



# Some (of Mine) Recent Developments on BSM Probes with Gravitational Waves

Huaike Guo

Nov. 17, 2023

The 3rd International Joint Workshop & The 11th KIAS Workshop on BSM and Cosmology

November 2023, Jeju Island







## New Perspectives, with GW?

How can we reconcile the standard models of particle physics and cosmology?



Why more matter than anti-matter? (phase transitions, solitons)

4

What is dark matter? (solitons, ultralight particles)

#### **GWs from Particles?** Inspiral Merger Ringdown GW generation requires macroscopic mass/energy 1.0 Strain (10<sup>-21</sup>) 60 0 0 10 -1.0 Numerical relativity Reconstructed (template) $\Box^2 h_{\mu\nu} = -16\pi G S_{\mu\nu}$ Separation (R<sub>S</sub>) → matter <u></u>0.6 4 Velocity ( 7.0 Velocity ( 7.0 Velocity ( 32 Black hole separation Black hole relative velocity 1 0 0.45 0.30 0.35 0.40 PRL 116, 061102 (2016) Time (s) huge mass/energy $M/M_{\odot}$ vv $h \sim 10^{-22}$ 5

How to study microscopic particle physics with GWs?

### **GWs from Particles**

Here will focus only on a collection of my personal works:

Extreme densities

disturbances in the early universe

As Macroscopic Objects

(non-) topological solitons

Environmental Effects Faking GW signals (dark photon)

6

### **GWs from Particles**

Extreme densities disturbances in the early universe

As Macroscopic Objects

(non-) topological solitons

Environmental Effects Faking GW signals (dark photon)

7

See also Jan Tristram Acuña, Ryusuke Jinno, Yue-Lin Sming Tsai's talks

#### Fluctuations Quantum **Cosmic Microwave Background** Form egins Ends Formed & Galaxies Inflation Ends m Ages ٩ **Nuclear Fusion** Today Ň Indiation usion Un Protons Dark l Π. del Stars ar õ 0 lon First 2 13.8 Billion yrs 10-32 0.01 s 380,000 yrs 200 Million yrs 1 µs 3 min 0 Age of the Universe **BICEP2 Collaboration/CERN/NASA**

Universe sible V the of Radius



### **Generic Features**



## The GW Spectra



## Sound Waves: Modelling

#### **Sound Shell Model**

Hindmarsh, PRL [1608.04735] Hindmarsh, Hijazi, JCAP [1909.10040] HG, Sinha, Vagie, White, JCAP [2007.08537] Cai, Wang, Yuwen, PRD Letter [2305.00074] Pol, Procacci, Caprini [2308.12943]  $\Upsilon( au_{
m sw})$ 

- Less than 1 for finite lifetime of sound waves (Previous formula corresponds to infinite lifetime)
- Dependent on expansion rate
  - Increasingly damped production due to expansion



## LIGO Search Result

#### O1+O2+O3@LIGO (H1, L1), Virgo

- No Evidence for Broken Power Law Signal
- No Evidence for Bubble Collision Domination Signal
- No Evidence for Sound Waves Domination Signal

#### **Bubble Collision**

| 95% CL UL with fixed Tpt and beta/Hpt      |                      |                      |                      |                      |
|--------------------------------------------|----------------------|----------------------|----------------------|----------------------|
| Phenomenological model (bubble collisions) |                      |                      |                      |                      |
| $\Omega_{ m coll}^{95\%}(25~ m Hz)$        |                      |                      |                      |                      |
| $\beta/H_{\rm pt} \setminus T_{\rm pt}$    | 10 <sup>7</sup> GeV  | 10 <sup>8</sup> GeV  | 10 <sup>9</sup> GeV  | 10 <sup>10</sup> GeV |
| 0.1                                        | $9.2 \times 10^{-9}$ | $8.8 \times 10^{-9}$ | $1.0 \times 10^{-8}$ | $7.2 \times 10^{-9}$ |
| 1                                          | $1.0 \times 10^{-8}$ | $8.4 \times 10^{-9}$ | $5.0 \times 10^{-9}$ |                      |
| 10                                         | $4.0 \times 10^{-9}$ | $6.3 \times 10^{-9}$ |                      |                      |
| no sensitivity                             |                      |                      |                      |                      |

