

1

One-loop effect in Higgs inflation

Speaker: Minxi He (IBS)

2023/11/16@Joint-KIAS Workshop

<u>MH</u>, Kohei Kamada, Kyohei Mukaida, 2308.14398, 2308.15420

Contents

- Introduction
- Higgs inflation in Einstein-Cartan gravity
 - Setup
 - Unitarity
- One-loop effect
 - Large-N and large- ξ limit
 - New scalar degree of freedom, scalaron
 - Unitarity

• Summary

Introduction

- Cosmic inflation:
 - Exponential expansion of space
 - → homogeneous, isotropic, and flat observable Universe
 - Quantum fluctuations
 - Set initial conditions for structure formation and GWs
 - Reheating
 - Entropy production

Starobinsky, 1980 Cervantes-Cota, Dehnen, 1995 Bezrukov, Shaposhnikov, 2007

Introduction

- Focus on Higgs inflation
 - In different formalisms of gravity, such as metric, Palatini, and Einstein-Cartan formalisms
- Strong motivations
 - SM Higgs field
 - Observationally favored predictions (closely related to Starobinsky model, but with different reheating)
- Doubts
 - Large non-minimal coupling (leading to low cutoff scale)
 - Strong coupling during preheating in metric formalism (but not in Palatini case)

Ema, Jinno, Mukaida, Nakayama, 2017 Rubio, Tomberg, 2019

• Action
$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$$
$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$$

• Action
$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$$
$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$$

• Metric formalism of gravity ("usual case")

• Fixing

$$\overline{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\sigma\mu} - \partial_{\sigma} g_{\mu\nu} \right)$$

Cervantes-Cota, Dehnen, 1995 Bezrukov, Shaposhnikov, 2007

 \Rightarrow Torsionless, metric compatible (or metricity) connection

• Action
$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$$
$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$$

• Metric formalism of gravity ("usual case")

• Fixing

Cervantes-Cota, Dehnen, 1995 Bezrukov, Shaposhnikov, 2007

 $\overline{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\sigma\mu} - \partial_{\sigma} g_{\mu\nu} \right)$

 \Rightarrow Torsionless, metric compatible (or metricity) connection

- Alternative formalism of gravity such as Palatini and Einstein-Cartan
 - $g_{\mu
 u}$ and $\overline{\Gamma}^{
 ho}_{\mu
 u}$ are *a priori* independent Bauer, Demir, 2008

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

 \Rightarrow Allow connections with non-metricity and/or torsion

Non-dynamical in our setup

• Comparison among these versions

$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$$
$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$$

	metric	Palatini	Eintesin-Cartan	
$g_{\mu u}$ and $\Gamma^ ho_{\mu u}$	Levi-Civita connection	A priori independent		
$\Gamma^{ ho}_{\mu u}-\Gamma^{ ho}_{ u\mu}$	0	0	$T^{\rho}_{\ \mu u}$	
$ abla_{\mu}g_{ u ho}$	0	$\neq 0$ (non-metricity)	0	
Kinetic term of Higgs in Einstein frame (single field case) $-\frac{1}{2}K(\phi)\partial_{\mu}\phi\partial^{\mu}\phi$	$\frac{1+\xi\frac{\phi^2}{M_{\rm pl}^2}+6\xi^2\frac{\phi^2}{M_{\rm pl}^2}}{(1+\xi\frac{\phi^2}{M_{\rm pl}^2})^2}$	$\frac{1}{1+\xi\frac{\phi^2}{M_{\rm pl}^2}}$		
CMB normalization	$\xi/\sqrt{\lambda}$ ~10 ⁴	ξ/λ ~10 ¹⁰		
Unitarity violation scale at $\phi=0$	$\sim M_{ m pl}/\xi$	$\sim M_{\rm pl}/\sqrt{\xi}$		

