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Extensive and intensive variables 

and 

Fine-tuning point of view 



extensive and intensive variables

extensive variable       

intensive variable        

𝒪 ∝ λ1

𝒪 ∝ λ0

extensive var. 
volume 
 # of molecules 
 total energy 
 total entropy

𝑉: �
𝑁:
𝐸:
𝑆:

intensive var. 
 pressure 
 chemical pot. 
 temperature 

𝑝:
𝜇:
𝑇 :

Example   molecules in a box

When a total system consists of   identical subsystems    λ

λ1/d

λ1/d



Tuning of intensive parameters without fine tuning

Micro-canonical picture: Extensive variables (E,V,N) are controlled. 
                                          
Corresponding intensive variables are given as functions of extensive 
variables

𝐸

𝑇

𝑇1

𝑇2

GL+GLS+LS
𝐸1𝐸2 𝐸3 𝐸4

⇦ Phase transitions can happen 

Example : Molecules in a box (with fixed V and N)

T is typically an increasing function of E



the mapping  is not .𝐸 ↦ 𝑇 1:1

⇨ (First-order) Phase transition point spans a finite region of E

＊ Fine-tuning viewpoint: When we control , phase transition point is  
                                               most likely realized with a finite probability

E

⇨  is automatically tuned to the critical value .   

In the canonical picture, this is usually seen as “fine tuning”  
because  is a controllable free parameter

T T*

T

Tuning of intensive parameters without fine tuning

I.e. constant during a phase transitionT(E) = 𝐸

𝑇

𝑇1

𝑇2

GL+GLS+LS
𝐸1𝐸2 𝐸3 𝐸4

During a phase transition

P ∝ ΔE
E



More general case : Two control parameters     
                      molecules in a box with fixed    

𝑉, �𝐸
𝑁

𝐸

𝑉

G

LS
GLGLS

LS

GS

𝑇

𝑝

S

L

G

  Left: Phse transition points correspond to finte regions  
Right: Phase transition points correspond to lines (fine-tuned)

＊ Even the triple point can be realized with a finite probability      
      when the extensive parameters are controlled.



Question: How about in Quantum Field theory ?

But, why should we start form this picture ?  
Fine tuning of couplings might be automatically (naturally) realized if we 
start from micro-canonical QFT  

⇨ I will explain how to construct it and show that it is equivalent to the  
     ordinary QFT with fine-tuned couplings in some cases

We usually start from canonical picture 

Z(m2, λ, ⋯) = ∫ 𝒟ϕ exp (iSKin − i
m2

2 ∫ ddxϕ(x)2 − i
λ
4! ∫ ddxϕ(x)4 + ⋯)

The coupling constants  are intensive free parameters   
⇨ No reason to pic up specific values = Fine-tuning problems !

(m2, λ, ⋯)

Quadratic divergence problem and strong CP problem can be naturally explained 



Micro-canonical QFT 
and Fine-tuning mechanism 



Ordinary Micro-canonical ensemble

• Count the number of states (configurations) with a fixed energy 

• More generally, when there exist other conserved charges  

• In the thermodynamic limit, temperature  is determined 
by the saddle point 

{Q̂i}

T = β−1

Ω(E) = ∑
n

δ(En − E) = Tr (δ(Ĥ − E))

Ω(E, {Ni}) = ∑
n

δ(En − E)(∏
i

δ(Qi,n − Ni)) = Tr (δ(Ĥ − E)∏
i

δ(Q̂i − Ni)) .

Ω(E ) = ∑
n

δ(En − E ) = ∫
i∞

−i∞

dβ
2π ∑

n
e−β(En−E) = ∫

i∞

−i∞

dβ
2π

e−β(F(β)−E) ∼ e−β*(F(β*)−E)

where  is a solution of β*
∂(βF(β))

∂β
= E



Generalized Micro-canonical ensemble

• Not only Hamiltonian, there exist many other Hermitian operators 

• We can similarly define ``micro-canonical” ensemble 

•  corresponds to energy  in the ordinary micro-canonical case.   