Romero, Martinovic, Callister, HG, Martínez, Sakellariadou, Yang, Zhao, PRL [2102.01714]

foreground:  $\Omega_{\rm CBC} = \Omega_{\rm ref} (f/f_{\rm ref})^{2/3}$  $f_{\rm ref} = 25 \ {\rm Hz}$ 

$$\Omega_{\rm BPL}(f) = \Omega_* \left(\frac{f}{f_*}\right)^{n_1} \left[1 + \left(\frac{f}{f_*}\right)^{\Delta}\right]^{(n_2 - n_1)/\Delta}$$

Broken Power Law 95% CL UL (CBC+BPL)  $\Omega_{ref} = 6.1 \times 10^{-9}$   $\Omega_* = 5.6 \times 10^{-7}$  $\Omega_{BPL}(25 \text{ Hz}) = 4.4 \times 10^{-9}$ 

Sound Waves 95% CL UL  $\Omega_{\rm sw}(25~{\rm Hz})$   $5.9 \times 10^{-9}$  $\beta/H_{\rm pt} < 1$  and  $T_{\rm pt} > 10^8~{\rm GeV}$ 

13

Jiang, Huang, JCAP [2203.11781] Yu, Wang, PRD [2211.13111]

## **BSM** studies

Chung,Long,Wang, PRD [1209.1819]

- Large cubic term from thermal corrections (loop level)
- Add new scalars (tree level)
- Including non-renormalizable operators

More general EFT approach: Cai,Hashino,Wang,Yu [2202.08295]



| Models                                                           | Strong 1 <sup>st</sup> order<br>phase transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GW signal | Cold DM | Dark Radiation and<br>small scale structure |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------------------------------------------|
| SM charged                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| Triplet [20–22]                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| complex and real Triplet [23]                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| (Georgi-Machacek model)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         | -                                           |
| Multiplet [24]                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       |                                             |
| 2HDM [25-30]                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         |         | ×                                           |
| MLRSM [31]                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | ×       | ×                                           |
| NMSSM [32–36]                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| SM uncharged                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| $S_r$ (xSM) [37–49]                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | ×       | ×                                           |
| 2 S <sub>r</sub> 's [50]                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| S <sub>c</sub> (cxSM) [49, 51–54]                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| $U(1)_D$ (no interaction with SM) [55]                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| U(1) <sub>D</sub> (Higgs Portal) [56]                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | 0                                           |
| U(1) <sub>D</sub> (Kinetic Mixing) [57]                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       |                                             |
| Composite SU(7)/SU(6) [58]                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | 0                                           |
| U(1) <sub>L</sub> [59]                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | ×                                           |
| $SU(2)_D \rightarrow global SO(3)$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1       | ×                                           |
| by a doublet [60–62]                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| $SU(2)_D \rightarrow U(1)_D$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1       | 1                                           |
| by a triplet [63–65]                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| $SU(2)_D \rightarrow Z_2$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1       | ×                                           |
| by two triplets [66]                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| $SU(2)_D \rightarrow Z_3$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1       | ×                                           |
| by a quadruplet [67, 68]                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| $SU(2)_D \times U(1)_{B-L} \rightarrow Z_2 \times Z_2$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1       | ×                                           |
| by a quintuplet and a $S_c$ [69]                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         | 10 000<br>10                                |
| SU(2) <sub>D</sub> with two dark Higgs doublets [70]             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | ×       | ×                                           |
| $SU(3)_D \rightarrow Z_2 \times Z_2$ by two triplets [62, 71]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1       | ×                                           |
| SU(3) <sub>D</sub> (dark QCD) (Higgs Portal) [72, 73]            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       |                                             |
| $G_{\rm SM} \times G_{\rm D,SM} \times Z_2$ [74]                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       |                                             |
| $G_{\rm SM} \times G_{\rm D,SM} \times G_{\rm D,SM} \cdots$ [75] | <ul> <li>Image: A set of the set of the</li></ul> | 1         | 1       |                                             |
| Current work                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |                                             |
| $SU(2)_D \rightarrow U(1)_D$ (see the text)                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         | 1       | 1                                           |