Comparison among these versions

 $S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$ $S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$

	metric		Palatini	Eintesin-Cartan	
$g_{\mu u}$ and $\Gamma^ ho_{\mu u}$	Levi-Civita connection				
$\Gamma^{ ho}_{\mu u}-\Gamma^{ ho}_{ u\mu}$	0				
$ abla_{\mu}g_{ u ho}$	0	7	They are connected by		
Kinetic term of Higgs in Einstein frame (single field case) $-\frac{1}{2}K(\phi)\partial_{\mu}\phi\partial^{\mu}\phi$	$\frac{1+\xi\frac{\phi^2}{M_{\rm pl}^2}+6\xi^2\frac{\phi^2}{M_{\rm pl}^2}}{(1+\xi\frac{\phi^2}{M_{\rm pl}^2})^2}$	g	projective $g_{\mu\nu} \rightarrow g_{\mu\nu}$, $\bar{\Gamma}$	symmetry $\bar{\rho}_{\mu\nu} \rightarrow \bar{\Gamma}^{\rho}_{\mu\nu} + \delta^{\rho}_{\nu} U$	
CMB normalization	$\xi/\sqrt{\lambda}$ ~10 ⁴				
Unitarity violation scale at $\phi=0$	$\sim M_{\rm pl}/\xi$		$\sim M_{\rm p}$	$\sqrt{\xi}$	

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

Action (Jordan frame)

 $V(\phi) =$

$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$$
Nieh, Yan, 1982

$$S_{\text{NY},J} = -\frac{\xi_{\eta}}{4} \int d^4 x \, \overline{G(\phi)} \partial_{\mu} \left(\sqrt{-g_J} E^{\mu\nu\rho\sigma} \overline{T_{\nu\rho\sigma}}\right) \text{ Solely determined by torsion}$$

$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_{\mu} \phi^i \partial_{\nu} \phi_i - V(\phi) \right]$$

$$\Lambda + \frac{1}{2} m^2 \phi^2 + \frac{1}{4} \lambda \phi^4 \qquad F(\phi) = \frac{M_{\text{Pl}}^2}{2} \left(1 + \xi \frac{\phi^2}{M_{\text{Pl}}^2} \right) \qquad \overline{G(\phi)} = \phi^2 \qquad r \equiv \frac{\xi_{\eta}}{\xi}$$

Connect metric case (r = 1) and Palatini case (r = 0)!

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

 Einstein frame (after solving constraints for torsion and conformal transformation)

$$S = \int d^{4}x \sqrt{-g_{\rm E}} \left[\frac{M_{\rm pl}^{2}}{2} R(g_{\rm E}) - \frac{1}{2} g_{\rm E}^{\mu\nu} K_{{\rm E}ij}(\phi) \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{j} - \frac{M_{\rm pl}^{4} V(\phi)}{4F^{2}} \right]$$
$$K_{{\rm E}ij} = \frac{M_{\rm pl}^{2}}{2F} \left(\delta_{ij} + \frac{3}{4F} r^{2} \xi^{2} \frac{\partial G}{\partial \phi^{i}} \frac{\partial G}{\partial \phi^{j}} \right)$$
$$F(\phi) = \frac{M_{\rm pl}^{2}}{2} \left(1 + \xi \frac{\phi^{2}}{M_{\rm pl}^{2}} \right) \qquad = \frac{1}{1 + \xi \phi^{2}/M_{\rm pl}^{2}} \left(\delta_{ij} + \frac{6}{M_{\rm pl}^{2}} \frac{r^{2} \xi^{2}}{1 + \xi \phi^{2}/M_{\rm pl}^{2}} \phi_{i} \phi_{j} \right)$$
$$G(\phi) = \phi^{2}$$

Connect metric case (r = 1) and Palatini case (r = 0)!

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

 Einstein frame (after solving constraints for torsion and conformal transformation)

$$S = \int d^4x \sqrt{-g_{\rm E}} \left[\frac{M_{\rm pl}^2}{2} R(g_{\rm E}) - \frac{1}{2} g_{\rm E}^{\mu\nu} K_{\rm Eij}(\phi) \partial_{\mu} \phi^i \partial_{\nu} \phi^j - \frac{M_{\rm pl}^4 V(\phi)}{4F^2} \right]$$

• CMB normalization $\frac{2\lambda N_e^2}{\xi + 6(r\xi)^2} \simeq 5.0 \times 10^{-7}$

• Predictions
$$n_s = 1 - \frac{2}{N_e} - \frac{3(\xi + 6r^2\xi^2)}{4N_e^2\xi^2}$$
 $r = \frac{2(\xi + 6r^2\xi^2)}{N_e^2\xi^2}$

Connect metric case (r = 1) and Palatini case (r = 0)!

