KIAS Workshop on Particle Physics and Cosmology, Nov. 13, 2023

Deep Learning Higgs Images

Jeong Han Kim

(Chungbuk Natl. U.)

Based on:

With K.C. Kong, K.T. Matchev, M. Park - [PRL. 122 (2019) 9, 091801]
With M. Kim, K.C. Kong, K.T. Matchev, M. Park - [JHEP 09 (2019) 047]
With L. Huang, S. Kang, K.C. Kong, J. Pi - [JHEP 08 (2022) 114]
With D. Goncalves, K. C. Kong, and Y. Wu - [JHEP 01 (2022) 158]
With D. Goncalves and K. C. Kong - [JHEP 06 (2018) 079]

Outline

- Motivation & Overview
- Probing the Trilinear Higgs self-coupling at

1. HL-LHC with Deep Neural Networks

2. Future Colliders

• Impact of the CP Phase of the Top Yukawa Coupling

1. How to probe it at the HL-LHC

• Summary

What We Have Found So Far

- After a long period of searches at the LHC...
- CMS and ATLAS probed various processes looking for a hint of new physics lurking in the structure of the SM.
- Although we should carefully study their differential distributions...
 - If we only take a rate information, measured processes appear to be highly compatible with the SM.

What We Have Found So Far

CMS Preliminary X + Jets Searches [18 $pb^{-1} \sim 138 fb^{-1} (7,8,13 TeV)$]

- They also even measured various processes with multiple jets.
- Yet, they all look consistent with the SM.

Z + jets

Top

Higgs

W + jets

What We Have Found So Far

- New physics events are expected to be rare..
- I'll focus on the *hh* production to probe the Higgs trilinear coupling.
- I'll also show how it interferes with the CP phase of top Yukawa coupling.

(b)
$$V_h = \frac{m_h^2}{2}h^2 + c_3\frac{m_h^2}{2v}h^3 + c_4\frac{m_h^2}{8v^2}h^4$$

The c₃ is a BSM indicator

Double Higgs Production

- Amplitudes containing these couplings display different Energy-dependences.
- The triple Higgs self-coupling (c_3) is sensitive at lower-energy bins.
- That's why it's hard to measure!

Current Bound on c3 (a) LHC 13 TeV

[ATLAS] 2211.01216

30

95% probability bound on c_3 . •

 $-0.4 < c_3 < 6.3$

The bound is weak... •

Allowed range of *hh* cross sections.

 $\sigma_{hh}^{\text{observed}} / \sigma_{hh}^{\text{sm}} = 2.4$

At least, we may be able to observe • the *hh* production at the HL-LHC!

Need to Discover the hh Production First...

$3 \text{ ab}^{-1}(14 \text{ TeV})$

	Channels	Significances	Combined	Combined			bb	WW*	ττ	ZZ*	γγ
ATLAS ATL-PHYS- PUB-2018-053	bbyy	2.1	3.5	$c_3 = 1$		bb	33%				
	bbtt (fully-hadronic)					WW*	25%	4.6%			
	oort (juliy-haaronic)	2.5		4.5		ττ	7.3%	2.7%	0.39%		
	+ bbττ (semi-leptonic)					ZZ*	3.1%	1.1%	0.33%	0.069%	
	bbbb	1.4			γγ	γγ	0.26%	0.1%	0.028%	0.012%	0.0005%
CMS CMS- FTR-18-019- PAS	ЬЬүү	1.8	2.8								
	bbττ (fully-hadronic) + bbττ (semi-leptonic)	1.6									
	bbbb	1.2			Previously						
	bbWW*(llvv)	0.59			- overlooked and less studied						
	bbZZ*(llll)	0.37									

- Since no single channel gives us 5σ , combining channels is essential.
- Recent analyses show that the combined significance is expected to be 4.5σ at the HL-LHC.
- Any potential improvement on the individual channel means a lot to discover the *hh*.

