Renormalization group effects in QCD axion phenomenology

Based on collaboration with Luca Di Luzio, Federico Mescia, Enrico Nardi (2205.15326, PRD106 (2022) 5, 055016) + Maurizio Giannotti, Gioacchino Piazza (2305.11958, to appear in PRD)

The 3rd International Joint Workshop on the Standard Model and Beyond The 11th KIAS Workshop on Particle Physics and Cosmology

13 November 2023

Shohei Okawa (ICCUB, Barcelona \rightarrow KEK)

Today's talk

Yellow: Tree-level prediction in DFSZ models, Green hatch: +RG effects

Axion is predicted in a solution to the Strong CP problem

$$\mathscr{L}_{\text{QCD}} \supset \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \longrightarrow \frac{a(x)}{f_a} \frac{\alpha_s}{8\pi}$$

a(x) = NG boson from a chiral U(1) PQ symmetry breaking

- $-G_{\mu\nu}\tilde{G}^{\mu\nu}$ $\langle a/f_a\rangle = 0$ in the QCD vacuum

Axion is predicted in a solution to the Strong CP problem

$$\mathscr{L}_{\text{QCD}} \supset \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \longrightarrow \frac{a(x)}{f_a} \frac{\alpha_s}{8\pi}$$

a(x) = NG boson from a chiral U(1) PQ symmetry breaking

Two classes of benchmark (invisible) axion models $(v_{EW} \ll f_a)$:

- $-G_{\mu\nu}\tilde{G}^{\mu\nu}$ $\langle a/f_a\rangle = 0$ in the QCD vacuum

Axion is predicted in a solution to the Strong CP problem

$$\mathscr{L}_{\text{QCD}} \supset \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \longrightarrow \frac{a(x)}{f_a} \frac{\alpha_s}{8\pi}$$

▶ a(x) = NG boson from a chiral U(1) PQ symmetry breaking

Two classes of benchmark (invisible) axion models $(v_{\rm EW} \ll f_a)$:

 $-G_{\mu\nu}\tilde{G}^{\mu\nu}$ $\langle a/f_a\rangle = 0$ in the QCD vacuum

- DFSZ axion: SM quarks and Higgses charged under PQ. [Zhitnitsky (1980), Dine, Fischler, Srednicki (1981)] Minimally requires 2HDM + 1 scalar singlet. SM leptons are also PQ charged.

Axion is predicted in a solution to the Strong CP problem

$$\mathscr{L}_{\text{QCD}} \supset \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} \longrightarrow \frac{a(x)}{f_a} \frac{\alpha_s}{8\pi}$$

▶ a(x) = NG boson from a chiral U(1) PQ symmetry breaking

Two classes of benchmark (invisible) axion models $(v_{\rm EW} \ll f_a)$:

KSVZ axion: All SM fields are neutral under PQ. under PQ. Singlet scalar breaks PQ.

 $-G_{\mu\nu}\tilde{G}^{\mu\nu}$ $\langle a/f_a\rangle = 0$ in the QCD vacuum

- DFSZ axion: SM quarks and Higgses charged under PQ. [Zhitnitsky (1980), Dine, Fischler, Srednicki (1981)] Minimally requires 2HDM + 1 scalar singlet. SM leptons are also PQ charged.
 - [Kim (1979), Shifman, Vainshtein, Zakharov (1980)] QCD anomaly induced by new quarks that are vector-like under SM and chiral

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,e} C_{f}\bar{f}\gamma^{\mu}\gamma_{5}f + \frac{a}{f_{a}}\frac{e^{2}}{32\pi^{2}}\left(\frac{E}{N} - 1.92\right)F\widetilde{F}$$

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{\substack{f=p,n,e}} C_{f}\bar{f}\gamma^{\mu}$$