• An intensive parameter  corresponding to  is nothing but          
a coupling constant

Ai E

gi 𝒪i

Ω({Ai}) = ∫ 𝒟ϕ∏
i

δ (∫ ddx𝒪i(x) − Ai) Generalized micro-canonical  
                 ensemble

K.K, H. Kawai, K. Yagyu, K.Oda (`23) 
Bennett, Froggatt and Nielsen (’96)

𝒪i(x) = ϕ(x)n , (∂ϕ(x))n , ψ(x)ψ(x) , ϕ(x)ψ(x)ψ(x) , ⋯

T ↔ g
E ↔ ∫ ddx𝒪(x)

How is g fixed in the large  
 volume limit ( ) ?V → ∞



Ordinary QFT with coupling 
constant .g

General argument for fine tuning of coupling constants

• For simplicity, we focus on one operator

Ω[A] = ∫ 𝒟ϕδ(S − A)

S = ∫ ddx𝒪(x)

= ∫
∞

−∞

dg
2π

× ∫ 𝒟ϕeig(S−A)

⇦ Express the delta function  
      by Fourier modes

• In statistical mechanics, there usually exists a saddle point  
     ⇨ corresponds to the fixing of intensive parameters   

                                 Question: Same is true for QFT ?

(T, p, μ, ⋯)

Besides, even if the answer is yes, what is the fixed value ?  
               Does it solve the fine-tuning problems ?



As an example, let us consider one of the notorious problems in QFT:  
                                Quadratic divergence problem  

m 2
bare + cΛ2 = 𝒪(100) GeV

We treat the scalar mass term in micro-canonical way i.e.

Ω[A] = ∫ 𝒟ϕei ∫ dd x(− 1
2 (∂ϕ)2 − λB

4 ϕ4) × δ ( 1
2 ∫ ddxϕ(x)2 − A)

= ∫
∞

−∞

dm2
B

2π
eim2

B A ∫ 𝒟ϕe
i ∫ dd x( 1

2 (∂ϕ)2 − m2
B

2 ϕ2 − λB
4! ϕ4)

:= ∫
∞

−∞

dm2
B

2π
eim2

B A−iVd f(m2
B)

Ordinary QFT

free (vacuum) energyf (m2
B) =

Where is the dominant point in this integration ?



• We can calculate  perturbatively in the ordinary QFT 

• But its detailed form is not important to determine the dominant 
point  

f(m2
B)

m2
B = m2

*B

Ω(A) = ∫
∞

−∞

dm2
B

2π
eim2

B A−iVd f(m2
B)

⇨ Here I give very intuitive argument to find such a dominant point 

Step 1: The main contribution to  is vacuum energy, which is determined    
              by the effective potential 

f(m2
B)

Veff(ϕ)

Step 2: When a system has  symmetry,   
              always behaves as 

ℤ2 Veff(ϕ)

Veff(ϕ) = Λ(m2) + m2

2 ϕ2 + λ
4 ϕ4 + ⋯ where

m2 = m2
B + δloopm2

B

λ = λB + δloopλ
are  Renormalized couplings 
       (Not fixed yet !) {

Contain UV divergences

ϕ

Veff(ϕ)



Veff(ϕ) = Λ(m2) + m2

2 ϕ2 + λ
4 ϕ4 + ⋯ To guarantee the stability, we simply  

assume  λ > 0

Step 3: Then, typical behavior of  is Veff(ϕ)