Ghosh,HG,Han,Liu, JHEP [2012.09758]

## **Collider and GW Complementarity**

First order EWPT achievable in simplest SM+Singlet model

Correlation and complementarity between collider and GW probes

h1: the Higgs h2: heavier scalar



## Uncertainties

- Finite T effective potential calculations –
- Phase transition parameter calculations
- GW spectra calculations (simulations, modellings)
- Possibly new phenomena

| $\Delta\Omega_{ m GW}/\Omega_{ m GW}$                 | 4d approach                 | 3d approach              |  |
|-------------------------------------------------------|-----------------------------|--------------------------|--|
| RG scale dependence                                   | $O(10^2 - 10^3)$            | $\mathcal{O}(10^0-10^1)$ |  |
| Gauge dependence                                      | $\mathcal{O}(10^1)$         | $\mathcal{O}(10^{-3})$   |  |
| High- $T$ approximation                               | $\mathcal{O}(10^{-1}-10^0)$ | $\mathcal{O}(10^0-10^2)$ |  |
| Higher loop orders                                    | unknown                     | $\mathcal{O}(10^0-10^1)$ |  |
| Nucleation corrections                                | unknown                     | $O(10^{-1} - 10^0)$      |  |
| Ionperturbative corrections                           | unknown                     | unknown                  |  |
| Croon.Gould.Schicho.Tenkanen.White. JHEP [2009.10080] |                             |                          |  |

| Effect(fixed wall velocity) | Range of error (medium)           | Range of error (low)            | Type of error |
|-----------------------------|-----------------------------------|---------------------------------|---------------|
| Transition temperature      | ${\cal O}(10^{-4} 	ext{} 10^{1})$ | ${\cal O}(10^{-1} 	ext{} 10^0)$ | Random        |
| Mean bubble separation      | $\mathcal{O}(010^{-1})$           | ${\cal O}(10^{-1} 	ext{} 10^0)$ | Suppression   |
| Fluid velocity              | ${\cal O}(10^{-2}10^{0})$         | $\mathcal{O}(10^{-2}  10^0)$    | Random        |
| Finite lifetime             | $\mathcal{O}(10^{-3} - 10^{-1})$  | $\mathcal{O}(10^1 	ext{} 10^3)$ | Enhancement   |
| Vorticity effects           | ${\cal O}(10^{-1}\!\!-\!\!10^0)$  | _                               | Random        |

HG,Sinha,Vagie,White, JHEP [2103.06933]

| Uncertainty                    | pre-factor1 | pre-factor2 | pre-factor3 |
|--------------------------------|-------------|-------------|-------------|
| $T_{\rm p}$                    | 0.003%      | 0.003%      | 0.002%      |
| $eta R^*$                      | 8.1%        | 7.9%        | 5.9%        |
| $N_{ m tot}$                   | 11.4%       | 11.0%       | 9.8%        |
| $f^{ m peak}_{eta R^*}$        | 11.8%       | 12.0%       | 14.1%       |
| $\Omega_{ m GW} h_{eta R^*}^2$ | 37.6%       | 36.5%       | 28.9%       |
| $f_{ m sim}^{ m peak}$         | 36.4%       | 36.4%       | 35.1%       |
| $\Omega_{ m GW} h_{ m sim}^2$  | 334.0%      | 330.8%      | 336.7%      |

HG, Xiao, Yang, Zhang [2310.04654]

### **Dissipative Effects as New Observables**



### **GWs from Particles**

Extreme densities

disturbances in the early universe

As Macroscopic Objects (non-) topological solito

Environmental Effects Faking GW signals (dark photon)

18

### Solitons

#### Localized

Associated with nonlinear problem

Found in:

✓ Optics

....

