
Some (of Mine) Recent Developments on BSM Probes with Gravitational Waves

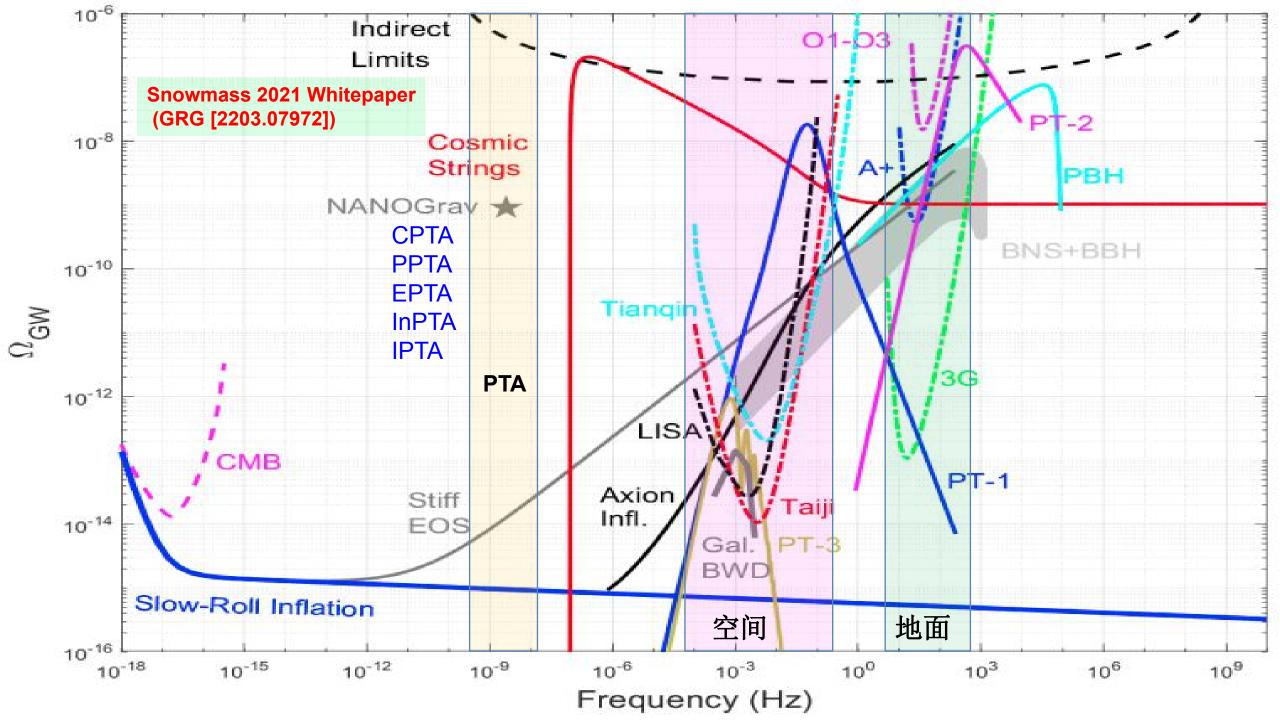
Huaike Guo

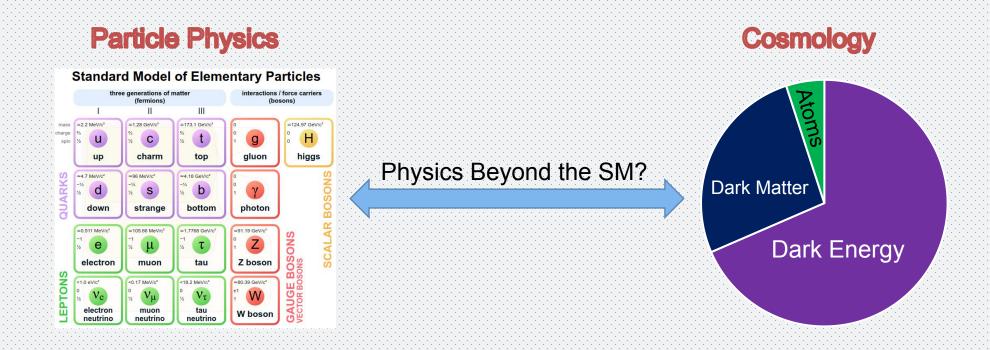
Nov. 17, 2023

LISA, Taiji, Tianqin, ...

Gravitational Waves

PTA

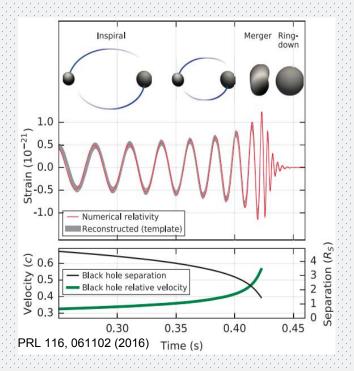



See Asuka Ito's talk on high frequency GW, Qiuyue Liang's talk on Astrometry detection Xing-Yu Yang's talk on PTA implications

中国脉冲星测时阵列(CPTA)

New Perspectives, with GW?

How can we reconcile the standard models of particle physics and cosmology?


Why more matter than anti-matter? (phase transitions, solitons)

What is dark matter? (solitons, ultralight particles)

GWs from Particles?