ϕ
m2 > 0

ϕ
m2 < 0

∴ f(m2) = {Λ(m2) m2 ≥ 0
Λ(m2) − c × (m2)2 m2 < 0

In particular, the second derivative of   
                    is discontinuous at 

f (m2)
m2 = 0

d2 f
d(m2)2

m2



Step 4: Recall the micro-canonical partition function 

Ω(A) = ∫
∞

−∞

dm2
B

2π
eim2

B A−iVd f(m2
B)

d2 f
d(m2)2

m2
Second derivative is discontinuous

Then use the following Mathematical formula 

Theorem: When (1) the second derivative of  is discontinuous at    
and (2)  is monotonic and smooth for both  and 

f (x) x = x0
f (x), f′ (x) (−∞, x0] [x0, ∞)

eiVf(x) ∼ c
V 2 [f′ ′ (x0 + 0)−1 − f′ ′ (x0 − 0)−1] × δ(x − x0)

∵ By multiplying a test function  with a finite support and performing the integrationφ(x)

(∫
x0

−∞
dx + ∫

∞

x0

dx) eiVf(x)φ(x) = (∫
f(x0)

−∞
df + ∫

∞

f(x0)
df) eiVf dx

df
φ(x( f ))

Use the monotonicity  
partial integration

for V → ∞



By repeating the same calculation 

∴ eiVf(x) ∼ 1
V 2 [f′ ′ (x0 + 0)−1 − f′ ′ (x0 − 0)−1] × δ(x − x0)

= 1
iV

dx
df

φ
x0+0

− dx
df

φ
x0

+ 1
iV (∫

f(x0)

−∞
df + ∫

∞

f(x0)
df) eiVf d

df ( dx
df

φ(x( f )))
 because first derivative is continuous= 0

= c
(iV )2 ( d2f

dx2 )
−1

φ
x0+0

− ( d2f
dx2 )

−1

φ
x0

+ 𝒪(V−3)

for  //V → ∞

⇨ Going back to the micro-canonical scalar theory, we finally get

Ω(A) = ∫
∞

−∞

dm2
B

2π
eim2

B A−iVd f(m2
B) ∼ 𝒩e−iVd f(m2=0) = 𝒩 × Z(m2 = 0) for  Vd → ∞

 Micro-canonical ensemble is equivalent to canonical ensemble  
     with   ⇨ Automatic tuning (renormalization) !
∴

m2 = 0



Several remarks

(1)  corresponds to the second-order phase transition point 
(2) In this sense, the tuning mechanism is completely parallel to 

statistical mechanics (though the order of transition is different) 
(3) But, the way of tuning is more general (due to Lorentzian signature)

m2 = 0

Statistical mechanics ⇨ saddle point  

QFT ⇨ Saddle point or quantum phase-transition point 

T = T*(E)
g = g*(A){

e.g. Strong CP problem, , can be (trivially) explained as saddle point case θ = 0

In	micro-canonical	QFT,	the	coupling	constants	are	automatically	
adjusted	either	to	minimize	the	vacuum	energy	(saddle	point)	or	to					
the	critical	points	of	quantum	phase	transition.

New viewpoint of fine tuning



Summary

• We have discussed micro-canonical formulation of QFT 
• In this picture, coupling constants (intensive parameters) are fixed at    

either (i) saddle point or (ii) quantum phase-transition point  

• Tuning of mass parameter  is a good example of phase-transition 
case (second order phase transition) 

• More generally, there can be various (quantum) phase-transition points 
in coupling space  

   e.g. no  invariant case, gauge coupling, Yukawa coupling, etc… 

m2 = 0

ℤ2
⇨ They can be also fixed in micro-canonical picture (work in progress)

Thank you for your attention !

In other words, 
Fine tuning = a strongly dominant point in micro-canonical ensemble 



Backup slides



 vacuum and Strong CP problemθ

• Let us treat the  term in micro-canonical wayθ

Ω(A) = ∫
2π

0
dθeiVdU(θ) . effective potential of U(θ) = θ

•  is Parity odd. But, achon is invariant under G̃μνGμν xi → − xi , θ → − θ

  Physical observables such as vacuum energy, hadron mass, life hme should be 

     invariant under  

∴
θ → − θ ∴ U(θ) = U(−θ)

⇨  must be local extremum

⇨  Saddle point case !

