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Extensive and intensive variables
and
Fine-tuning point of view
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When a total system consists of 4 identical subsystems

extensive variable 0 « 1! )L © o ’
intensive variable 0 « A" N
Example molecules in a box L 1/d
V: volume p: pressure
N: # of molecules  4: chemical pot.
E: total energy T: temperature

S': total entropy




Tuning of intensive parameters without fine tuning
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t Micro-canonical picture: Extensive variables
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‘ Corresponding intensive variables are given as functions of extensive
{ variables

T is typically an increasing function of E

<= Phase transitions can happen
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During a phase transition

E—T 1:1
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l.e. T(E') = constant during a phase transition
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—> (First-order) Phase transition point spans

> Fine-tuning viewpoint: When we control E, phase transition point is

most likely realized with P ﬂ

— T'is automatically tuned to the critical value 7.

n

In the canonical picture, this is usually seen as “
because T'is a controllable free parameter



More general case : Two control parameters V, E
molecules in a box with fixed N
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Left: Phse transition points correspond to
Right: Phase transition points correspond to

> Even the triple point can be realized with a finite probability
when the extensive parameters are controlled.



Question: How about in Quantum Field theory ?

We usually start from canonical picture

2

Z(m?, 2, ) = [9¢ exp <iSKin — inT[a"’?xg{)(x)2 — i%[ddxg{)(x)“ + >

The coupling constants (m?, 1, --+) are

But, why should we start form this picture ?

Fine tuning of couplings might be automatically (naturally) realized if we
start from

= | will explain how to construct it and show that it is equivalent to the
ordinary QFT with fine-tuned couplings in some cases

Quadratic divergence problem and strong CP problem can be naturally explained



Micro-canonical QFT
and Fine-tuning mechanism



Ordinary Micro-canonical ensemble

e Count the number of states (configurations) with a fixed energy
QE) =Y 5(E,—E)=Tr (5(ﬂ _ E))
. More generally, when there exist other conserved charges {Qi}

QE, {N}) = Y, 8(E, - E)(Hé(Q,,n : N)) =Tr (5@ -B)[] o0, - zv;)) .

« In the thermodynamic limit, temperature 7" = ﬂ_l is determined
by the saddle point
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where S, is a solution of




Generalized Micro-canonical ensemble KK, H. Kawai, K. Yagyu, K.Oda (*23)
Bennett, Froggatt and Nielsen ('96)

Not only Hamiltonian, there exist many other Hermitian operators

O (x) = px)" , (0p@®)" , O (x) , POT((x) , -

We can similarly define ” ensemble

Q({A}) = J9¢H5 (JddX@i(x) _Ai> Generalized micro-canonical

ensemble

Al. corresponds to energy E in the ordinary micro-canonical case.

« An intensive parameter g, corresponding to @l. is nothing but

a coupling constant
< 8 How is g fixed in the large
volume limit (V — o0) ?

E & Jddx@(x)



General argument for fine tuning of coupling constants

* For simplicity, we focus on one operator S = [ddx@(x)

Q[A] = | Dpo(S — A) < Express the delta function

y by Fourier modes

= A % J@¢eig(S—A)]

o 27

<

Ordinary QFT with coupling
constant g.

e |n statistical mechanics, there usually exists a saddle point
—> corresponds to the fixing of intensive parameters (T, p, u, ++*)

Question: Same is true for QFT ?

Besides, even if the answer is yes, what is the fixed value ?
Does it solve the fine-tuning problems ?



As an example, let us consider one of the notorious problems in QFT:
Quadratic divergence problem

mZ__+ cA* = 0(100) GeV
We treat the scalar mass term in micro-canonical way i.e.
Q[A] _ J'@¢eifdd ( (0¢)2 B 4) %S <%Jddx¢(x)2 _A)

0 2 44 <ia 2 mp oo '13 4>
=J % oM J@¢elf 20N Ordinary QFT
o 27

dmg . .
= [ B pimzA=iV, fimp) f(m3) = free (vacuum) energy
o 27

Where is the dominant point in this integration ?



2

QA) = J dZB o IMRA=IV, f(m})

« We can calculatef(mé) perturbatively in the ordinary QFT

e But its detailed form is not important to determine the dominant

: 2 _ 2
point my = myy

Step 1: The main contribution tof(mé) is , which is determined
by the effective potential V_4(¢) V()
Step 2: When a system has Z2 symmetry, V. (@)
sl N
always behaves as == §b

2 .2 2

V_(§) = A(m?) + m2¢2 + %4 + - Where
- m — — eee
eff 2 4 /1 == /13 + 5100P/1

Contain UV divergences



To guarantee the stability, we simply

2 m’ 2, Ay
V() =Am")+—¢~+—¢" + -
© 2 4 assume 4 > 0

Step 3: Then, typical behavior of V (@) is

m? >0 m? < 0
A(m? m? >0

fm?) = ( 2) N2 2
A(m“)—cX (m°)* m-<0
d2f
d(m2)2

In particular,




Step 4: Recall the micro-canonical partition function e

d(m2)2

(%) 2
QA) = J % eimﬁA—inf(m,%) m

Second derivative is discontinuous

Then use the following Mathematical formula

( )