GW generation requires macroscopic mass/energy

$$\Box^2 h_{\mu
u} = -16 \pi G S_{\mu
u} {\longrightarrow} \, {
m matter}$$

$$h \sim 10^{-22} \frac{M/M_{\odot}}{r/100 \mathrm{Mpc}} \left(\frac{v}{c}\right)^2$$
 huge mass/energy

GWs from Particles

Here will focus only on a collection of my personal works:

Extreme densities

disturbances in the early universe

As Macroscopic Objects

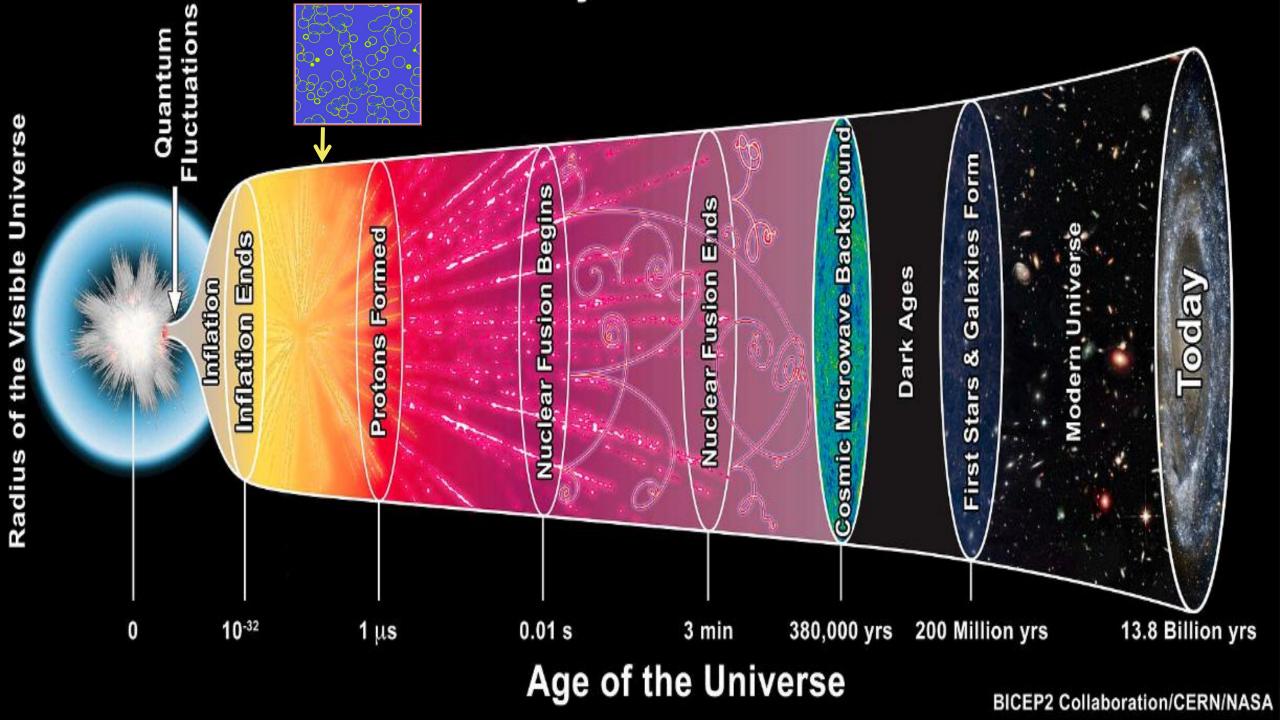
(non-) topological solitons

Environmental Effects

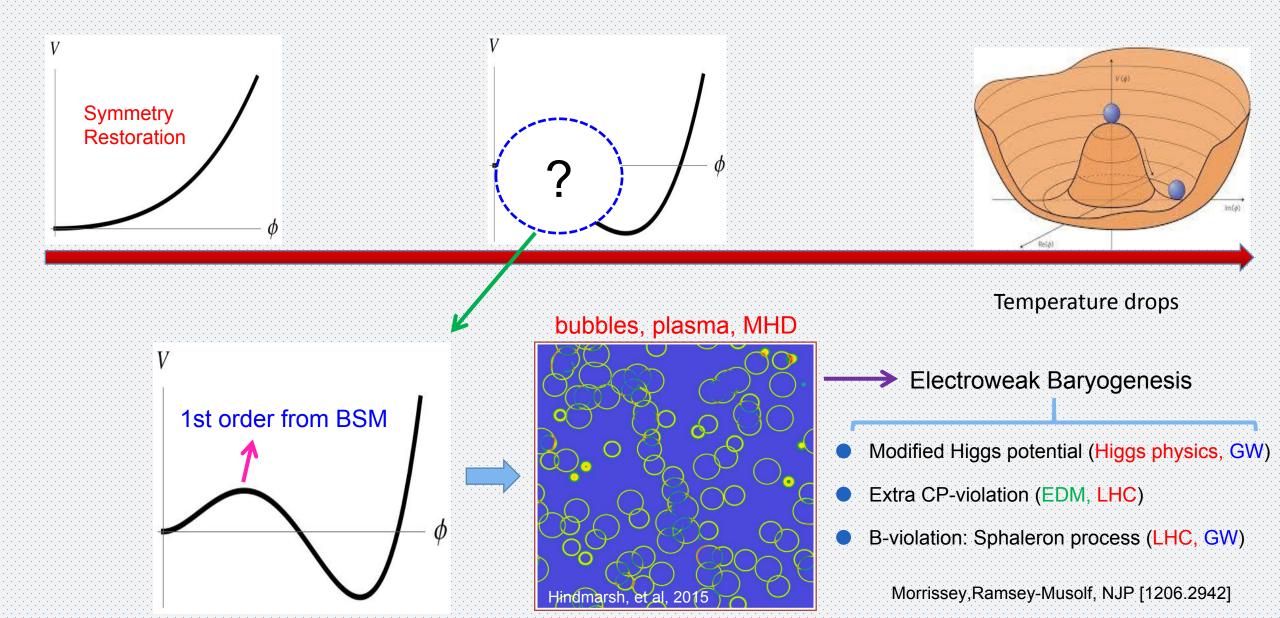
Faking GW signals (dark photon)

