}}} e^{-z/l_{\text{dec}}} \Theta(r_{\text{det}}-r_{\perp}) \times \text{Br}(X \to \text{visible})$$

20/34

Production Process

$\begin{array}{c} \text{LP search at} \\ \text{Dark photon} \\ \mathcal{L} \supset -\frac{1}{A} F_{\mu\nu}^{(A')\mu\nu} - \frac{\epsilon}{2} F_{\mu\nu}^{(em)} F^{(A')\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} \end{array} \end{array}$

Sensitivity region

Sub-GeV Dark Matter @ ILC beam dump

Based on "Sub-GeV dark matter search at ILC beam dumps", **K. Asai**, S. Iwamoto, M. Perelstein, Y. Sakaki, and D. Ueda, arXiv:<u>2301.03816</u>

Light Particle + Dark Matter

In light particle (LP) search at ILC bean dump, it is assumed that they couple only to <u>SM particles</u>

If light particles do<mark>minant</mark>ly decay into DMs, LP Detectable

LP Detectable

LP ·····

 $m_{\rm LP} > 2m_{\rm DM}$

No visible signal ! <u>DM can be detected at ILC</u> beam dump experiment ?

case

 \mathbf{D}

BDX (Beam Dump eXperiment)

MeV-GeV dark matter search experiment @ JLab

- \bigcirc DMs are produced in electron beam dump
- \bigcirc 11 GeV electron beam
- \bigcirc 10²² electron on target \bigcirc 1m³ Csl (Tl) scintillator

ILC beam dumpDetector125 GeV e^{\pm} beam, 4×10^{21} /year e^{\pm} on targetPowerful DM search like BDX @ ILC beam dump !

ILC-BDX

MeV-GeV dark matter search experiment @ ILC beam dump \bigcirc DMs are produced in e^{\pm} beam dump \bigcirc 125 GeV e^{\pm} beam $\bigcirc 4 \times 10^{21}$ /year e^{\pm} on target \bigcirc cylindrical CsI (TI) scintillator $70\,\mathrm{m}$ IIm $0.64\,\mathrm{m}$ $50\,\mathrm{m}$ lsh $l_{
m dec}$ det dump Muon shield Decay volume (Multi-layer tracker) Detector Beam dump $r_{\rm dec}$: $r_{\text{det}} 2 \,\mathrm{m}$ Lead Concre A' χ_2 A' e^+

Kento ASAI (ICRR, Univ. of Tokyo) New Physics Search at Long-Lived Particle Search Experiments 3rd International Joint Workshop @ Jeju (Nov 14, 2023) 26/34

ILC-BDX

- Two types of DM signals
- ① Electron recoil

DMs scatter with electrons in detector material elastically, and recoil electrons are detected.

② Visible decay

Heavy DM state is produced at beam dump and decay into light DM state and SM particles. Visible daughter SM particles are detected.

Dark matter search

Visible decay

e⁻ recoil

<u>Calculation of event number (e^{\pm} beam dump experiment)</u>

(Acceptance)

= (Probability of reaction with visible SM particles) × (Angular cut)

probability of heavy dark state decay

probability of e^- -DM elastic scattering

Ex.) Pseudo-Dirac DM

Two-component Weyl fermion with nonzero dark U(1) charge

$$-\mathcal{L} \supset m_D \eta \xi + \frac{1}{2} m_M (\eta^2 + \xi^2) + \text{H.c.}$$

n low-energy theory

For $m_D \gg m_M > 0$, DM mass eigenstates $\chi_1 = \frac{i}{\sqrt{2}}(\eta - \xi), \quad \chi_2 = \frac{1}{\sqrt{2}}(\eta + \xi)$

with masses $m_{\chi_{1,2}} = m_D \mp m_M$

DM-dark photon coupling is off-diagonal

$$J^{\mu}_{\chi} = i\bar{\chi_2}\gamma^{\mu}\chi_1 + \text{H.c.}$$

Inelastic DM

Ex.) Pseudo-Dirac DM (small mass splitting)

Ex.) Pseudo-Dirac DM (small mass splitting)

Ex.) Pseudo-Dirac DM (large mass splitting) $\alpha_D = 0.1, m_{A'} = 3m_{\chi_1}$

 $m_{\chi_2} - \overline{m_{\chi_1}} = 0.1 \overline{m_{\chi_1}}$

32/34

Ex.) Pseudo-Dirac DM (large mass splitting) $\alpha_D = 0.1, m_{A'} = 3m_{\chi_1}$

 $m_{\chi_2} - m_{\chi_1} = 0.1 m_{\chi_1}$

Summary

- \bigcirc <u>ILC e[±] beam dump experiment has higher sensitivity to light</u> ($\lesssim 1 \, \text{GeV}$) weakly-interacting particles than past beam dump <u>experiments</u>
- ILC-BDX can probe interesting parameters of the sub-GeV DM model, and <u>can reach the relic target</u>.
- Although pair annihilation processes occur in both electron and positron beam dumps, <u>positron case is more sensitive to heavy</u> <u>mass region because of primary e⁺ beam</u>

Thank you for your attention !

