The 3rd International Joint Workshop on the Standard Model and Beyond and the 11th KIAS Workshop on Particle Physics and Cosmology

Complementarity of μ TRISTAN and Belle II in searches for CLFV.

Gabriela Lima Lichtenstein, in collaboration with Michael Schmidt, German Valencia, Raymond Volkas

arXiv:2307.11369

November 12, 2023

Flavour Triality

CLFV Tau decays at Belle II

Next-to-leading order Constraints

Phenomenology at μ TRISTAN (arXiv:2307.11369)

Flavour Triality

Why three families of quarks and leptons?

- Explain the observed mixing patterns.
- Fermion mass hierarchy.
- Neutrino masses.
- Charged Lepton Flavour Violation

Standard Model of Elementary Particles

Charged Lepton Flavour Violation

Charged Lepton Flavour Violation (CLFV) has not yet been observed. Neutrino oscillations show no individual lepton numbers L_e , L_{μ} , and L_{τ} conservation.

Several BSM models predict CLFV.

Experimental bounds are stringent, especially on electron-muon CLFV.

```
\mu 
ightarrow e \gamma at MEG,
```

```
\mu 
ightarrow \mathit{eee} at Mu3e
```

```
\mu N 
ightarrow \mu N at COMET, Mu2e and DeeMe
```

CLFV involving τ :

Data are less constraining;

Belle II future sensitivity will increase significantly.

Lepton Triality avoids $\mu\leftrightarrow e$ conversions and allows CLFV tau decays.

Motivated by flavour structure models A_4 group can explain the quark and lepton mixing angles.

Tribimaximal mixing of neutrino flavours

Altarelli, Feruglio (2006) He, Keum, Volkas (2006) hep-ph/0601001 Ma,(2010) 1006.3524

A₄ is generated by S and T Elements

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$$
$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

 Z_3 Lepton sector

$$\begin{split} L &\to \omega^T L \text{ and } e_R \to \omega^T e_R, \\ \omega &= e^{\frac{2\pi i}{3}} \\ \text{H, quarks are singlets under triality} \\ \mathcal{L}_Y &= y_{e_l} \bar{L}_i e_{R_i} H + h.c. \\ \mathcal{L}_Y \text{ is diagonal under } Z_3 \end{split}$$

Lepton Triality

Triality sums module 3

$$\mu^{-} \rightarrow e^{-}\gamma$$
 $\Delta T \neq 0 \chi$
 $T=2$ $T=1$
 $T^{-} \rightarrow \mu^{+}e^{-}e^{-} \Delta T=0$
 $T=3$ $T=-2$ $T=1$ $T=1$

$$e \rightarrow T = 1$$

$$\mu \rightarrow T = 2$$

$$\tau \rightarrow T = 3$$

Mediators of flavour triality transform under Z_3 as: $k_1 \sim \omega$, $k_2 \sim \omega^2$, $k_3 \sim$ 1, Models T = 1, 2, 3 for the doubly charged singlet k_i

$$\begin{aligned} \mathcal{L}_{k_1} &= \frac{1}{2} \left(2f_1 \overline{(\tau_R)^c} \mu_R + f_2 \overline{(e_R)^c} e_R \right) k_1 + \text{h.c.} \\ \mathcal{L}_{k_2} &= \frac{1}{2} \left(2g_1 \overline{(\tau_R)^c} e_R + g_2 \overline{(\mu_R)^c} \mu_R \right) k_2 + \text{h.c.} \\ \mathcal{L}_{k_3} &= \frac{1}{2} \left(2h_1 \overline{(\mu_R)^c} e_R + h_2 \overline{(\tau_R)^c} \tau_R \right) k_3 + \text{h.c.}. \end{aligned}$$

CLFV Tau decays at Belle II

Tau Decays

Bigaran, He, Schmidt, Valencia, Volkas, (2022) 2212.09760.