GWs from Particles

Extreme densities


disturbances in the early universe

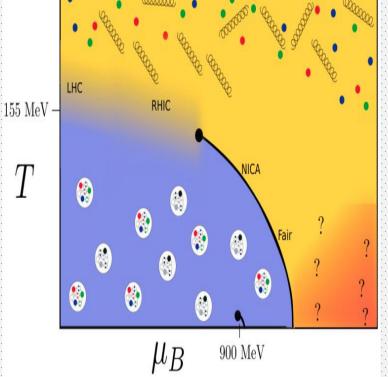
As Macroscopic Objects


(non-) topological solitons

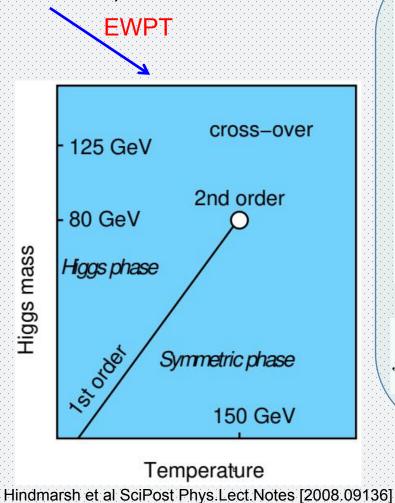
Environmental Effects

Faking GW signals (dark photon)

Electroweak Phase Transition


Generic Features

LIGO (~100Hz) : (~PeV - EeV)

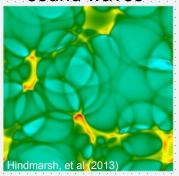

LISA, Taiji, Tianqin: ~mHz : (~100GeV)

PTA: nHz (~100MeV)

QCD-scale PT

Guenther [2010.15503]

(causality) Cai, Pi, Sasak, PRD [1909.13728] $f_{\rm peak} \sim 10^{-3} {\rm Hz}$ typical length scale tells PT temperature 10 (symmetry breaking scale)


The GW Spectra

bubble collision

$$\Omega_{\rm coll}(f)h^2 = 1.67 \times 10^{-5} \Delta \left(\frac{H_{
m pt}}{eta}\right)^2 \left(\frac{\kappa_\phi \alpha}{1+lpha}\right)^2 \times \left(\frac{100}{g_*}\right)^{1/3} S_{
m env}(f),$$

sound waves

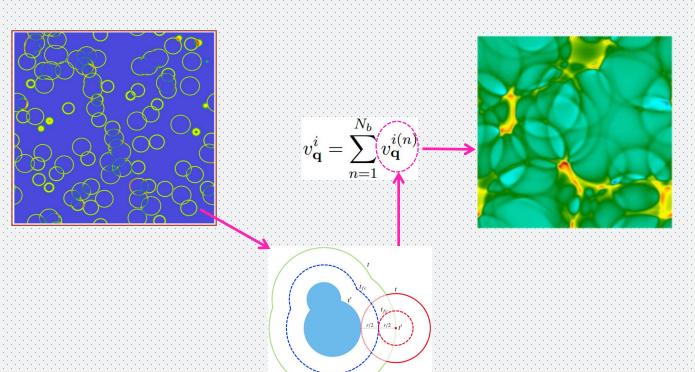
$$\Omega_{\rm sw}(f)h^2 = 2.65 \times 10^{-6} \left(\frac{H_{\rm pt}}{\beta}\right) \left(\frac{\kappa_{\rm sw}\alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{1/3}$$
$$\times v_w \left(\frac{f}{f_{\rm sw}}\right)^3 \left(\frac{7}{4+3(f/f_{\rm sw})^2}\right)^{7/2} \Upsilon(\tau_{\rm sw}).$$

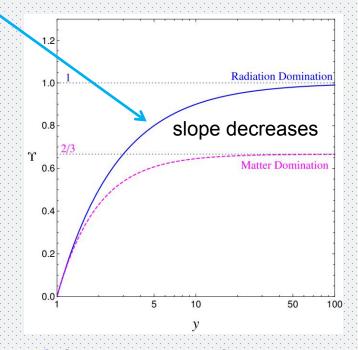
Energy density Spectrum

$$\Omega_{\rm GW}(f) = \frac{d\rho_{\rm GW}}{\rho_c d\log f}$$

 $\Upsilon = 1 - (1 + 2 au_{
m sw} H_{
m pt})^{-1/2}$ (RD) HG, Sinha, Vagie, White, JCAP [2007.08537]

$$h^2 \Omega_{\text{turb}}(f) = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\text{turb}} \alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_*}\right)^{1/3} v_w S_{\text{turb}}(f)$$