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation (r = 1)

$$S = \int d^4x \sqrt{-g_{\rm E}} \left[\frac{M_{\rm pl}^2}{2} R(g_{\rm E}) - \frac{1}{2} g_{\rm E}^{\mu\nu} K_{{\rm E}ij}(\phi) \partial_\mu \phi^i \partial_\nu \phi^j - \frac{M_{\rm pl}^4 V(\phi)}{4F^2} \right]$$

$$K_{{\rm E}ij} = \frac{1}{1 + \xi \phi^2 / M_{\rm pl}^2} \left(\delta_{ij} + \frac{6}{M_{\rm pl}^2} \frac{\xi^2}{1 + \xi \phi^2 / M_{\rm pl}^2} \phi_i \phi_j \right)$$

Higher dimensional operators
Curved!

e.g. $\Lambda \sim M_{\rm pl} / \xi$ at vacuum $\phi = 0$

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation $(r = 1) \overline{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2} g^{\rho\sigma} (\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\sigma\mu} \partial_{\sigma} g_{\mu\nu})$

$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$$
$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$$

• Flat target space, up to quartic potential with small couplings

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation $(r = 1) \overline{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} \equiv \frac{1}{2} g^{\rho\sigma} (\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\sigma\mu} \partial_{\sigma} g_{\mu\nu})$

$$S_{\text{grav},J} = \int d^4 x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma}) \qquad \text{Coupling with gravity}$$
$$S_{\text{Higgs},J} = \int d^4 x \sqrt{-g_J} \left[-\frac{1}{2} g_J^{\mu\nu} \partial_\mu \phi^i \partial_\nu \phi_i - V(\phi) \right]$$

• Flat target space, up to quartic potential with small couplings

 $\wedge \sim M_{\rm pl}? \rm No!$

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation (r = 1) $\Lambda \sim M_{\rm pl} / \xi$ at vacuum $\phi = 0$
 - Gravity inroduces ambiguity
 - More general case: O(N) non-linear σ model
 - Highly energetic gauge bosons are excited during preheating $p > \Lambda$

Ema, Jinno, Mukaida, Nakayama, 2017

2308.15420

Strong coupling

Compare: Palatini Higgs inflation: low cutoff, no strong coupling during preheating

Before proceeding...

• Metric Higgs inflation: cutoff $\sim M_{\rm pl}/\xi$, strong coupling in preheating

- Palatini Higgs inflation: cutoff $\sim M_{\rm pl}/\sqrt{\xi}$
- Einstein-Cartan Higgs inflation: unification of metric and Palatini
- Conformal mode can deal with the redundancy of frame choice

Attempts of UV extension

- UV extension or tools for strong coupling are needed for metric Higgs inflation to have reliable predictions Park, Starobinsky, Yokoyama 2018
 - R^2 is one option to UV extend the model by inducing a new DoF, scalaron
 - R^2 can arise from the one-loop correction in large-N limit

Ema, 2019

- Palatini Higgs inflation has cutoff lower than Planck scale
 - R^2 cannot UV extend the model, no new DoF Enckell, Enqvist, Rasanen, Wahlman 2018, Mikura, Tada 2021, MH, Mikura, Tada 2022
 - Generally embedding the target space into 1-dim higher flat space cannot UV extend
- Einstein-Cartan Higgs inflation can unify metric and Palatini cases
 - Understand the role of R^2 (or something analogous) in a general setup
 - Maybe helpful to find the UV extension for Palatini case