Appendix

Beam dumps in ILC

Total 15 beam dumps in ILC

- for electron, positron, and photon
- Absorber (water, graphite, aluminum alloy)
- Energy (5, 15, 125 GeV $e^-\& e^+$, average 8 MeV γ)
- Normal operation \rightarrow E-5, E-8 (e^-), E+5 (e^+), E+7 (γ)

<u>Sensitivity of ILC beam dump experiment to light particles is much higher than</u> <u>those of past beam dump experiments and comparable to that of SHiP experiment</u>

Previous work Y. Sakaki, D. Ueda, <u>PRD 103 (2021) 3, 035024</u>, arXiv : <u>2009.13790 [hep-ph]</u>

- Electromagnetic shower ($e \& \mu \& \gamma$) in ILC electron beam dump
- Production of Axion-like particle and light scalar by bremsstrahlung process from $e \& \mu$, Primakoff process from γ

<u>Sensitivity of ILC beam dump experiment to light leptophilic gauge bosons</u> <u>is much higher than those of past beam dump</u>

Calculation of event number

(# of produced new particle)

Dependent on beam and beam dump

Dependent on particle species

Calculation of event number (e[±] beam dump experiment)

(# of produced new particle)

= (Luminosity) × (Production cross section)

(# of incident particles into beam dump) × (# density of target particles in beam dump)

$$N_{e^{\pm}} = 4 \times 10^{21} / \mathrm{yr}$$

 $n_{\rm N} = \rho_{\rm H_2O} N_A / A_{H_2O} \simeq 4 \times 10^{22}$ $n_{e^-} = \rho_{\rm H_2O} N_A Z_{H_2O} / A_{H_2O} \simeq 3 \times 10^{23}$

× (Track length of shower particles)

Kento ASAI (ICRR, Univ. of Tokyo) New Physics Search at Long-Lived Particle Search Experiments 3rd International Joint Workshop @ Jeju (Nov 14, 2023) 44/61

EM shower

- Can use positron beam
 - Production by pair annihilation e^{\pm}
 - Proton beam dump has highe than electron one

Large number of positrons are produced by electromagnetic shower in both electron and positron beam dumps

- Annihilation process occurs in positron beam dump
- How much better sensitivity of positron beam dump to search for new light particles than that of electron one?

Track length

- Beam particles produce electromagnetic shower in beam dump
- Beam dump particles react with initial beam & shower particles
- More shower particles & passing through beam dump longer
 More LLP production

Evaluation of how many beam are shower particles produced & how long do they pass through beam dump

Track length

 $d(track length)/dE_i$

 $= \Sigma$ (# of shower particles *i* with energy E_i) × (pass length)

Kento ASAI (ICRR, Univ. of Tokyo) New Physics Search at Long-Lived Particle Search Experiments 3rd International Joint Workshop @ Jeju (Nov 14, 2023) 47/61

Branching ratio

- Dark photon search
 - (Visible branching ratio) = 1

M. Bauer, P. Foldenauer, and

Jaeckel, JHEP **2018** (2018) 94

Heavy neutral lepton search

(Visible branching ratio) < 1

<u>FASER collaboration, PRD 99 (2019) 9,</u> 095011

Angular acceptance

Angle of initial particle *i*

 $\theta_1 = \begin{cases} 16 \text{ mrad} \cdot \text{GeV}/E_{e^{\pm}} & \text{(for shower electrons and positrons),} \\ 8 \text{ mrad} \cdot \text{GeV}/E_{\gamma} & \text{(for shower photons)} \end{cases}$

Production angle of new light particle

$$\theta_2 = \begin{cases} \theta_X & \text{(for Primakoff process \& bremsstrahlung)} \\ 0 & \text{(for pair annihilation)} \end{cases}$$

Decay angle of SM particle from X $\theta_3 = \frac{\pi m_X}{2E_X}$

Angular acceptance

Typical deviation of emitted SM particle from beam axis

$$r_{\perp}(z) = \sqrt{\theta_1^2 (l_{\text{dump}} + l_{\text{shield}} + l_{\text{dec}})^2 + \theta_2^2 (l_{\text{dump}} + l_{\text{shield}} + l_{\text{dec}})^2 + \theta_3^2 (l_{\text{dec}} - z)^2}$$