Previously on *hh* → *bbWW**

J. H. Kim, K. C. Kong, K. T. Matchev, M. Park [PRL 122 (2019) 9, 091801]

Previously on *hh* → *bbWW**

J. H. Kim, K. C. Kong, K. T. Matchev, M. Park [PRL 122 (2019) 9, 091801]

10

named Higgsness and Topness using Monte-Carlo samples for the non-resonant $HH \rightarrow$

 $bbWW^* \rightarrow bbqqlv$ signal and $t\bar{t} \rightarrow bbWW \rightarrow bbqqlv$ background. Also shown is the

distribution of the invariant mass of the lepton-neutrino system for the signal sample.

The Di-Higgs Photography

J. H. Kim, M. Kim, K.C. Kong, M. Park [1904.08549] L. Huang, S. Kang, J. H. Kim, K. C. Kong, J. Pi [2203.11951]

Color-flow information is encoded in jet-images

Apply minimal basic cuts

 $70 < m_{bb} < 140 \text{ GeV}, \ \Delta R_{bb} < 2$

 $m_{\ell\ell} < 70 \text{ GeV}, \ \Delta R_{\ell\ell} < 1.5$

• Let deep neural networks figure out correlations among jets and leptons.

How to Best Utilize Deep Neural Nets?

- What type of input is most suitable?
- What is the best neural network?

 η

 b_{eall}

Traditional Convolutional Neural Networks (CNN)

L. Huang, S. Kang, J. H. Kim, K. C. Kong, J. Pi [2022]

- 1.8 $V_{21-\text{kin}} + V^{(C,N,\ell,\nu_{\text{H}},\nu_{\text{T}})}$ with ResNet $3 \text{ ab}^{-1} (14 \text{ TeV})$ $V_{21-\mathrm{kin}} + V^{(C,N,\ell)}$ with ResNet $V_{21-\text{kin}} + V^{(C,N,\ell,\nu_{\rm H},\nu_{\rm T})}$ with CNN 1.6 $V_{21-\text{kin}} + V^{(C,N,\ell)}$ with CNN $V^{(C,N,\ell,\nu_{\rm H},\nu_{\rm T})}$ with CNN $V^{(C,N,\ell)}$ with CNN 1.4 $V^{(C,N)}$ with CNN Significance + All kinematic variables • 1.2 + Neutrino Images 1.0 + Lepton Images 0.8 Charged + Neutral Images 0.6 15 25 10 20 30 35 Number of signal events (Stronger selection cut)
 - The best performance comes when we combine the image information and kinematic variables.
 - The neural net can efficiently learn from the human engineered variables, while taking additional color-flow information from the image data.
 - This implies that the usage of highlevel kinematic variables is still important.

Projected Sensitivities at the HL-LHC

- Any potential improvement on the individual channel may be able to pin down *hh*.
- HL-LHC could offer a sufficiently accurate determination of c_3 .

 $0.5 < c_3 < 1.5$ [68% probability bound] $\rightarrow \delta c_3 = 0.5$

 $0.1 < c_3 < 2.3$ [95% probability bound] Report from Working Group 2 [1902.00134]

Post-LHC Era: Where Do We Head For?

The CP Phase of Top Yukawa Coupling As a Stepping Stone

- We often underestimate the presence of the top Yukawa which appears everywhere.
- The Higgs-top coupling is an indispensable ingredient to understand EWSB.
- Its CP phase can be a source to explain the matter-antimatter assymmetry.

Impact of the CP Phase of Top Yukawa Coupling

- Recall constructive and destructive interferences in double Higgs.
- It is well-known that the CP phase can significantly distort the m_{hh} distribution.
- This will significantly chage the kinematics of the Higgs productions that we assumed.

Impact of the CP Phase of Top Yukawa Coupling

- It has a direct impact on the *hh* production.
- This is why the precise knowledge on this coupling is important.

$$\mathscr{C} \supset -\frac{m_t}{v} c_t \bar{t} \left(\cos \alpha + i \gamma_5 \sin \alpha \right) th$$

Indirect non-LHC constraints

- There are also indirect non-LHC constraints from electron dipole-moment (EDM) measurements.
- The bound looks very constraining.
- But the critical assumption is that the Higgs interactions with first-generation fermions must be exactly the SM one.
- So again, its interpretation is model-dependent.