* Belle Collaboration (2010) 1001.3221 ** Belle II (2022) 2203.14919 SMEFT

$$\mathcal{L}_{6,LFV} = C^{ll}(\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L) + C^{ee}(\bar{e}_{R}\gamma_{\mu}e_{R})(\bar{e}_{R}\gamma^{\mu}e_{R}) + C^{le}(\bar{L}\gamma_{\mu}L)(\bar{e}_{R}\gamma^{\mu}e_{R})$$

$$C^{VRR}_{ee,1312} = \frac{f_{1}f_{2}}{4m_{k_{1}^{2}}}$$

$$BR(\tau^{\pm} \rightarrow \mu^{\mp}e^{\pm}e^{\pm}) = \frac{f_{1}^{2}f_{2}^{2}}{64G_{F}^{2}m_{k_{1}}^{4}}BR(\tau^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})$$

$$C^{VRR}_{ee,2321} = \frac{g_{1}g_{2}}{4m_{k_{2}^{2}}}$$

$$BR(\tau^{\pm} \rightarrow \mu^{\pm}\mu^{\pm}e^{\mp}) = \frac{g_{1}^{2}g_{2}^{2}}{64G_{F}^{2}m_{k_{2}}^{4}}\tilde{I}\left(\frac{m_{\mu}^{2}}{m_{\tau}^{2}}\right)BR(\tau^{-} \rightarrow \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})$$

Present bounds from Belle: $\sqrt{f_1 \times f_2} < 0.17 \frac{m_{k1}}{T_eV}$ $\sqrt{g_1 \times g_2} < 0.17 \frac{m_{k2}}{T_eV}$

Prediction for future sensitivity from Belle II:

 $\sqrt{f_1 imes f_2} < 0.06 rac{m_{k1}}{TeV}$ $\sqrt{g_1 imes g_2} < 0.06 rac{m_{k2}}{TeV}$

Belle II sensitivity on CLFV tau decays from Triality T=1

Bigaran, He, Schmidt, Valencia, Volkas, (2022) 2212.09760.

Next-to-leading order Constraints

Next-to-leading order Constraints

$$\begin{aligned} \mathcal{L}_{k_1} &= \frac{1}{2} \left(2f_1 \overline{(\tau_R)^c} \mu_R + f_2 \overline{(e_R)^c} e_R \right) k_1 + \text{h.c.} \\ \mathcal{L}_{k_2} &= \frac{1}{2} \left(2g_1 \overline{(\tau_R)^c} e_R + g_2 \overline{(\mu_R)^c} \mu_R \right) k_2 + \text{h.c.} \\ \mathcal{L}_{k_3} &= \frac{1}{2} \left(2h_1 \overline{(\mu_R)^c} e_R + h_2 \overline{(\tau_R)^c} \tau_R \right) k_3 + \text{h.c.}. \end{aligned}$$

$$Z
ightarrow l^+ l^-$$
, with $l = e, \mu, au$
 $H
ightarrow \gamma \gamma$
 $H
ightarrow Z \gamma$

Potential: $\mathcal{L} \supset |D_{\mu}k_i|^2 + \kappa_i \phi^{\dagger} \phi k_i^{\dagger} k_i$ where $D_{\mu} = \partial_{\mu} + i 2e (A_{\mu} - \tan \theta_W Z_{\mu})$

$$Z
ightarrow l^+ l^-$$
 , with $l=e$, μ , au

$$\Gamma_{\mu}^{\ell} = -2^{1/4} G_F^{1/2} M_Z \gamma_{\mu} \left[(r_{\ell} + \delta r_{\ell}) P_R + (l_{\ell} + \delta l_{\ell}) P_L \right].$$

$$g_A = (g_L - g_R)/2 \text{ and } g_V = (g_L + g_R)/2$$

PRELIMINARY

PRELIMINARY

 $\mathsf{R}_{\gamma\gamma} = \frac{\Gamma(H \to \gamma\gamma)}{\Gamma(H \to \gamma\gamma)_{SM}}$ Blue: $R_{\gamma\gamma} = 1.088^{+0.095}_{-0.09}$ (ATLAS arXiv:2207.00092 [hep-ex]) Red: Projected sensitivity with 3000 fb^{-1} at the HL-LHC. $\Delta \kappa_{\gamma} = 1.8\%$ (Snowmass arXiv:1902.10229 [hep-ex])

$$0.8 < R_{Z\gamma} < 1.15$$

 $R_{Z\gamma} = 2.2 \pm 0.7$ (ATLAS and CMS arXiv:2309.03501 [hep-ex])
 $\Delta \kappa_{Z\gamma} = 9.8\%$ (Snowmass ATL-PHYS-PUB-2022-018, 2022.)