 Action (Jordan frame) $F(\phi) = \frac{M_{\rm Pl}^2}{2} \left(1 + \xi \frac{\phi^2}{M_{\rm Pl}^2} \right)$ $S_{\text{grav},J} = \int d^4x \sqrt{-g_J} F(\phi) g_J^{\mu\nu} \bar{R}_{\mu\nu}(\bar{\Gamma})$ $S_{\rm NY,J} = -\frac{\xi_{\eta}}{4} \int d^4 x \ G(\phi) \partial_{\mu} \left(\sqrt{-g_{\rm J}} E^{\mu\nu\rho\sigma} T_{\nu\rho\sigma} \right)$ $G(\phi) = \phi^2$ $\supset \frac{\xi}{2} \phi^2 \left(\bar{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} \right)$ $S^{\mu} = -E^{\mu\nu\rho\sigma}T_{\nu\rho\sigma}$ N scalar fields • Large-*N* limit $\alpha \left(\overline{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} \right)^2 \Leftarrow$ Counter term

closed Higgs loops enhanced by number of species *N*

22

• Large-*N* limit

Counter term

$$\alpha \left(\overline{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} \right)^2$$

• Resummation

A new pole in the amplitude

Ema, 2019

Mass of the pole $m_\sigma \propto M_{
m pl}/\sqrt{lpha}$

• Large-*N* limit

$$\alpha \left(\bar{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} \right)^2$$

- Large- ξ limit
 - Other counter terms, for example, $\beta \bar{R}^{\mu\nu} \bar{R}_{\mu\nu}$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}\ln\mu} \propto N\xi^2 \qquad \gg \qquad \frac{\mathrm{d}\beta}{\mathrm{d}\ln\mu} \propto N$$

Ema, 2019

Keep only $\alpha \sim N\xi^2$

• Einstein-Cartan Higgs inflation with one-loop correction in large-N and large- ξ limit

$$S = \int d^4x \sqrt{-g_{\rm J}} \left[\frac{M_{\rm pl}^2}{2} \bar{R} - \mathcal{L}_{\rm Higgs} + \frac{\xi}{2} \phi^2 \left(\bar{R} + \frac{r}{2} \nabla_\mu S^\mu \right) + \alpha \left(\bar{R} + \frac{r}{2} \nabla_\mu S^\mu \right)^2 \right]$$

- $r \equiv \frac{\xi_{\eta}}{\xi}$
- Einstein-Cartan Higgs inflation with one-loop correction in large-N and large- ξ limit

$$S = \int d^{4}x \sqrt{-g_{\mathrm{J}}} \left[\frac{M_{\mathrm{pl}}^{2}}{2} \bar{R} - \mathcal{L}_{\mathrm{Higgs}} + \frac{\xi}{2} \phi^{2} \left(\bar{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} \right) + \alpha \left(\bar{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} \right)^{2} \right]$$
Legendre transformation
$$\left(\bar{R} + \frac{r}{2} \nabla_{\mu} S^{\mu} - \gamma \right) L'(\gamma) + L(\gamma) \qquad L(\gamma) \equiv \frac{\xi}{2} \phi^{2} \gamma + \alpha \gamma^{2}$$

$$\implies S = \int \sqrt{-g_{\mathrm{E}}} d^{4}x \left[\frac{M_{\mathrm{pl}}^{2}}{2} R_{\mathrm{E}} - \frac{1}{2} g_{\mathrm{E}}^{\mu\nu} \left(\partial_{\mu} \sigma_{\mathrm{E}} \partial_{\nu} \sigma_{\mathrm{E}} + e^{-\sqrt{\frac{2}{3}} \frac{\sigma_{\mathrm{E}}}{rM_{\mathrm{Pl}}}} \partial_{\mu} \phi_{i} \partial_{\nu} \phi^{i} \right) - U(\phi, \sigma_{\mathrm{E}}) \right]$$

$$U(\phi, \sigma_{\mathrm{E}}) \equiv e^{-2\sqrt{\frac{2}{3}} \frac{\sigma_{\mathrm{E}}}{rM_{\mathrm{Pl}}}} \left[V(\phi) + \frac{M_{\mathrm{Pl}}^{4}}{16\alpha} \left(e^{\sqrt{\frac{2}{3}} \frac{\sigma_{\mathrm{E}}}{rM_{\mathrm{Pl}}}} - 1 - \xi \frac{\phi^{2}}{M_{\mathrm{Pl}}^{2}} \right)^{2} \right]$$

$$26$$

- $r \equiv \frac{\xi_{\eta}}{\xi}$
- Einstein-Cartan Higgs inflation with one-loop correction in large-N and large- ξ limit