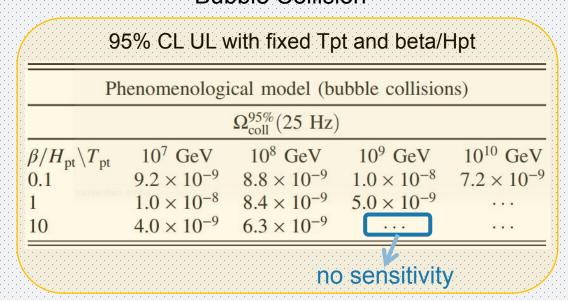

Sound Waves: Modelling


Sound Shell Model

Hindmarsh, PRL [1608.04735] Hindmarsh, Hijazi, JCAP [1909.10040] HG, Sinha, Vagie, White, JCAP [2007.08537] Cai, Wang, Yuwen, PRD Letter [2305.00074] Pol, Procacci, Caprini [2308.12943]

$$\Upsilon(au_{
m sw})$$

- Less than 1 for finite lifetime of sound waves
 (Previous formula corresponds to infinite lifetime)
- Dependent on expansion rate
- Increasingly damped production due to expansion


HG, Sinha, Vagie, White, JCAP [2007.08537]

LIGO Search Result

O1+O2+O3@LIGO (H1, L1), Virgo

- No Evidence for Broken Power Law Signal
- No Evidence for Bubble Collision Domination Signal
- No Evidence for Sound Waves Domination Signal

Bubble Collision

Broken Power Law

$$\Omega_{\rm ref} = 6.1 \times 10^{-9}$$

$$\Omega_* = 5.6 \times 10^{-7}$$

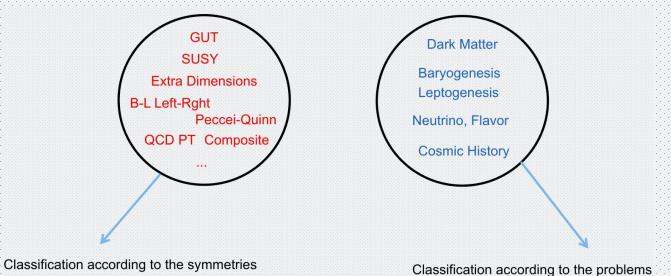
$$\Omega_{\rm BPL}(25~{\rm Hz}) = 4.4 \times 10^{-9}$$

Sound Waves

95% CL UL

$$\Omega_{\rm sw}(25~{\rm Hz})~5.9\times10^{-9}$$

$$\beta/H_{\rm pt} < 1$$
 and $T_{\rm pt} > 10^8 {
m GeV}$


Jiang, Huang, JCAP [2203.11781] Yu, Wang, PRD [2211.13111]

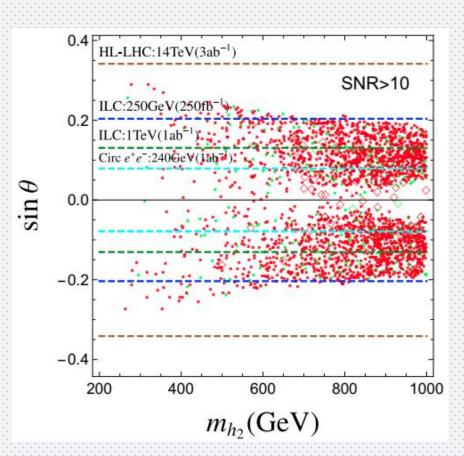
BSM studies

Chung, Long, Wang, PRD [1209.1819]

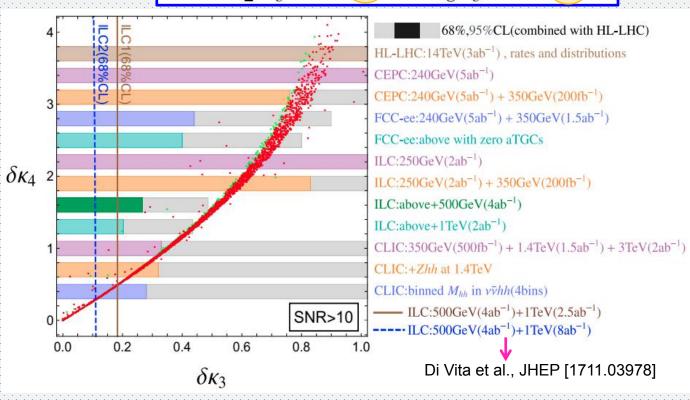
- Large cubic term from thermal corrections (loop level)
- Add new scalars (tree level)
- Including non-renormalizable operators

More general EFT approach: Cai, Hashino, Wang, Yu [2202.08295]