- ✓ Hydrodynamics
- ✓ Condensed matter systems
- ✓ Quantum field theory



## Solitons in Quantum Field Theory

Topological solitons: symmetry breakings in the early universe (new physics, baryon asymmetry)

Non-Topological solitons: as DM candidates (ultralight DM, macroscopic DM)

|                  | Topological Solitons                                                                                                                                         | Non-Topological Solitons                                                                                                                                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition       | Static Solution<br>(Theory with Spontaneously Broken Symmetry)<br>Global symmetry<br>Discrete symmetry<br>Local symmetry<br>Pure gauge theory<br>(Instanton) | <ul> <li>Bose-Einstein Condensate<br/>(of Ultralight particles)</li> <li>Galactic scale (DM Halo)</li> <li>Stellar scale (Boson stars)</li> </ul>        |
| Boundary         | Non-Trivial (needs degenerate vacuum states)                                                                                                                 | Trivial vacuum state                                                                                                                                     |
| Stabilized<br>by | Topology (boundary field values)                                                                                                                             | <ul> <li>Conserved Charge, and Balancing</li> <li>quantum pressure</li> <li>gravity (or not, Q-balls etc)</li> <li>self-interactions (or not)</li> </ul> |

## **Topological Solitons in the Early Universe**

Firstly proposed to form in the early universe (Kibble, 1976)

(None observed)

Later proposed to form in condensed matter systems (Zurek, 1985)

(already oberved)

Can we detect the (cosmic) topological solitons?

#### Topology of cosmic domains and strings

T W B Kibble J.Phys.A 9 (1976) 1387-1398 Blackett Laboratory, Imperial College, Prince Consort Road, Lor

or

Received 11 March 1976

www.theguardian.com

Name variant: Topological Defects

The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals Science, 263 (1994) Mark J. Bowick,\* L. Chandar, E. A. Schiff, Ajit M. Srivastava





## LIGO Search Result of Cosmic Strings

Symmetry breakings at scales higher than  $O(10^{11})$  GeV with Cosmic String production are excluded Caveat (loop distribution model)

GW measurement tells scale ( $\eta$ ) of symmetry breaking  $G\mu \sim \left(\frac{\eta}{10^{19} {\rm GeV}}\right)^2$  $\mu$ : line mass density

Results from PTA Measurements Bian, Cai, Liu, Yang, Zhou, PRD Letter [2205.07293] Blasi, Brdar, Schmitz, PRL [2009.06607]



LIGO-Virgo-KAGRA collaborations, PRL [2101.12248]

## **Non-Topological Solitons as Boson Stars**

- Macroscopic Bose-Einstein condensate of ultralight particles
- LIGO might have detected Boson stars (Bustillo et al, PRL [2009.05376], ...)
- Difficult to distinguish between BH and BS, solution: detect a subsolar one



HG, Sinha, Sun, JCAP [1904.07871]



- Mini-Boson Star (without self-interaction)
- Solitonic Boson Star (specific potential)
- Oscillaton (real scalar field)
- Proca Star (massive complex vector)
- Axion Stars (dense, dilute)

See, e.g., Liebling, Palenzuela, Living Rev.Rel [1202.5809]

## Detection with EMRI and mini-EMRI

- Signal decreases significantly when using comparable mass binary systems
- By making one object much heavier, one can probe a much ligher companion Extreme Mass Ratio Inspirals (EMRIs), key target of LISA, Taiji, Tianqin
- LIGO can detect mini-EMRIs





m<<M

M

PBH

25

m



HG, Shu, Zhao, PRD [1709.03500]

### **GWs from Particles**

Extreme densities

disturbances in the early universe

As Macroscopic Objects

(non-) topological solitons

Environmental Effects Faking GW signals (dark photon)

26

See also Yong Tang's talk

## **Ultralight Dark Matter**



### **Dark Photon Detection at LIGO**



## LIGO Search Results



HG, Riles, Yang, Zhao, (Nature) Commun.Phys, [1905.04316]

LIGO-Virgo-KAGRA Collaborations, PRD [2105.13085]

#### GEO600: Vermeulen, et al, Nature [2103.03783]

LISA/Taiji/Tianqin: Yuan, Jiang, Huang, PRD [2204.03482], Yu, Yao, Tang, Wu, PRD [2307.09197], Miller, Mendes, PRD [2301.08736]



#### GW provides new perspectives in BSM searches



Early universe symmetry breakings (phase transitions)



Macroscopic solitons (topological and nontopological)



> Dark matter direct detection (environmental effects)

Acknowledgement: This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