$$S = \int \sqrt{-g_{\rm E}} \mathrm{d}^4 x \left[\frac{M_{\rm Pl}^2}{2} R_{\rm E} - \frac{1}{2} g_{\rm E}^{\mu\nu} \left(\partial_\mu \sigma_{\rm E} \partial_\nu \sigma_{\rm E} + e^{-\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} \partial_\mu \phi_i \partial_\nu \phi^i \right) - U(\phi, \sigma_{\rm E}) \right]$$
$$U(\phi, \sigma_{\rm E}) \equiv e^{-2\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} \left[V(\phi) + \frac{M_{\rm Pl}^4}{16\alpha} \left(e^{\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} - 1 - \xi \frac{\phi^2}{M_{\rm Pl}^2} \right)^2 \right]$$

New DoF

Scalaron σ

Scalaron mass
$$m_{\sigma}^2 = \frac{M_{\rm Pl}^2}{12\alpha r^2}$$

• Einstein-Cartan Higgs inflation with one-loop correction in large-N and large- ξ limit

$$S = \int \sqrt{-g_{\rm E}} d^4 x \left[\frac{M_{\rm Pl}^2}{2} R_{\rm E} - \frac{1}{2} g_{\rm E}^{\mu\nu} \left(\partial_{\mu} \sigma_{\rm E} \partial_{\nu} \sigma_{\rm E} + e^{-\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{r_{\rm Mpl}}} \partial_{\mu} \phi_i \partial_{\nu} \phi^i \right) - U(\phi, \sigma_{\rm E}) \right]$$

$$U(\phi, \sigma_{\rm E}) \equiv e^{-2\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{r_{\rm Mpl}}} \left[V(\phi) + \frac{M_{\rm Pl}^4}{16\alpha} \left(e^{\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{r_{\rm Mpl}}} - 1 - \xi \frac{\phi^2}{M_{\rm Pl}^2} \right)^2 \right]$$

$$\int \frac{U(\phi, \sigma_{\rm E})}{\sigma_{\rm E}/M_{\rm Pl}} \int \frac{10}{0.2} \int \frac{1$$

• Einstein-Cartan Higgs inflation with one-loop correction in large-N and large- ξ limit

$$S = \int \sqrt{-g_{\rm E}} \mathrm{d}^4 x \left[\frac{M_{\rm Pl}^2}{2} R_{\rm E} - \frac{1}{2} g_{\rm E}^{\mu\nu} \left(\partial_\mu \sigma_{\rm E} \partial_\nu \sigma_{\rm E} + e^{-\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} \partial_\mu \phi_i \partial_\nu \phi^i \right) - U(\phi, \sigma_{\rm E}) \right]$$
$$U(\phi, \sigma_{\rm E}) \equiv e^{-2\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} \left[V(\phi) + \frac{M_{\rm Pl}^4}{16\alpha} \left(e^{\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} - 1 - \xi \frac{\phi^2}{M_{\rm Pl}^2} \right)^2 \right]$$

- Metric limit (r = 1): mixed Higgs- R^2 model (in Higgs limit $\alpha \sim N\xi^2$) Ema, 2017, MH, Starobinsky, Yokoyama, 2018, Gundhi, Steinwachs, 2020, Enckell, Enqvist, Rasanen, Wahlman, 2020
 - No unitarity violation during preheating Kamada, Park, Starobinsky, Yokoyama, 2019
 - High reheating temperature...

Bezrukov, Gorbunov, Shepherd, Tokareva, 2019, <u>MH</u>, Jinno, Kamada, Starobinsky, Yokoyama, 2021, Bezrukov, Shepherd, 2020, <u>MH</u>, 2021

• Einstein-Cartan Higgs inflation with one-loop correction in large-N and large- ξ limit

$$S = \int \sqrt{-g_{\rm E}} d^4 x \left[\frac{M_{\rm Pl}^2}{2} R_{\rm E} - \frac{1}{2} g_{\rm E}^{\mu\nu} \left(\partial_\mu \sigma_{\rm E} \partial_\nu \sigma_{\rm E} + e^{-\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} \partial_\mu \phi_i \partial_\nu \phi^i \right) - U(\phi, \sigma_{\rm E}) \right]$$
$$U(\phi, \sigma_{\rm E}) \equiv e^{-2\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} \left[V(\phi) + \frac{M_{\rm Pl}^4}{16\alpha} \left(e^{\sqrt{\frac{2}{3}} \frac{\sigma_{\rm E}}{rM_{\rm Pl}}} - 1 - \xi \frac{\phi^2}{M_{\rm Pl}^2} \right)^2 \right]$$