Models	Strong 1 st order phase transition	GW signal	Cold DM	Dark Radiation and small scale structure
SM charged				
Triplet [20-22]	1	1	1	×
complex and real Triplet [23]	1	1	1	×
(Georgi-Machacek model)				
Multiplet [24]	/	1	1	Ü.
2HDM [25-30]	1	1		×
MLRSM [31]	1	1	×	×
NMSSM [32–36]	1	1	1	×
SM uncharged				
$S_r \text{ (xSM) [37-49]}$	1	1	×	×
$2 S_r$'s [50]	1	/	1	×
S_c (cxSM) [49, 51–54]	1	1	1	×
$U(1)_D$ (no interaction with SM) [55]	1	1	1	×
U(1) _D (Higgs Portal) [56]	/	/	/	57
U(1) _D (Kinetic Mixing) [57]	1	1	1	
Composite SU(7)/SU(6) [58]	1	1	1	2):
U(1) _L [59]	1	1	1	×
$SU(2)_D \rightarrow global SO(3)$			1	×
by a doublet [60–62]				
$SU(2)_D \rightarrow U(1)_D$			1	/
by a triplet [63–65]				
$\mathrm{SU(2)}_\mathrm{D} o Z_2$	-		1	×
by two triplets [66]				
$SU(2)_D \rightarrow Z_3$) S		1	×
by a quadruplet [67, 68]				
$SU(2)_D \times U(1)_{B-L} \rightarrow Z_2 \times Z_2$			1	×
by a quintuplet and a S_c [69]				
$SU(2)_D$ with two dark Higgs doublets [70]	/	1	×	×
$SU(3)_D \rightarrow Z_2 \times Z_2$ by two triplets [62, 71]			1	×
$\mathrm{SU(3)_D}$ (dark QCD) (Higgs Portal) [72, 73]	1	1	1	
$G_{\rm SM} \times G_{\rm D,SM} \times Z_2$ [74]	1	/	1	
$G_{\text{SM}} \times G_{\text{D,SM}} \times G_{\text{D,SM}} \cdots$ [75]	/	V	1	
Current work				
$SU(2)_D \rightarrow U(1)_D$ (see the text)	1	/	1	/


Ghosh, HG, Han, Liu, JHEP [2012.09758]

Collider and GW Complementarity


- First order EWPT achievable in simplest SM+Singlet model
- Correlation and complementarity between collider and GW probes

h1: the Higgs

h2: heavier scalar

$$\Delta \mathcal{L} = -\frac{1}{2} \frac{m_{h_1}^2}{v} (1 + \delta \kappa_3) h_1^3 - \frac{1}{8} \frac{m_{h_1}^2}{v^2} (1 + \delta \kappa_4) h_1^4$$

Alves, Ghosh, HG, Sinha, Vagie, JHEP [1812.09333]

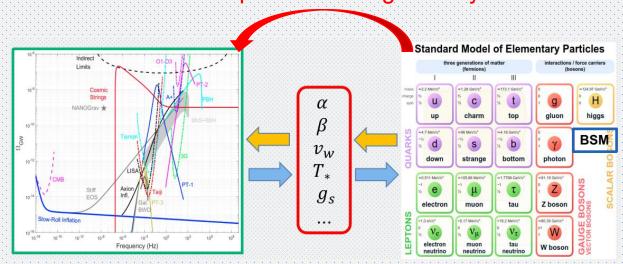
Uncertainties

- Finite T effective potential calculations —
- Phase transition parameter calculations
- GW spectra calculations (simulations, modellings)
- Possibly new phenomena

$\Delta\Omega_{ m GW}/\Omega_{ m GW}$	4d approach	3d approach
RG scale dependence	$\mathcal{O}(10^2 - 10^3)$	$\mathcal{O}(10^0 - 10^1)$
Gauge dependence	$\mathcal{O}(10^1)$	$O(10^{-3})$
High-T approximation	$\mathcal{O}(10^{-1}-10^0)$	$\mathcal{O}(10^0 - 10^2)$
Higher loop orders	unknown	$\mathcal{O}(10^0 - 10^1)$
Nucleation corrections	unknown	$\mathcal{O}(10^{-1}-10^0)$
Nonperturbative corrections	unknown	unknown

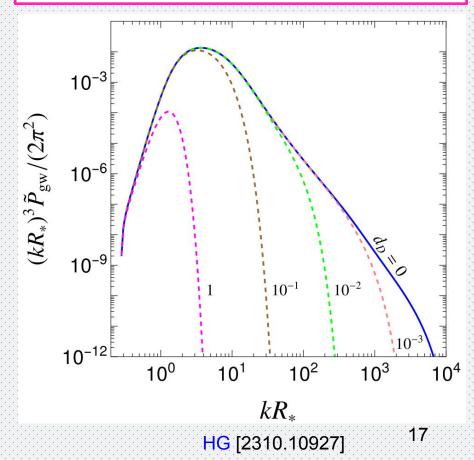
Croon, Gould, Schicho, Tenkanen, White, JHEP [2009.10080]

Effect(fixed wall velocity)	Range of error (medium)	Range of error (low)	Type of error
Transition temperature	$\mathcal{O}(10^{-4} – 10^1)$	$\mathcal{O}(10^{-1} - 10^0)$	Random
Mean bubble separation	$\mathcal{O}(0-10^{-1})$	$\mathcal{O}(10^{-1} - 10^0)$	Suppression
Fluid velocity	$\mathcal{O}(10^{-2} - 10^0)$	$\mathcal{O}(10^{-2} - 10^0)$	Random
Finite lifetime	$\mathcal{O}(10^{-3} - 10^{-1})$	$\mathcal{O}(10^1 - 10^3)$	Enhancement
Vorticity effects	$\mathcal{O}(10^{-1} - 10^0)$	—	Random