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,q} C_{f}\bar{f}\gamma^{\mu}$$

$$C_{p,n} = \Delta_{u}C_{u,d} + \Delta_{d}C_{d,u} + \Delta_{s}C_{s} - \left(\frac{m_{u}\Delta_{u,q}}{m_{u} + m_{u}}\right)$$

$$C_{q} = C_{q}(\mu_{\text{QCD}})$$

$$S^{\mu}\Delta_{u,d,s} = \langle N | \bar{q}\gamma^{\mu}\gamma_{5}q | N \rangle$$

from aGG term

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,r} C_{f}\bar{f}\gamma^{\mu}$$

$$C_{p,n} = \Delta_{u}C_{u,d} + \Delta_{d}C_{d,u} + \Delta_{s}C_{s} - \left(\frac{m_{u}\Delta_{u,d}}{m_{u}+m_{u}}\right)$$

▷ completely fixed by $C_f(\mu_{QCD})$ and PQ charges

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,k} C_{f}\bar{f}\gamma^{\mu}$$

$$C_{p,n} = \Delta_{u}C_{u,d} + \Delta_{d}C_{d,u} + \Delta_{s}C_{s} - \left(\frac{m_{u}\Delta_{u,d}}{m_{u}+m_{u}}\right)$$

completely fixed by C_f (µ_{QCD}) and PQ charges
 normally take C_f (µ_{QCD}) = C_f (f_a)

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,s} C_{f}\bar{f}\gamma^{\mu}$$

$$C_{p,n} = \Delta_{u}C_{u,d} + \Delta_{d}C_{d,u} + \Delta_{s}C_{s} - \left(\frac{m_{u}\Delta_{u,d}}{m_{u}+m_{u}}\right)$$

▷ completely fixed by $C_f(\mu_{\text{OCD}})$ and PQ charges ▶ normally take $C_f(\mu_{\text{OCD}}) = C_f(f_a)$

but... since $\mu_{\text{OCD}} \ll f_a$, $C_f(\mu_{\text{OCD}}) = C_f(f_a) + \Delta C_f(\mu_{\text{OCD}}; f_a)$

large log corrections from RG evolution

[Bauer et al. 2012.12272; Choi et al. 2106.05816]

✓ Matching with an axion effective Lagrangian in the GKR basis

$$\frac{\partial_{\mu}a}{f} \left(\sum_{\psi=q_L,\ell_L,\dots} c_{\psi}\bar{\psi}\gamma^{\mu}\psi + \sum_{\Phi=H_1,H_2,\dots} c_{\Phi}\Phi^{\dagger}i\overset{\leftrightarrow}{D^{\mu}}\Phi \right) + \sum_{A=G,W,B} c_A \frac{g_A^2}{32\pi^2} \frac{a}{f} F_A$$

[Bauer et al. 2012.12272; Choi et al. 2106.05816]

✓ Matching with an axion effective Lagrangian in the GKR basis

$$\frac{\partial_{\mu}a}{f} \left(\sum_{\psi=q_L,\ell_L,\dots} c_{\psi}\bar{\psi}\gamma^{\mu}\psi + \sum_{\Phi=H_1,H_2,\dots} c_{\Phi}\Phi^{\dagger}i\overset{\leftrightarrow}{D^{\mu}}\Phi \right) + \sum_{A=G,W,B} c_A\frac{g_A^2}{32\pi^2}\frac{a}{f}F_A$$

$$\mu$$

$$f_{a} + c_{\psi,\Phi} = \mathcal{X}_{\psi,\Phi} \text{ (PQ charge)}$$

$$\downarrow \begin{array}{c} No \ running \\ (\because \partial_{\mu} J_{PQ}^{\mu} = 0) \end{array}$$

$$\overset{M}{=} C_{\psi}(m_{\text{BSM}}) = c_{\psi}(f_{a}) \qquad \checkmark \text{ Heavy scalars } H^{0}, A^{0}, H^{\pm} \text{ are integrated out}$$

$$\mu_{\text{EW}} + C_{f} = c_{f_{R}} - c_{f_{L}} \qquad \checkmark h, W, Z, t \text{ are integrated out}$$