- Metric limit (r = 1): mixed Higgs- R^2 inflation model (in Higgs limit)
- Palatini limit $(r \to 1/\sqrt{\xi})$: naively $m_{\sigma}^2 = \frac{M_{\text{Pl}}^2}{12\alpha r^2} \to M_{\text{Pl}}^2/\xi \sim \Lambda_{\text{Palatini}}^2$ Consistent with literature

Enckell, Enqvist, Rasanen, Wahlman, 2019, Antoniadis, Karam, Lykkas, Tamvakis, 2018

- Unitarity violation scale
 - Target space

$$\Lambda_{\rm E-C} = |R_{N+s}|^{-1/2} = \frac{\sqrt{6}r}{\sqrt{|1-r^2|}}M_{\rm Pl}$$

• Higher dimensional operators in potential

 $\Lambda \sim r M_{\rm Pl}$

• r = 1, $\Lambda \sim M_{\text{pl}}/\sqrt{N}$ • $r \rightarrow 1/\sqrt{\xi}$, $\Lambda \sim M_{\text{pl}}/\sqrt{\xi}$ as in Palatini case • $r \rightarrow 1/\xi$, $\Lambda \sim M_{\text{pl}}/\xi$ even lower

- Unitarity violation scale
 - Target space

$$\Lambda_{\rm E-C} = |R_{N+s}|^{-1/2} = \frac{\sqrt{6}r}{\sqrt{|1-r^2|}}M_{\rm Pl}$$

• Higher dimensional operators in potential

$$\Lambda \sim r M_{\rm Pl} \qquad \qquad \alpha \sim N \xi^2$$

	<i>r</i> = 1	$r \lesssim 1$	$r ightarrow 1/\sqrt{\xi}$	$r ightarrow 1/\xi$
Λ	$M_{\rm pl}/\sqrt{N}$	$r M_{\rm pl}$	$M_{ m pl}/\sqrt{\xi}$	$M_{ m pl}/\xi$
m_{σ}	$M_{ m pl}/\xi$	$M_{ m pl}/r\sqrt{lpha}$	$M_{ m pl}/\sqrt{\xi}$	$M_{ m pl}$

Summary

- Einstein-Cartan Higgs inflation is a general setup to study the UV behavior of metric and Palatini cases in a systematic way
- One-loop correction in large-N limit generally induce a new scalar DoF, *i.e.* scalaron, whose mass depends on parameter r
- Cutoff scale with quantum correction is affected by the relation between scalaron mass and the model is UV-extended for r down to $\sim 10^{-4}$ (given $\lambda \sim 10^{-3}$)

Thank you for your attention!

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

• Jordan frame (after solving constraints for torsion)

$$S = \int d^4x \sqrt{-g_{\rm J}} \left[F(\phi)R(g_{\rm J}) - \frac{1}{2}g_{\rm J}^{\mu\nu}K_{{\rm J}ij}(\phi)\partial_{\mu}\phi^i\partial_{\nu}\phi^j - V(\phi) \right]$$
$$K_{{\rm J}ij} = \delta_{ij} - 3F\frac{\partial\ln F}{\partial\phi^i}\frac{\partial\ln F}{\partial\phi^j} + \frac{3}{4}\frac{r^2\xi^2}{F}\frac{\partial G}{\partial\phi^i}\frac{\partial G}{\partial\phi^j}$$
$$= \delta_{ij} - (1 - r^2)\frac{6}{M_{\rm pl}^2}\frac{1}{1 + \xi\phi^2/M_{\rm pl}^2}\xi^2\phi_i\phi_j$$