Uncertainty	pre-factor1	pre-factor2	pre-factor3
$\overline{T_{ m p}}$	0.003%	0.003%	0.002%
βR^*	8.1%	7.9%	5.9%
$N_{ m tot}$	11.4%	11.0%	9.8%
$f^{ m peak}_{eta R^*}$	11.8%	12.0%	14.1%
$\Omega_{\rm GW} h_{\beta R^*}^2$	37.6%	36.5%	28.9%
$f_{ m sim}^{ m peak}$	36.4%	36.4%	35.1%
$\Omega_{ m GW} h_{ m sim}^2$	334.0%	330.8%	336.7%

HG, Xiao, Yang, Zhang [2310.04654]

Dissipative Effects as New Observables


- Dissipative effects: viscosity, heat conduction
- Lead to suppression of GWs (similar to Silk damping)
- Particle physics origin of dissipations: very weak interactions
- Can be searched for at LIGO, PTA, LISA/Taiji/Tianqin ...

break the parameter degeneracy!

$$\Delta T^{ij} = -\eta \left(\frac{\partial U_i}{\partial x^j} + \frac{\partial U_j}{\partial x^i} - \frac{2}{3} \delta_{ij} \nabla \cdot \mathbf{U} \right) - \zeta \,\, \delta_{ij} \nabla \cdot \mathbf{U},$$

$$\Delta T^{i0} = -\chi \left(\frac{\partial T}{\partial x^i} + T \dot{U}_i \right). \quad \text{Weinberg, ApJ, 1971} \quad (1)$$

GWs from Particles

Extreme densities

disturbances in the early universe

As Macroscopic Objects

(non-) topological solito

Environmental Effects

Faking GW signals (dark photon)

Solitons

- Localized
- Associated with nonlinear problem

Found in:

- ✓ Optics
- ✓ Hydrodynamics
- ✓ Condensed matter systems
- ✓ Quantum field theory

...

Solitons in Quantum Field Theory

- Topological solitons: symmetry breakings in the early universe (new physics, baryon asymmetry)
- Non-Topological solitons: as DM candidates (ultralight DM, macroscopic DM)

	Topological Solitons	Non-Topological Solitons
	Static Solution (Theory with Spontaneously Broken Symmetry)	Bose-Einstein Condensate (of Ultralight particles)
Definition	 Global symmetry (Skyrmion, Cosmic String) Discrete symmetry (Domain wall) Local symmetry (Monopole, Cosmic String or Vortex line) Pure gauge theory (Instanton) 	 Galactic scale (DM Halo) Stellar scale (Boson stars)
Boundary	Non-Trivial (needs degenerate vacuum states)	Trivial vacuum state
Stabilized by	Topology (boundary field values)	 Conserved Charge, and Balancing quantum pressure gravity (or not, Q-balls etc) self-interactions (or not)

Topological Solitons in the Early Universe

- Firstly proposed to form in the early universe (Kibble, 1976)
 (None observed)
- Later proposed to form in condensed matter systems (Zurek, 1985)

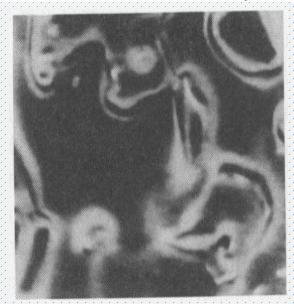
(already oberved)

Can we detect the (cosmic) topological solitons?

Topology of cosmic domains and strings

T W B Kibble J.Phys.A 9 (1976) 1387-1398

Blackett Laboratory, Imperial College, Prince Consort Road, Lor


Received 11 March 1976

www.theguardian.com

Name variant:
Topological Defects

The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals Science, 263 (1994)

Mark J. Bowick,* L. Chandar, E. A. Schiff, Ajit M. Srivastava

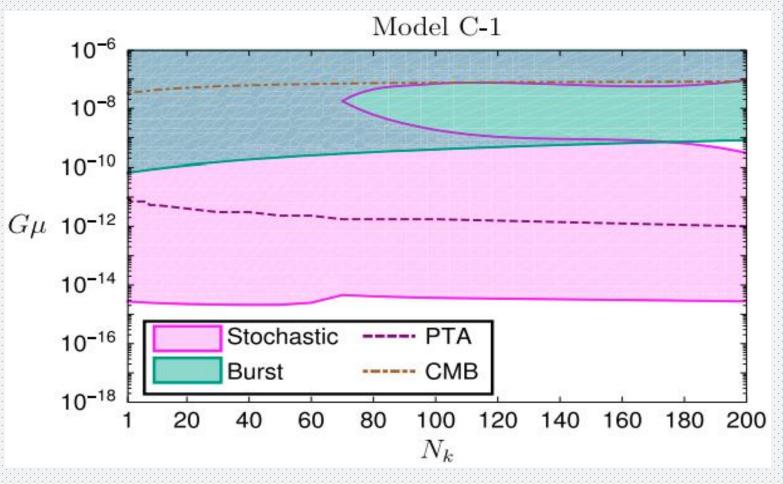
Cosmic String **Example: the Abelian Higgs Model** $\mathcal{L} = |(\partial_{\mu} - igA_{\mu})\Phi|^2 - \frac{1}{4}\lambda(|\Phi|^2 - \eta^2)^2 - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ closed string (loop) degenerate vacua cosmological scale $O(1/\eta)$ 22