Angular acceptance

Averaged angled of initial particles

 $\theta_1 = \begin{cases} 16 \mod \cdot \text{GeV}/E_{e^{\pm}} & \text{(for shower electrons and positrons),} \\ 8 \mod \cdot \text{GeV}/E_{\gamma} & \text{(for shower photons)} \end{cases}$

Shower γ (e^{\pm}) with $E_{\gamma} < 0.52$ GeV ($E_{\gamma (e^{\pm})} < 1.05$ GeV) always result in $r_{\perp} > r_{det}$

In reality, θ_1 has a distribution, and shower particles with smaller momentum may pass the angular cut

Low mass boundary

ALP model (Case 1)

Low mass boundary is sensitive to energy threshold

of events @ ILC-BDX

$$(\text{Number of signals}) = N_{e^{\pm}} n_{j} \int dE_{i} \frac{dl_{i}}{dE_{i}} \int_{0}^{\pi} d\theta_{A'} \frac{d^{2}\sigma(i+j \rightarrow A' + \text{others})}{dE_{A'}d\theta_{A'}} \text{Br}(A' \rightarrow \text{DMs}) \times \text{Acc}$$

$$(1) \quad \text{Electron recoil} \qquad e^{-} \text{ recoil probability}$$

$$\text{Acc(recoil)} = \int_{0}^{r_{\text{det}}/(l_{\text{dump}}+l_{\text{sh}}+l_{\text{dec}})} d\theta_{\chi} \frac{dP_{\text{ang}}}{d\theta_{\chi}} \cdot \Theta(r_{\text{det}} - r_{\perp}^{\text{rec}}) \cdot P_{\text{recoil}}$$

$$(2) \quad \text{Visible decay} \qquad \text{of DM emission} \qquad \text{decay probability}$$

$$\text{Acc(decay)} = \int_{0}^{r_{\text{det}}/(l_{\text{dump}}+l_{\text{sh}})} d\theta_{\chi} \int_{0}^{l_{\text{dec}}} dz \frac{dP_{\text{ang}}}{d\theta_{\chi}} \cdot \frac{dP_{\text{dec}}}{dz} \cdot \Theta(r_{\text{det}} - r_{\perp}^{\text{dec}})$$

Angular distribution of DM emission

$$\frac{\mathrm{d}P_{\mathrm{ang}}}{\mathrm{d}\theta_{\chi}} = \sin\theta_{\chi} \cdot \frac{1}{2} \left(\frac{m_{A'}}{E_{A'} - p_{A'}\cos\theta_{\chi}} \right)^2$$

Acceptance

 $\begin{array}{c} \underbrace{l_{\text{dump}}}_{\text{dump}} & \underbrace{l_{\text{sh}}}_{\text{Muon shield}} & \underbrace{l_{\text{dec}}}_{\text{Decay volume}} & \underbrace{l_{\text{dec}}}_{\text{Decay volume}} & \underbrace{l_{\text{dec}}}_{\text{Decay volume}} & \underbrace{l_{\text{dec}}}_{\text{Decay volume}} & \underbrace{l_{\text{dec}}}_{\text{det}} & \underbrace{l_{\text{dec}}}_{\text{Concrete}} & \underbrace{l_{\text{dec}}}_{\text{Co$

Long-lived particle search :

Angular cut

$$r_{\perp}(z) = \sqrt{\theta_e^2 (l_{\rm dump} + l_{\rm sh} + l_{\rm dec})^2 + \theta_{A'}^2 (l_{\rm dump} + l_{\rm sh} + l_{\rm dec})^2 + \theta_{\rm vis}^2 (l_{\rm dec} - z)^2}$$

$$\begin{array}{l} \text{Dark matter search :} \\ r_{\perp}^{\text{dec}}(z) \approx \sqrt{\theta_e^2 + \theta_{A'}^2 + \theta_{\text{DM}}^2} \cdot (l_{\text{dump}} + l_{\text{sh}} + z) \\ \\ r_{\perp}^{\text{rec}} = \sqrt{\theta_e^2 + \theta_{A'}^2 + \theta_{\text{DM}}^2} \cdot (l_{\text{dump}} + l_{\text{sh}} + l_{\text{dec}}) \end{array} \quad (\textbf{visible decay})$$

 $\theta_e = 16 \operatorname{mrad} \cdot \operatorname{GeV} / E_{e^{\pm}}$: angle of shower electron & positron (by MC simulation)

Beam-induced ν flux

Backgrounds

Backgrounds