Shaposhnikov, Shkerin, Timiryasov, Zell, 2020

 Einstein frame (after solving constraints for torsion and conformal transformation)

$$S = \int d^{4}x \sqrt{-g_{\rm E}} \left[\frac{M_{\rm pl}^{2}}{2} R(g_{\rm E}) - \frac{1}{2} g_{\rm E}^{\mu\nu} K_{{\rm E}ij}(\phi) \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{j} - \frac{M_{\rm pl}^{4} V(\phi)}{4F^{2}} \right]$$
$$K_{{\rm E}ij} = \frac{M_{\rm pl}^{2}}{2F} \left(\delta_{ij} + \frac{3}{4F} r^{2} \xi^{2} \frac{\partial G}{\partial \phi^{i}} \frac{\partial G}{\partial \phi^{j}} \right)$$
$$= \frac{1}{1 + \xi \phi^{2} / M_{\rm pl}^{2}} \left(\delta_{ij} + \frac{6}{M_{\rm pl}^{2}} \frac{r^{2} \xi^{2}}{1 + \xi \phi^{2} / M_{\rm pl}^{2}} \phi_{i} \phi_{j} \right)$$

 Φ^2

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation (r = 1)
- Conformal mode

Conformal transformation $g_{\mu\nu} \rightarrow \Omega^2 g_{\mu\nu}$

Conformal mode

It is a field redefinition

$$g_{\mu
u} = rac{1}{6M_{
m pl}^2}g_{\mu
u}$$
 $g \equiv {
m det}[g_{\mu
u}] = 1$ Ema, Mukaida, van de Vis, 2020

1 . [~] 1

Conformal transformation is redefining a scalar field, the conformal mode

Hertzberg, 2010 Mikura, Tada, 2022

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation (r = 1)
- Conformal mode

$$(\varphi_{\rm J}^{a}) = (\Phi_{\rm J}, \phi^{i}) \qquad S = \int \mathrm{d}^{4}x \left(\frac{\Phi_{\rm J}^{2}}{12}\Omega^{2}\tilde{R} - \frac{\tilde{g}^{\mu\nu}}{2}G_{ab}^{\rm J}\partial_{\mu}\varphi_{\rm J}^{a}\partial_{\nu}\varphi_{\rm J}^{b} - \frac{\Phi_{\rm J}^{4}V}{36M_{\rm Pl}^{4}}\right)$$

Extended target space
$$\left(G_{ab}^{\mathrm{J}}\right) \equiv \begin{pmatrix} -\Omega^2 & -\xi \Phi_{\mathrm{J}} \phi_j / M_{\mathrm{Pl}}^2 \\ -\xi \Phi_{\mathrm{J}} \phi_i / M_{\mathrm{Pl}}^2 & \frac{\Phi_{\mathrm{J}}^2}{6M_{\mathrm{Pl}}^2} \delta_{ij} \end{pmatrix}$$

Now conformal transf. is just changing the coordinate! Geometry is unaffected.

Hertzberg, 2010 Mikura, Tada, 2022

- Unitarity violation scale
 - Target space (single-field case is trivial)
 - Higher dimensional operators in potential
- Example: metric Higgs inflation (r = 1)
- Conformal mode

$$\left(G_{ab}^{\mathrm{J}}\right) \equiv \begin{pmatrix} -\Omega^2 & -\xi \Phi_{\mathrm{J}} \phi_j / M_{\mathrm{Pl}}^2 \\ -\xi \Phi_{\mathrm{J}} \phi_i / M_{\mathrm{Pl}}^2 & \frac{\Phi_{\mathrm{J}}^2}{6M_{\mathrm{Pl}}^2} \delta_{ij} \end{pmatrix}$$

Geometric approach of scattering amplitude is already established in HEFT context.

$$\left(\prod_{i=1}^{4} \bar{G}_{a_{i}a_{i}}^{1/2}\right) \mathcal{M}_{a_{1}a_{2} \leftrightarrow a_{3}a_{4}} = \frac{2}{3} \left[s_{12} \bar{R}_{a_{1}(a_{3}a_{4})a_{2}} + s_{13} \bar{R}_{a_{1}(a_{2}a_{4})a_{3}} + s_{14} \bar{R}_{a_{1}(a_{2}a_{3})a_{4}} \right]$$

$$Alonso+ 2016A,B, \text{ Nagai+ 2019, Cohen+ 2021, Cheung et al 2022}$$

Hertzberg, 2010 Mikura, Tada, 2022

40