Direct LHC constraints

- The direct way to probe the Higgs-top coupling is the $t\bar{t}h$ production.
- The cross section is higher than the *th* channel: $\sigma_{\text{NLO}}(t\bar{t}h) = 611 \text{ fb}$ $\sqrt{S} = 14 \text{ TeV}$
- It provides a rich spectrum of final states.

 5.2σ (observed)

 6.3σ (observed)

• Motivated by relatively recent observations for the $t\bar{t}h$ signals

(Background only hypothesis)

Phys.Rev.Lett. 120 (2018) 23 [CMS]

Phys.Lett.B 784 (2018) 173-191 [ATLAS]

Current Bounds on the CP Phase

13 TeV (139 fb⁻¹) $t\bar{t}h(\rightarrow\gamma\gamma)$

• Note that the pure CP odd case seems to be very excluded.

How Precisely Can We Probe CP-Phase?

- The Higgs-top CP structure affects the $t\bar{t}$ spin correlation, that can propagate to the top decay products.
- Since charged leptons are the best spin analyzers, it's best to look at dileptonic top decays.
- But the spin-correlation effects are directly accessible in the *tī* rest frame.

If we can fully reconstruct $t\bar{t}$

What are useful observables?

14 TeV (detector-level)

- $\Delta \phi_{\ell\ell}^{\text{lab}}$ in the lab-frame provides a good probe of spin-correlation effect.
- A clean distinction between a pure CP odd and even states.
- It's not sensitive to a sign of α .

$t \bar{t}$ - rest frame observables

J. Ellis, D. S. Hwang, K. Sakurai, M. Takeuchi [2014]

14 TeV (parton-level)

(using truth information)

- The direct sensitivity to spin correlations can be achieved in the *tt* rest frame.
- It is sensitive to different signs of α
- But there is no feasibility study whether this is really achievable.

Difficult to reconstruct $t\bar{t}$

$t \bar{t}$ - rest frame observables

D. Goncalves, K. C. Kong, J. H. Kim, Yongcheng Wu [2108.01083]D. Goncalves, K. C. Kong, J. H. Kim [1804.05874]

- The Collins-Soper angle θ^* of a top in the $t\bar{t}$ rest frame displays much simpler distributions.
- It shows clear distinctions for different magnitude of α .
- But it cannot tell different signs of α .

The Reconstruction of $t\bar{t}$

Challenging Problems

1. Guess neutrinos momenta

2. Solve a combinatorial problem

The Reconstruction of $t\bar{t}$

Challenging Problems

1. Guess neutrinos momenta

2. Solve a combinatorial problem

Projected Limits at HL-LHC

- A binned log-likelihood analysis using all observables may be able to constrain α .
- Probing the sign difference in α will remain challenging.

Projected Limits at the 100 TeV FCC

- At the 100 TeV FCC, the both c_t and α can be probed with a greater precision.
- The precise measurement of α is one of the important opportunities at the 100 TeV FCC.

Projected Limits at Future Colliders

Snowmass 2021 [2203.08127]

Bounds on α at 95% CL ($\kappa_t = 1$)	Channel	Collider	Luminosity	
$ lpha \lesssim 36^\circ \ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	HL-LHC	$3 \mathrm{~ab^{-1}}$	
$ lpha \lesssim 25^\circ$ [2]	$t\bar{t}(h o \gamma \gamma)$ combination	HL-LHC	$3 \mathrm{~ab^{-1}}$	
$ lpha \lesssim 3^\circ \ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	$100 { m TeV FCC}$	$30 {\rm ~ab^{-1}}$	
$ lpha \lesssim 9^\circ$ [3]	semileptonic $t\bar{t}(h \to b\bar{b})$	10 TeV $\mu^+\mu^-$	$10 {\rm ~ab^{-1}}$	
$ lpha \lesssim3^\circ~[3]$	semileptonic $t\bar{t}(h \to b\bar{b})$	$30 { m TeV} \mu^+\mu^-$	$10 { m ~ab^{-1}}$	