LIGO Search Result of Cosmic Strings

Symmetry breakings at scales higher than $O(10^{11})$ GeV with Cosmic String production are excluded

Caveat (loop distribution model)

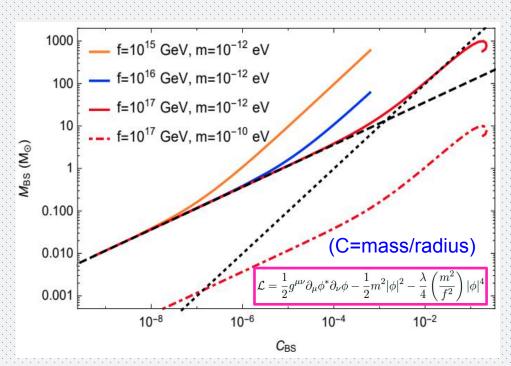
GW measurement tells scale (η) of symmetry breaking

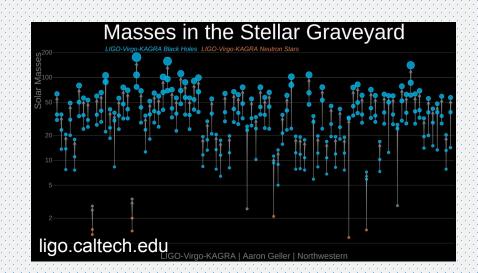

$$G\mu \sim \left(\frac{\eta}{10^{19} \text{GeV}}\right)^2$$

μ: line mass density

Results from PTA Measurements

Bian, Cai, Liu, Yang, Zhou, PRD Letter [2205.07293]

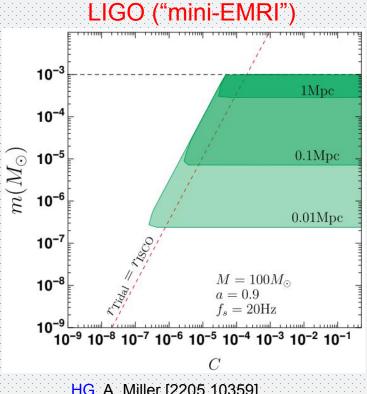

Blasi, Brdar, Schmitz, PRL [2009.06607]


LIGO-Virgo-KAGRA collaborations, PRL [2101.12248]

Non-Topological Solitons as Boson Stars

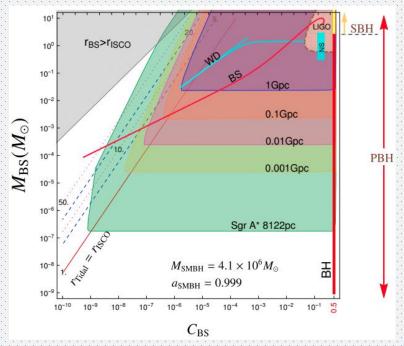
- Macroscopic Bose-Einstein condensate of ultralight particles
- LIGO might have detected Boson stars (Bustillo et al, PRL [2009.05376], ...)
- Difficult to distinguish between BH and BS, solution: detect a subsolar one

HG, Sinha, Sun, JCAP [1904.07871]


- Mini-Boson Star (without self-interaction)
- Solitonic Boson Star (specific potential)
- Oscillaton (real scalar field)
- Proca Star (massive complex vector)
- Axion Stars (dense, dilute)

See, e.g., Liebling, Palenzuela, Living Rev.Rel [1202.5809]

Lee,Pang, Phys.Rept (1992)


Detection with EMRI and mini-EMRI

- Signal decreases significantly when using comparable mass binary systems
- By making one object much heavier, one can probe a much ligher companion Extreme Mass Ratio Inspirals (EMRIs), key target of LISA, Taiji, Tianqin
- LIGO can detect mini-EMRIs

HG, A. Miller [2205.10359]

LISA, Taiji, Tianqin (EMRI)

HG, Sinha, Sun, JCAP [1904.07871] HG, Shu, Zhao, PRD [1709.03500]