Phenomenology at μ TRISTAN (arXiv:2307.11369)

μ **TRISTAN**

Hamada, Kitano, Matsudo, Takaura and Yoshida, (2022) 2201.06664 Ultracold muon technology from g-2 at J-PARC

```
\mu^+\mu^+ proposal \sqrt{s}= 2 TeV;
```

1 TeV μ^+ beams;

expected luminosity of 12 fb^{-1} per year.

 $\mu^+ e^-$ proposal with asymmetric beam energies;

```
\mu^+ beams up to 1 to 3 TeV;
```

 e^- beams from Tristan at 30 to 50 GeV;

expected luminosity of 100 fb^{-1} per year.

Future lepton Colliders

Model	Process	Lepton Collider
T=1	$\mu^+e^- ightarrow e^+ au^-$	μ TRISTAN
T=1	$e^+e^- ightarrow e^+e^-$	e^+e^-
T=1	$e^-e^- ightarrow e^-e^-$	-
T=1	$e^-e^- \to \tau^-\mu^-$	-
T=2	$\mu^+\mu^+ o au^+ e^+$	μ TRISTAN
T=2	$\mu^+\mu^+ \to \mu^+\mu^+$	μ TRISTAN
T=2	$\mu^+e^- ightarrow au^+\mu^-$	μ TRISTAN
T=2	$\mu^+\mu^- \to \mu^+\mu^-$	$\mu^+\mu^-$
T=3	$\mu^+ e^- \to \mu^+ e^-$	$\mu {\sf TRISTAN}$
T=3	$\mu^+ {\rm e}^+ \to \tau^+ \tau^+$	-

G.L, Schmidt, Valencia, Volkas (2023) 2307.11369

CLFV s-channel at $\mu^+\mu^+$

$$\mu^+$$

$$\mu^+$$

$$k_2^{--}$$

$$e^+$$

90% C.L. contour assuming no background N = 2.44;

$$egin{aligned} \sqrt{g_1g_2} \lesssim 0.15 \left(rac{N}{Ls}
ight)^rac{1}{4} rac{m_{k_2}}{ ext{TeV}} \ & ext{For } \sqrt{s} = 2 ext{ TeV:} \ \sqrt{g_1g_2} \lesssim 0.17 rac{m_{k_2}}{ ext{TeV}} \ . \end{aligned}$$

CLFV u-channel at μ^+e^-

Resonances in elastic scattering $\mu^+\mu^+ \to \mu^+\mu^+$

Resonances in elastic scattering $\mu^+\mu^+ \rightarrow \mu^+\mu^+$

90% C.L. contour; SM contributions as background; S = 1.64 $S=rac{|\sigma-\sigma_{SM}|}{\sqrt{\sigma_{SM}}}\sqrt{L}$; $egin{aligned} g_2 \lesssim 0.18 \left(rac{S^2}{Ls}
ight)^{1/4} m_k; \ g_2 \lesssim 0.09 rac{m_{k_2}}{ ext{TeV}}. \end{aligned}$

Elastic scattering $\mu^+e^- ightarrow \mu^+e^-$

 $S = rac{|\sigma - \sigma_{
m SM}|}{\sqrt{\sigma_{
m SM}}} \sqrt{L}$; $h_1 \lesssim 0.17 rac{m_{k_3}}{
m TeV}$.