[Bauer et al. 2012.12272; Choi et al. 2106.05816]

✓ Matching with an axion effective Lagrangian in the GKR basis

$$\frac{\partial_{\mu}a}{f} \left(\sum_{\psi=q_L,\ell_L,\dots} c_{\psi}\bar{\psi}\gamma^{\mu}\psi + \sum_{\Phi=H_1,H_2,\dots} c_{\Phi}\Phi^{\dagger}i\overset{\leftrightarrow}{D^{\mu}}\Phi \right) + \sum_{A=G,W,B} c_A \frac{g_A^2}{32\pi^2} \frac{a}{f} F_A$$

Y Matching with
$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,e} C_{f}\bar{f}\gamma^{\mu}\gamma_{5}f + C_{\gamma}\frac{a}{f_{a}}\frac{e^{2}}{32\pi^{2}}F\tilde{F}$$

[Bauer et al. 2012.12272; Choi et al. 2106.05816]

✓ Matching with an axion effective Lagrangian in the GKR basis

$$\frac{\partial_{\mu}a}{f} \left(\sum_{\psi=q_L,\ell_L,\dots} c_{\psi}\bar{\psi}\gamma^{\mu}\psi + \sum_{\Phi=H_1,H_2,\dots} c_{\Phi}\Phi^{\dagger}i\overset{\leftrightarrow}{D^{\mu}}\Phi \right) + \sum_{A=G,W,B} c_A \frac{g_A^2}{32\pi^2} \frac{a}{f} F_A$$

Matching with
$$\mathcal{L}_{a}^{\text{eff}} = \frac{\partial_{\mu}a}{2f_{a}} \sum_{f=p,n,e} C_{f}\bar{f}\gamma^{\mu}\gamma_{5}f + C_{\gamma}\frac{a}{f_{a}}\frac{e^{2}}{32\pi^{2}}F\tilde{F}$$

RG corrections crucially depend on the heavy Higgs scale instead of PQ scale (1 TeV $\leq m_{\text{BSM}} \leq f_a$)

In the DFSZ models, the leading contribution arises from top loop diagrams induced by axion-top coupling C_t

$$C_f(2\text{GeV}) \simeq C_f(f_a) + r_f^t$$

 $(m_{\rm BSM}) C_t(f_a)$

 $\frac{\partial_{\mu}a}{f} (H^{\dagger}iD_{\mu}H) \rightarrow \frac{\partial_{\mu}a}{f} \sum_{\psi=q_{I}, u_{P}, \dots} \beta_{\psi}\overline{\psi}\gamma_{\mu}\psi \qquad (\beta_{\psi}=Y_{\psi}/Y_{H})$

In the DFSZ models, the leading contribution arises from top loop diagrams induced by axion-top coupling C_t

$$C_f(2\text{GeV}) \simeq C_f(f_a) + r_f^t$$

 $(m_{\rm BSM}) C_t(f_a)$

$$\begin{split} \frac{\partial}{\partial t} (H^{\dagger}iD_{\mu}H) &\rightarrow \frac{\partial_{\mu}a}{f} \sum_{\psi=q_{L},u_{R},...} \beta_{\psi}\overline{\psi}\gamma_{\mu}\psi \qquad (\beta_{\psi}=Y_{\psi}/Y_{H}) \\ &\simeq \frac{\partial_{\mu}a}{2f} \sum_{f=u,d,...} (\beta_{f_{R}}-\beta_{f_{L}}) \, \bar{f}\gamma_{\mu}\gamma_{5}f \\ &\propto T_{3,f} \text{ weak isospin} \end{split}$$

