Gravitational wave search through electromagnetic telescopes

Refs: Al, K.Kohri, K.Nakayama, (arXiv: 2305.13984 [gr-qc]). Al, K.Kohri, K.Nakayama, (arXiv: 2309.14765 [gr-qc]).

Multi-frequency GW observations

Multi-frequency GW observations

Multi-frequency GW observations have started.

In this talk, we consider GWs in very high frequency range beyond GHz.

Why?

High-frequency GWs

There are interesting sources of high frequency gravitational waves beyond GHz as below,

- Primordial gravitational waves from like inflation and reheating (A cut off or a peak may be around GHz)
- Gravitational waves from thermal scatterings [A. Ringwald, et al. (2021), P. Gubler, et al. (2022)]
- Light black hole binaries, $f \sim 10^3 \times \left(\frac{M_{\Theta}}{m_1 + m_2}\right) \, \text{Hz}$ LBHs of $10^{14} \, \text{g} \sim 10^{18} \, \text{g}$ can be DM
- Superradiance from bosonic fields like axion

In order to probe the above high-frequency GW sources, we utilize telescopes

GW detection with telescopes

Graviton-photon conversion occurs within magnetic fields in the universe. ex.) around the Earth, pulsars, in our galaxy, in intergalaxies

Converted photons can be detected with telescopes $$[M.S.Pshirkov, D.Baskaran, (2009).]$$$ $10^8 Hz \sim 10^{35} Hz$$

We can potentially observe GWs in the range of $~10^8 {\rm Hz} \sim 10^{35} {\rm Hz}$

Graviton-photon conversion

Lagrangian:

$$\mathcal{L} = \frac{M_{\rm pl}^2}{2}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

We consider a background magnetic field $\bar{B}^i = \epsilon^{ijk} \partial_j \bar{A}_k$, and GWs on Minkowski spacetime:

$$\begin{cases} \mathcal{A}_{\mu}(x) = \bar{A}_{\mu} + A_{\mu}(x), \\ g_{\mu\nu}(x) = \eta_{\mu\nu} + \frac{2}{M_{\rm pl}} h_{\mu\nu}(x). \end{cases}$$

The Lagrangian is reduced to

$$\left| \mathcal{L} \to -\frac{1}{2} \left(\partial_{\mu} h_{ij} \right)^2 - \frac{1}{2} \left(\partial_{\mu} A_i \right)^2 + \frac{2}{M_{\rm pl}} \epsilon_{ijk} \bar{B}^k h^{jl} \partial_i A^l \right|$$

graviton-photon mixing

In the presence of a magnetic field, gravitons (photons) can convert into photons (gravitons)

Graviton-photon conversion

$$egin{aligned} \mathcal{L} &
ightarrow -rac{1}{2} \left(\partial_{\mu} h_{ij}
ight)^2 -rac{1}{2} \left(\partial_{\mu} A_i
ight)^2 +rac{2}{M_{ ext{pl}}} \epsilon_{ijk} ar{B}^k h^{jl} \partial_i A^l \ \end{aligned}$$
 the strength of mixing is $\ \sim rac{ar{B}}{M_{ ext{pl}}}$

conversion would be effective when \bar{B} is large

	Earth	our galaxy	inter galaxies	pulsars
\bar{B}	$\sim 1 \mathrm{G}$	$\sim 1 \mu G$	$\sim 10^{-17} - 10^{-10} \mathrm{G}$	$\sim 10^{12} \mathrm{G}$

effective conversion is expected?

We need to take into account of $\underline{1}$ plasma effects on graviton-photon conversion. Moreover, $\underline{2}$ the Euler-Heisenberg term (higher order terms in QED) must be considered.

1) Plasma effect

The EOM of a charged particle in a background magnetic fields is

$$m_{(i)}rac{\partialm{v}_{(i)}}{\partial t}=e_{(i)}\left(m{E}+m{v}_{(i)} imesar{m{B}}
ight),$$
 (i : electron or proton)

Then, the current of plasma is defined by

$$oldsymbol{j}=en_{(i)}oldsymbol{v}_{(i)}.$$

Thus, in the presence of plasma, the Maxwell eq. is

$$\left\{ egin{aligned} \mathrm{rot}oldsymbol{E} &= -rac{\partialoldsymbol{B}}{\partial t}, \ \mathrm{rot}oldsymbol{B} &= oldsymbol{j} + rac{\partialoldsymbol{E}}{\partial t}. \end{aligned}
ight.$$

Using the equations, one can obtain the dispersion relation of photons:

$$\begin{pmatrix} \omega^2 - \frac{\omega^2 \omega_{p,(i)}^2}{\omega^2 - \omega_{c,(i)}^2} - k^2 & 0 \\ 0 & \omega^2 - \frac{\omega_{p,(i)}^2}{\omega_{p,(i)}^2} - k^2 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \end{pmatrix} = 0.$$

$$\begin{pmatrix} \omega_{p,(i)} = \sqrt{\frac{4\pi\alpha n_{(i)}}{m_{(i)}}} & \text{: plasma frequency} \\ \omega_{c,(i)} = \frac{e\bar{B}}{m_{(i)}} & \text{: cyclotron frequency} \end{pmatrix}$$