Theorem: When (1) the second derivative of f(x) is discontinuous at x = X,

and (2) f(x), f'(x) is for both (—oo,xO] and [xo, 00)

oV & [f”(x + 07— f(x. - O)‘1] Xox—x)  forV— o0
yz Il o ’ '
L J

By multiplying a test function ¢(x) with a finite support and performing the integration

X, 00 _ J (%) 0 e dX
J dx + J dx | e Wp(x) = J df + " df | e —px(f))
—00 X —0 f(x()) df

0

l partial integration



1 | dx
iv | ar?

dx

_d_f(p

1 [ [/ > v d [ dx
= <J—w df + Jf(xo) df) e T, <d—f(,0(x(f))>

= () because first derivative is continuous

Xy+0 X

By repeating the same calculation

¢ d2f - d>f -
~ V)2 <dx2> CDHO_(ﬁ) ¢

s eV o % [f”(xo +0)~! —f”(xO — O)_ll X O(x — xo) forV—o o0 //

+ OV

X0

—> Going back to the micro-canonical scalar theory, we finally get

2

Q(A) — J dzrnBeiméA—inf(mé) ~ /’/e—inf(m2=0) — N X Z(m2 — O) for Vd - 00
_oo T



Several remarks

(1) m?> =0 corresponds to the phase transition point

(2) In this sense, the tuning mechanism is completely parallel to
statistical mechanics (though the order of transition is different)

(3) But, the way of tuning is more general (due to Lorentzian signature)

{ Statistical mechanics = saddle point T = T, (E)

QFT = Saddle point or quantum phase-transition point g = g.(A)

e.g. Strong CP problem, 8 = 0, can be (trivially) explained as saddle point case

New viewpoint of fine tuning

7

In micro-canonical QFT, the coupling constants are automatically
adjusted either to minimize the vacuum energy (saddle point) or to
the critical points of quantum phase transition.




Summary

e \WWe have discussed micro-canonical formulation of QFT

e In this picture, coupling constants (intensive parameters) are fixed at
either (i) saddle point or (ii)

In other words,

Fine tuning = a strongly dominant point in micro-canonical ensemble

e Tuning of mass parameter m?*=0isa good example of phase-transition
case (second order phase transition)

e More generally,
in coupling space

e.g. no Z2 invariant case, gauge coupling, Yukawa coupling, etc...

— They can be also fixed in micro-canonical picture (work in progress)

Thank you for your attention |



Backup slides



6 vacuum and Strong CP problem

e Let us treat the @ term in micro-canonical way

2r
QA) = J dfe’VaV O U(O) = effective potential of 0
0

. G””GW is Parity odd. But, action is invariant under x' - —x’ ,0 — — 6
, .. Physical observables such as vacuum energy, hadron mass, life time should be }

¢ invariantunder® — — @

— @ = () must be local extremum Z
= Saddle point case !
\/
27 > HQCD

Q(A) = [ dBe=VaVO)  o—iV,U0=0)
0



Formulas on e’ Y/ for large V



eV for large V f(x): real function

(1) J smooth and one extremum
\\/ iVI(x)
R X 1 .
X ~— P! Vf<x0)5(x . xO)

; vV

fis continuous

(2) / f'is discontinuous at x,,

— x X need not be extremum
. monotonic on each side x $ x,
f eVI(x)
\/ ~l < 1 B 1 >
VA f(x+0)  fl(x—0)

X > . el Vf<x0)5(x — xo)




Generalize MPP:

The coupling constants of the low energy effective canonical
FT of MM or quantum gravity are automatically adjusted
either to minimize the vacuum energy density or to one of
the critical points of the history of universe.

Examples
1. QCD 0-parameter
6@ = 0 minimizes the vacuum energy

2. Cosmological constant
A = 0is the critical point. finite \ /
3. Higgs inflation at criticality '

V
Flat potential is the critical L/—/
point of the history of universe. >
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SM Higgs is close to MPP.

non-renormalizable coupling

ERh? with £~10.

In the Einstein frame the effective

potential becomes



‘comment on Green's functions |

— O[q]: product of local

[QZQf(Si [CI] - Ai) Olq]
operators

= J@q JHa’a,?(a) e'Zi % (Sld=400[g)

iZ,- q; Si[‘l]
= JHdaiw(a)J@qe O[]

= H do,w(a) I

; I@qeiZ,. aiSi[CI]

. izi & Si[q]
= ‘[A—Idaiw(a) <O[q]>aJ9qe

<O[q] >a :0Ordinary FT with coupling constants q; .
w(e) = fla)e™ ! 244
<O[q]> is intensive. = Does not affect .