θ = 0

Ω(A) = ∫
2π

0
dθe−iVdU(θ) ∼ e−iVdU(θ=0)



Formulas on  for large  𝑒𝑖�𝑉𝑓(𝑥) 𝑉



(1) 

(2) 

𝑥

𝑓

𝑥0

smooth and one extremum

  
 

𝑒𝑖𝑉𝑓(𝑥)�
~ 1

𝑉
�𝑒𝑖�𝑉𝑓(𝑥0)𝛿(𝑥 − 𝑥0)

  for large 𝑒𝑖𝑉𝑓(𝑥) V  real function𝑓(𝑥):

is continuous 
is discontinuous at  
 need not be extremum 

monotonic on each side   

𝑓
𝑓′ 𝑥0
𝑥0

𝑥 ≶ 𝑥0
  

 
𝑒𝑖𝑉𝑓(𝑥)�
~ 1

𝑉
�( 1

𝑓′ (𝑥0 + 0)
− 1

𝑓′ (𝑥0 − 0) )�

𝑥

𝑓

𝑥0

𝑥

𝑓

𝑥0  ⋅ 𝑒𝑖�𝑉𝑓(𝑥0)𝛿(𝑥 − 𝑥0)



The coupling constants of the low energy effective canonical 
FT of MM or quantum gravity are automatically adjusted 
either to minimize the vacuum energy density or to one of 
the critical points of the history of universe.

Generalize MPP:

Examples 
1. QCD -parameter    
      minimizes the vacuum energy. 
2. Cosmological constant 
      is the critical point. 
3. Higgs inflation at criticality 
     Flat potential is the critical 
     point of the history of universe.

𝜃
𝜃 = 0

𝜆 = 0 ∞finite

V



non-renormalizable coupling  
 with .𝜉𝑅h2 𝜉~10

In the Einstein frame the effective 
potential becomes

h
𝐺𝑒𝑉 Hamada, Oda, Park and HK ‘14

Bezrukov,Shaposhnikov

SM Higgs is close to MPP.



　∫ 𝒟𝑞𝑓(𝑆𝑖[𝑞] − 𝐴𝑖)�𝑂[𝑞]

 = ∫ 𝒟𝑞�∫ ∏
𝑖

𝑑𝛼𝑖
~𝑓(𝛼)�𝑒𝑖∑𝑖 �𝛼𝑖�(𝑆𝑖[𝑞]−𝐴𝑖�)𝑂[𝑞]�

 = �∫ ∏
𝑖

𝑑𝛼𝑖𝑤(𝛼)∫ 𝒟𝑞𝑒
𝑖∑𝑖 �𝛼𝑖�𝑆𝑖[𝑞]

𝑂[𝑞]�

 𝑤(𝛼) = ~𝑓(𝛼)�𝑒−�𝑖�∑𝑖 𝛼𝑖𝐴𝑖

 = �∫ ∏
𝑖

𝑑𝛼𝑖𝑤(𝛼)
∫ 𝒟𝑞𝑒𝑖∑𝑖 �𝛼𝑖�𝑆𝑖[𝑞]𝑂[𝑞]

∫ 𝒟𝑞𝑒𝑖∑𝑖 �𝛼𝑖�𝑆𝑖[𝑞]
�∫ 𝒟𝑞𝑒

𝑖∑𝑖 �𝛼𝑖�𝑆𝑖[𝑞]
�

 = �∫ ∏
𝑖

𝑑𝛼𝑖𝑤(𝛼)�⟨𝑂[𝑞]⟩𝛼 ∫ 𝒟𝑞𝑒
𝑖∑𝑖 �𝛼𝑖�𝑆𝑖[𝑞]

�

Ordinary FT with coupling constants  .𝛼𝑖 :⟨𝑂[𝑞]⟩𝛼

 product of local 
operators 
← 𝑂[𝑞]:

 is intensive.  Does not affect  ⟨𝑂[𝑞]⟩𝛼
⇒ 𝛼(0)

𝑖 .

comment on Green’s functions