2 Euler-Heisenberg term

Graviton-photon conversion

Photons obtain effective masses due to plasma (and magnetic fields) and the Euler-Heisenberg term. On the other hand, graviton is massless. They mix as

$$\begin{split} & \left[i\partial_z + \begin{pmatrix} -\frac{1}{2\omega} \frac{\omega^2 \omega_{p,(i)}^2}{\omega^2 - \omega_{c,(i)}^2} + \frac{1}{2\omega} \frac{16\alpha^2 \bar{B}^2 \omega^2}{45m_e^4} & i\frac{B}{\sqrt{2}M_{\text{pl}}} \\ & -i\frac{B}{\sqrt{2}M_{\text{pl}}} & 0 \end{pmatrix} \right] \begin{pmatrix} A^+(z) \\ h^+(z) \end{pmatrix} \simeq 0, \\ & \left[i\partial_z + \begin{pmatrix} -\frac{\omega_{p,(i)}^2}{2\omega} + \frac{1}{2\omega} \frac{28\alpha^2 \bar{B}^2 \omega^2}{45m_e^4} & i\frac{B}{\sqrt{2}M_{\text{pl}}} \\ & -i\frac{B}{\sqrt{2}M_{\text{pl}}} & 0 \end{pmatrix} \right] \begin{pmatrix} A^\times(z) \\ h^\times(z) \end{pmatrix} \simeq 0. \\ & \text{where} \quad \begin{cases} A_i = e^{-i(\omega t - kz)} A^\sigma(z) e_i^\sigma \\ h_{ij} = e^{-i(\omega t - kz)} h^\sigma(z) \epsilon_{ij}^\sigma \end{cases} & \mathbf{A}^\times = A_y \\ & \mathbf{A}^+ = A_x \end{cases}$$

	Earth	our galaxy	inter galaxies	pulsars
\bar{B}	$\sim 1 {\rm G}$	$\sim 1 \mu G$	$\sim 10^{-17} - 10^{-10} \mathrm{G}$	$\sim 10^{12} \mathrm{G}$

effective conversion is expected?

Let us first consider the graviton-photon conversion within magnetosphere of pulsars.

Graviton-photon conversion around a pulsar

- 1. We numerically calculated the conversion probability $P(\omega)$ around the Crab and the Geminga pulsars.
- 2. We calculated photon flux converted from stochastic GWs by using $P(\omega)$.
- 3. Requiring that the photon flux does not exceed the observations of the Crab and the Geminga pulsars with telescopes, we derived upper limits on stochastic GWs.

Limits on stochastic GWs

Detecting HFGWs with telescopes

We found that pulsars are not so useful to search for high frequency gravitational waves, because

- The size of magnetosphere is not so large (~ 1000km)
- Since the distance from a pulsar to the Earth is far ($\sim 1 kpc \sim 10^{14} m$), the photon flux decreases
- The effective photon mass from the Euler Heisenberg term prevents the graviton-photon conversion $\propto \bar{B}^2$

	Earth	our galaxy	inter galaxies	pulsars
\bar{B}	$\sim 1 \mathrm{G}$	$\sim 1 \mu G$	$\sim 10^{-17} - 10^{-10} \mathrm{G}$	$\sim 10^{12} \mathrm{G}$
size of magnetic field	$\sim 10^4 {\rm km}$	$\sim 10 {\rm kpc}$	$\lesssim 4000 { m Mpc}$	$\sim 10^3 { m km}$
distance	0	~ 0	~ 0	$\sim 1 { m kpc}$

Let us consider the graviton-photon conversion in magnetic fields of the Earth, the Milky Way Galaxy, and intergalactic regions to search for high frequency gravitational waves.

Distribution of magnetic fields in the Milky way

Milky way Galaxy

It has been observed that there are many small scale random magnetic fields. The magnitude is about $1\mu G \sim 10\mu G$ and the coherent length is $1pc \sim 100 pc$.

We calculated the conversion probability in the Milky way Galaxy and imposed constraints on stochastic GWs. AI, K.Kohri, K.Nakayama, arXiv: 2309.14765.

Constraints on GWs using the Milky way's magnetic fields

Constraints on GWs using the Milky way's magnetic fields

Conclusion

- High frequency gravitational waves are interesting to probe new physics ex.) Light primordial black holes as DM
- We explored the possibility to search for high frequency GWs with telescopes
- We studied the graviton-photon conversion within the magnetic fields of pulsars, the Earth, our galaxy, and intergalactic region.
 - We gave upper limits on stochastic gravitational waves with various telescope observations in frequency range of 10^8 Hz $\sim 10^{35}$ Hz.

[Al, K.Kohri, K.Nakayama, arXiv: 2309.02992.] [Al, K.Kohri, K.Nakayama, arXiv: 2309.14765.]

The GW search with telescopes would open up a new avenue for high frequency GW observations. However, more ideas/efforts are needed to search for realistic sources like light PBHs as DM.