In the DFSZ models, the leading contribution arises from top loop diagrams induced by axion-top coupling C_t

$$C_f(2\text{GeV}) \simeq C_f(f_a) + r_f^t$$

 $r_f^t \simeq T_{3,f} r_3^t$ independent of fermion species f

In the DFSZ models, the leading contribution arises from top loop diagrams induced by axion-top coupling C_t

$$C_f(2\text{GeV}) \simeq C_f(f_a) + r_f^t$$

Analytical approximation (~2% precision)

$$\begin{aligned} r_3^t &= r_u^t - r_d^t \simeq -0.54 \ln(\sqrt{x} - 0.52) \\ r_0^t &= r_u^t + r_d^t \simeq 3.8 \times 10^{-4} \ln^2(x - 1.25) \approx \\ r_e^t &\simeq -\frac{r_3^t}{2} \end{aligned}$$

 $(m_{\text{BSM}}) C_t(f_a)$ $r_f^t \simeq T_{3,f} r_3^t$ with $x = \log_{10} \left(\frac{m_{\rm BSM}}{\rm GeV} \right)$ pprox 0

RG effects on hadronic axion couplings

• DFSZ1: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L H_2 e_R$ • DFSZ2: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L \tilde{H}_1 e_R$

upling (DFSZ1)	Coupling (DFSZ2)	Approx. Correction
$\simeq -0.20$	$C_0 \simeq -0.20$	$\Delta C_0 \approx 0$
$\simeq -0.43 \sin^2 \beta$	$C_3\simeq -0.43\sin^2\beta$	$\Delta C_3 \simeq -0.12 l(x) \cos^2 \beta$
$=\frac{1}{3}\sin^2\beta$	$C_e = -\frac{1}{3}\cos^2\beta$	$\Delta C_e \simeq 0.094 l(x) \cos^2 \beta$
$=\frac{8}{3}-1.92$	$C_{\gamma} = \frac{2}{3} - 1.92$	$\Delta C_{\gamma} = 0$

$$l(x) = \ln(\sqrt{x} - 0)$$
$$\tan \beta = v_1 / v_2$$

RG effects on hadronic axion couplings

• DFSZ1: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L H_2 e_R$ • DFSZ2: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L \tilde{H}_1 e_R$

tree couplings vanish at $\beta \rightarrow 0$

RG corrections

upling (DFSZ1)	Coupling (DFSZ2)	Approx. Correction
≃ -0.20	$C_0 \simeq -0.20$	$\Delta C_0 \approx 0$
$\simeq -0.43 \sin^2 \beta$	$C_3 \simeq -0.43 \sin^2 \beta$	$\Delta C_3 \simeq -0.12 l(x) \cos^2 \beta$
$=\frac{1}{3}\sin^2\beta$	$C_e = -\frac{1}{3}\cos^2\beta$	$\Delta C_e \simeq 0.094 l(x) \cos^2 \beta$
$=\frac{8}{3}-1.92$	$C_{\gamma}=\frac{2}{3}-1.92$	$\Delta C_{\gamma} = 0$

$$l(x) = \ln(\sqrt{x} - 0)$$
$$\tan \beta = v_1 / v_2$$

					_
			n		┢
5	U	U		U	L

).52)

RG effects on leptonic axion couplings

• DFSZ1: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L H_2 e_R$ • DFSZ2: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L \tilde{H}_1 e_R$

tree couplings vanish at $\beta \rightarrow 0$

RG corrections

upling (DFSZ1)	Coupling (DFSZ2)	Approx. Correction
$\simeq -0.20$	$C_0 \simeq -0.20$	$\Delta C_0 \approx 0$
$\simeq -0.43 \sin^2 \beta$	$C_3 \simeq -0.43 \sin^2 \beta$	$\Delta C_3 \simeq -0.12 l(x) \cos^2 \beta$
$=\frac{1}{3}\sin^2\beta$	$C_e = -\frac{1}{3}\cos^2\beta$	$\Delta C_e \simeq 0.094 l(x) \cos^2 \beta$
$=\frac{8}{3}-1.92$	$C_{\gamma} = \frac{2}{3} - 1.92$	$\Delta C_{\gamma} = 0$

$$l(x) = \ln(\sqrt{x} - 0)$$
$$\tan \beta = v_1 / v_2$$

					_
			n		┢
5	U	U		U	L

0.52)