25

m<<M

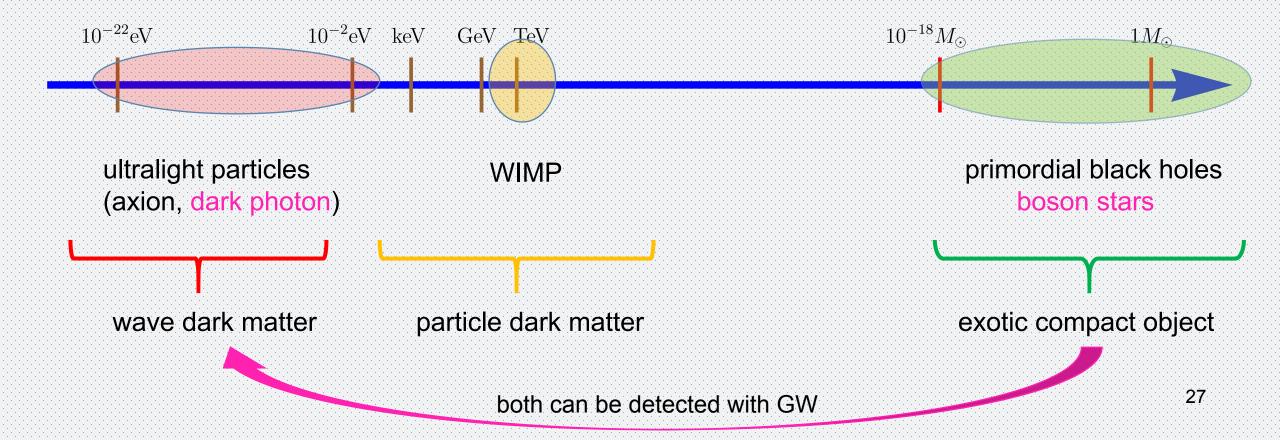
M

GWs from Particles

Extreme densities

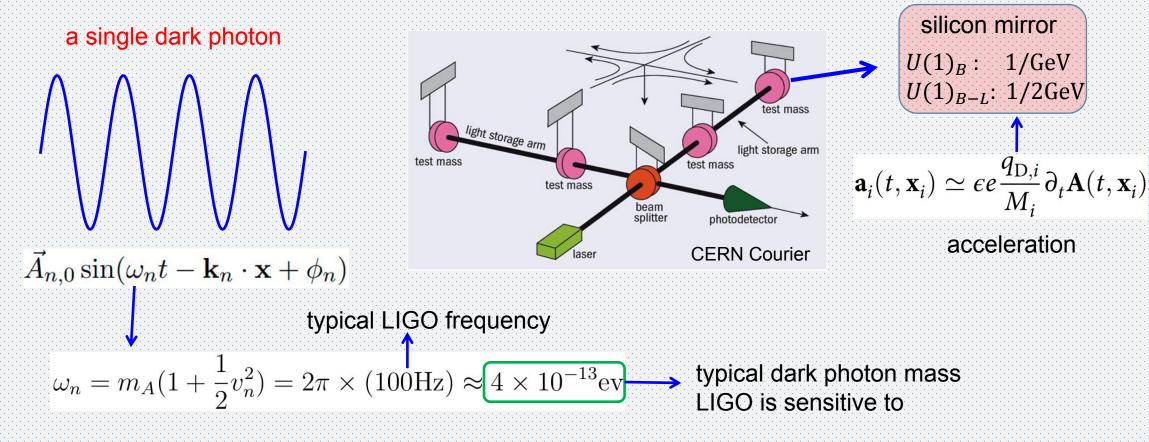
disturbances in the early universe

As Macroscopic Objects

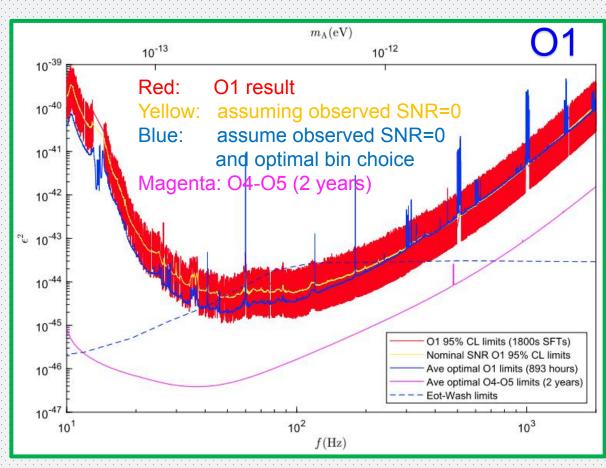

(non-) topological solitons

Environmental Effects

Faking GW signals (dark photon)


Ultralight Dark Matter

- Boson stars serve as macroscopic dark matter candidate
- So does the ultralight particle making up the boson stars


Dark Photon Detection at LIGO

Pierce, Riles, Zhao, PRL [1504.07237]

$$v_0 \sim \mathcal{O}(10^{-3}) \implies \Delta f/f = 10^{-6} \implies$$
 Signal: a narrow peak in frequency domain

LIGO Search Results

mass (eV/c^2) O3 _{10⁻¹¹} 10^{-13} 10^{-12} % 10⁻⁴⁰ 7 Cross correlation **BSD** Eöt-Wash strength 10^{-42} MICROSCOPE BSD limits $\pm 1\sigma$ 10^{-43} 10^{-44} coupling 10^{-45} 10^{-46} 10^{-4} 10^{-48} 10^{2} 10^{3} 10^{1} frequency (Hz)

HG, Riles, Yang, Zhao, (Nature) Commun. Phys, [1905.04316]

LIGO-Virgo-KAGRA Collaborations, PRD [2105.13085]

GEO600: Vermeulen, et al, Nature [2103.03783]

LISA/Taiji/Tianqin: Yuan, Jiang, Huang, PRD [2204.03482], Yu, Yao, Tang, Wu, PRD [2307.09197], Miller, Mendes, PRD [2301.08736]

Summary

GW provides new perspectives in BSM searches

- > Early universe symmetry breakings (phase transitions)
- Macroscopic solitons (topological and nontopological)
- Dark matter direct detection (environmental effects)

Thanks!