Summary Table

M_Tristan

Experiment	Process	90% C.L. limit	Assumptions
Belle	$\tau^- \to \mu^+ {\rm e}^- {\rm e}^-$	$\sqrt{f_1f_2}\lesssim 0.17rac{m_{k_1}}{ m TeV}$	782 fb ⁻¹
Belle	$\tau^- \to {\rm e}^+ \mu^- \mu^-$	$\sqrt{g_1g_2} \lesssim 0.17 rac{m_{k_2}}{\mathrm{TeV}}$	782 fb ⁻¹
Belle II	$\tau^- \to \mu^+ e^- e^-$	$\sqrt{f_1f_2}\lesssim 0.06rac{m_{k_1}}{ m TeV}$	50 ab ⁻¹
Belle II	$\tau^- \to {\rm e}^+ \mu^- \mu^-$	$\sqrt{g_1g_2}\lesssim 0.06rac{m_{k_2}}{ m TeV}$	50 ab ⁻¹
DELPHI	$e^+e^- ightarrow e^+e^-$	$f_2 \lesssim 1.4 rac{m_{k_1}}{\mathrm{TeV}}$	
DELPHI	${\rm e^+e^-} \rightarrow \mu^+\mu^-$	$h_{ m l} \lesssim 0.72 rac{m_{k_3}}{ m TeV}$	
DELPHI	${\rm e^+e^-} \rightarrow \tau^+\tau^-$	$g_1 \lesssim 0.66 rac{m_{k_2}}{\mathrm{TeV}}$	
$\mu^+\mu^+$ collider	$\mu^+\mu^+ \to \tau^+ {\rm e}^+$	$\sqrt{g_1g_2}\lesssim 0.07rac{m_{k_2}}{ m TeV}$	12 fb ⁻¹ , $\sqrt{s} = 2$ TeV
$\mu^+\mu^+$ collider	$\mu^+\mu^+ \to \mu^+\mu^+$	$g_2 \lesssim 0.09 rac{m_{k_2}}{\mathrm{TeV}}$	12 fb ⁻¹ , $\sqrt{s} = 2$ TeV
$\mu^+ e^-$ collider	$\mu^+ {\rm e}^- \to {\rm e}^+ \tau^-$	$\sqrt{f_1f_2}\lesssim 0.13rac{m_{k_1}}{ m TeV}$	100 fb $^{-1}$, (E_e, E_μ) = (30,1000) GeV
$\mu^+ e^-$ collider	$\mu^+ {\rm e}^- \to \tau^+ \mu^-$	$\sqrt{g_1g_2}\lesssim 0.13rac{m_{k_2}}{ m TeV}$	100 fb ⁻¹ , $(E_e, E_\mu) = (30, 1000)$ GeV
μ^+e^- collider	$\mu^+ {\rm e}^- \rightarrow \mu^+ {\rm e}^-$	$h_{ m l}\lesssim 0.17rac{m_{k_3}}{ m TeV}$	100 fb ⁻¹ , $(E_e, E_\mu) = (30, 1000)$ GeV

Summary

Lepton Flavour Triality avoids CLFV bounds from muon decays while allowing tau CLFV interactions;

Belle II predictions of tau CLFV.

Next-to-leading order results from $Z \rightarrow I^+I^-$, $H \rightarrow \gamma\gamma$, $H \rightarrow Z\gamma$

 $\mu \text{TRISTAN}$

 $\mu^+\mu^+$ collider Resonances searches μ TRISTAN μ^+e^- collider

Backup slides

Include 3 RH sterile Neutrinos

T = 1, 2, 3 triality charges
$$\nu_R \rightarrow \omega^T \nu_R$$

$$-\mathcal{L} \supset y_{\nu i} \overline{L}_i \nu_{Ri} \widetilde{H} + \frac{1}{2} M_{ij} (\overline{\nu_{Ri}})^c \nu_{Rj} + h.c.$$

 M_{ij} is a Majorana mass matrix

Incompatible with neutrino oscillations.

Break Triality with soft-breaking operators or introducing a Singlet complex scalar S (T=1), with non-zero VEV for S.

Type I see-saw, or Type III (triplet).

Bigaran, He, Schmidt, Valencia, Volkas, (2022) 2212.09760.

Direct Searches of doubly charged scalar with CLFV:

 $m_{k_i} \ge 0.6$ TeV (ATLAS).

Lepton scattering (DELPHI):

$$rac{m_{k_1}}{|f_2|} \geq 0.74 \; {
m TeV}; \ rac{m_{k_2}}{|g_1|} \geq 1.5 \; {
m TeV}.$$

Flavour-violating Z decays:

 $BR(Z \to k_1 k_1 \to e^+ e^+ \mu^- \mu^-)$ is highly suppressed; $BR(Z \to \tau^+ \tau^- \to e^+ e^+ \mu^- \mu^-)$.

anomalous magnetic moment \rightarrow too small.

Bigaran, He, Schmidt, Valencia, Volkas, (2022) 2212.09760.