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Multi-frequency GW observations
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Multi-frequency GW observations
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Multi-frequency GW observations have started.

In this talk, we consider GWs in very high frequency range beyond GHz.

=l Why?



High-frequency GWs

There are interesting sources of high frequency gravitational waves beyond GHz as below,

® Primordial gravitational waves from like inflation and reheating
(A cut off or a peak may be around GHz)

® Gravitational waves from thermal scatterings
[A. Ringwald, et al. (2021), P. Gubler, et al. (2022)]

M
® Light black hole binaries, f ~ 10° x < © ) Hz
mi + Mo

® Superradiance from bosonic fields like axion

* In order to probe the above high-frequency GW sources,
we utilize telescopes



GW detection with telescopes

Graviton-photon conversion occurs within magnetic fields in the universe.

ex.) around the Earth, pulsars, in our galaxy, in intergalaxies

# Converted photons can be detected with telescopes [Mm.s.Pshirkov, D.Baskaran, (2009).]
10°Hz ~ 10°°Hz

# We can potentially observe GWs in the range of 103Hz ~ 103°Hz
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Graviton-photon conversion

Lagrangian: L = M&R 1F FHY
-2 4=

We consider a background magnetic field B’ = ¢7%9; A, , and GWs on Minkowski spacetime:

f A, (z) = Au + A, (x),
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The Lagrangian is reduced to
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graviton-photon mixing

In the presence of a magnetic field, gravitons (photons) can convert into photons (gravitons)
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Graviton-photon conversion
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the strength of mixing is ~

# conversion would be effective when B is large

Earth our galaxy inter galaxies pulsars

~ 1G ~ 1uG ~ 10717 —10719Q ~ 102G
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We need to take into account of (D plasma effects on graviton-photon conversion.
Moreover, @ the Euler-Heisenberg term (higher order terms in QED) must be considered.




(1) Plasma effect

The EOM of a charged particle ov(;
in a background magnetic fields is M@ ~g ~— €@

(E +v(y x B),| (i:electron or proton)

Then, the current of plasma is defined by | 7 = en;)v).
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Thus, in the presence of plasma, the Maxwell eq.is | rotE = _88—?
<
OF
I'OtB .7 + o 8t

Using the equations, one can obtain the dispersion relation of photons:
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2 Euler-Heisenberg term
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On a background magnetic field,
an effective mass of photon appears

Euler-Heisenberg term
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Graviton-photon conversion

Photons obtain effective masses due to plasma (and magnetic fields) and the Euler-Heisenberg term.

On the other hand, graviton is massless. They mix as

Let us first consider the graviton-photon conversion within magnetosphere of pulsars.
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Graviton-photon conversion around a pulsar

/ gravitational wave \

electromagnetic Wave

1. We numerically calculated the conversion probability P(w) around the Crab and the Geminga pulsars.

2. We calculated photon flux converted from stochastic GWs by using P(w) .

3. Requiring that the photon flux does not exceed the observations of the Crab and the Geminga pulsars
with telescopes, we derived upper limits on stochastic GWs.

[Al, K.Kohri, K.Nakayama, arXiv: 2309.02992.]
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Detecting HFGWs with telescopes

We found that pulsars are not so useful to search for high frequency gravitational waves, because

® The size of magnetosphere is not so large (~ 1000km)
® Since the distance from a pulsar to the Earth is far ( ~ lkpc ~ 1014m), the photon flux decreases

® The effective photon mass from the Euler Heisenberg term prevents the graviton-photon conversion

x B?
Earth our galaxy inter galaxies pulsars
B ~ ]_G ~ 11UJG ~ 10—17 L 10_10G N 1012G
size of 4 N < 3
magnetic field | ™ 107km 10kpc S 4000Mpce ~ 10°km
distance 0 ~ 0 ~ () ~ lkpc

Let us consider the graviton-photon conversion in magnetic fields of the Earth, the Milky Way Galaxy,
and intergalactic regions to search for high frequency gravitational waves.

A.lto, K.Kohri, K.Nakayama, (arXiv: 2309.14765 [gr-gc]).



Distribution of magnetic fields in the Milky way

Milky way Galaxy

Q .
GWs

B=1uG-~10uG

>
\ 1pc ~ 100 pc J

It has been observed that there are many small scale random magnetic fields.
The magnitude is about 1 uG ~ 10uG and the coherent length is Tpc ~ 100 pc.

We calculated the conversion probability in the Milky way Galaxy and imposed constraints
on stochastic GWs. A, K.Kohri, K.Nakayama, arXiv: 2309.14765.



Constraints on GWs using the Milky way’s magnetic fields

magnetic field’s coherence length = 1 pc,
solid line: B=10wuG,
dashed line: B=1uG
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Constraints on GWs using the Milky way’s magnetic fields
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Conclusion

o High frequency gravitational waves are interesting to probe new physics

ex.) Light primordial black holes as DM

® We explored the possibility to search for high frequency GWs with telescopes

® We studied the graviton-photon conversion within the magnetic fields of pulsars, the Earth,
our galaxy, and intergalactic region.

_’ We gave upper limits on stochastic gravitational waves with various telescope observations

in frequency range of 10%Hz ~ 10°°Hz. _ _
[Al, K.Kohri, K.Nakayama, arXiv: 2309.02992.]

[Al, K.Kohri, K.Nakayama, arXiv: 2309.14765.]

The GW search with telescopes would open up a new avenue for high frequency GW observations.
However, more ideas/efforts are needed to search for realistic sources like light PBHs as DM.