Summary

[H]	[]	H	C1

• The Trilinear Higgs self-coupling

1. HL-LHC

- $0.5 < c_3 < 1.5$ [68% bound]
- $0.1 < c_3 < 2.3$ [95% bound]
- 2. Muon Collider (e.g. 10 TeV)

 $\delta c_3 = 3.5\%$ [68% bound]

• The CP Phase of the Top Yukawa Coupling

1. HL-LHC $|\alpha| \lesssim 25^{\circ}$ [95% bound]

- 2. FCC-hh Collider (100 TeV) $|\alpha| \leq 3^{\circ}$ [95% bound]
- 3. Muon Collider (10 TeV) $|\alpha| \leq 9^{\circ}$ [95% bound]

Channol	Statistical only			
Unamiei	ATLAS	CMS		
$hh o b\overline{b}b\overline{b}$	1.4	1.2		
$hh \to b\bar{b}\tau^+\tau^-$	2.5	1.6		
$hh o b\overline{b}\gamma\gamma$	2.1	1.8		
$hh \to b\bar{b}VV(\ell\ell\nu\nu)$	-	0.59		
$hh \to b\overline{b}ZZ(4\ell)$	-	0.37		
combined	3.5	2.8		
hh discourse notantial	combined			
nn discovery potential	4.5			

Back-up

Indirect LHC Constraints

- The single Higgs production is the first avenue to probe the Higgs-top coupling.
- But the interpretation of these vertices is model-dependent.
- Since some new physics effects can contribute to these vertices...

Indirect LHC Constraints

- Fixing $c_t = 1$, α is constrained $\alpha = \left| -25^\circ, 25^\circ \right|$.
- Apparently the pure CP odd case seems to be very excluded.
- But still various CP admixture states are allowed.

Semi-direct LHC Constraints

 3000 fb^{-1}

- Assuming that WWh coupling sits exactly on the SM.
- The *th* production is sensitive to the sign of the CP phase.
- The downside is the cross section is small: $\sigma_{\rm NLO}(thj) = 70 \text{ fb}$ $\sqrt{S} = 14 \text{ TeV}$

The reconstruction of $t \bar{t}$

D. Kim, Matchev, Moortgat, Pape [2017]

- If we form up the target function in terms of transverse masses, then it is the same as M_{T2} .
- Then it's not trivial to use the above mass relations during the minimization.

The reconstruction of $t \bar{t}$

D. Kim, Matchev, Moortgat, Pape [2017]

• And scanning again with on-shell top mass constraints as well as the symmetry requirement on *W* masses:

$$M_{2CT}(m_{\chi}^{\text{test}}) \equiv \min_{\substack{\mathbf{p}_{T}^{\chi_{1}} + \mathbf{p}_{T}^{\chi_{2}} = \not{p}_{T}}} \left[\max \left\{ M^{(1)}(\mathbf{p}^{\chi_{1}}, m_{\chi}^{\text{test}}), M^{(2)}(\mathbf{p}^{\chi_{2}}, m_{\chi}^{\text{test}}) \right\} \right]$$
$$m_{W}^{reco}$$
$$M_{t1} = M_{t2} = 173 \text{ GeV}$$
$$M_{W1} = M_{W2}$$

- The minimized value itself is the reconstructed *W* mass.
- And the neutrino 4-momenta that minimize the target function is our best guess!

$t \bar{t}$ - rest frame observables

14 TeV (detector-level)

14 TeV (detector-level)

• The $\Delta \phi_{\ell\ell}^{t\bar{t}}$ displays 5 ~ 10 % differences for different signs of α at detector-level.

- It's not a huge effect, but good to have an additional handle to probe the sign difference.
- The θ^* has a powerful discrimination power on the magnitude of α at detector-level.