RG effects on leptonic axion couplings

• DFSZ1: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $l_L H_2 e_R$ • DFSZ2: $\bar{q}_L H_1 u_R$, $\bar{q}_L H_2 d_R$, $\bar{l}_L \tilde{H}_1 e_R$

tree couplings vanish at $\beta \rightarrow 0$

RG corrections

upling (DFSZ1)	Coupling (DFSZ2)	Approx. Correction
$\simeq -0.20$	$C_0 \simeq -0.20$	$\Delta C_0 \approx 0$
$\simeq -0.43 \sin^2 \beta$	$C_3 \simeq -0.43 \sin^2 \beta$	$\Delta C_3 \simeq -0.12 l(x) \cos^2 \beta$
$=\frac{1}{3}\sin^2\beta$	$C_e = -\frac{1}{3}\cos^2\beta$	$\Delta C_e \simeq 0.094 l(x) \cos^2 \beta$
$=\frac{8}{3}-1.92$	$C_{\gamma} = \frac{2}{3} - 1.92$	$\Delta C_{\gamma} = 0$

 $l(x) = \ln(\sqrt{x} - 0.52)$ $\tan\beta = v_1/v_2$

Large RG corrections for ▶ *C*₃, *C*_e (*DFSZ*1), *C*₃ (*DFSZ*2) small tanβ large m_{BSM}

					_
			n		┢
5	U	U		U	L

Impact on Axion Phenomenology

• **RGB bound**: $|C_e| \le 1.65 \times 10^{-3} (m_a/\text{eV})^{-1}$

• SN1987A: $L_a \le L_\nu = 3 \times 10^{52} \, \text{erg/s}$

 $L_a = \epsilon_0 \left(\frac{m_N}{f_a}\right)^2 C_{\rm SN}^2 \times 10^{70} \, {\rm erg/s} \quad {\rm axion \ emission \ rate}$

$$\begin{split} C_{\rm SN} &= 1.4 \left(C_0^2 + 1.3 C_3^2 + 0.11 C_0 C_3 \right) \quad \text{[Lella et al. 2211.13760]} \\ \\ NN &\rightarrow NNa \\ &+ \pi N \rightarrow Na \quad \text{[Carenza et al. 2010.02943; Choi et al. 2110.01972]} \end{split}$$

+ $\Delta(1232)$ resonance [Ho, Kim, Ko, Park, 2212.01155]

Impact on Axion Phenomenology

• XENON-nT (g_{ae})

• Hot Dark Matter ($g_{a\pi}$) $a\pi \leftrightarrow \pi\pi$

For RG effects, $m_{BSM} \in [1\text{TeV}, f_a]$

Application to other axion models

- Nucleophobic axion
 - Strong SN1987A bound is relaxed if $C_N \approx 0$
 - At the tree level, this suppression is realized by generation dependent PQ charge for quarks such that

(i)
$$N = N_{1st}$$
, $N_{2nd} = -N_{3rd}$ (N: PQ-QCD

(ii)
$$v_2^2/v_1^2 = \tan^2\beta = 2$$
 [Alves, Weiner (2017)

 \rightarrow These relations are modified at low energy scales by the RG corrections (see figure)

Axion nucleophobia keeps holding even after including the RG effects, albeit with a fairly different VEV ratio

Summary

RG effects to DFSZ axion couplings have been assessed:

$$C_f(2\text{GeV}) \simeq C_f(f_a) + T_{3,f}$$

 $r_3^t = r_u^t - r_d^t \simeq -0.54 \ln(\sqrt{2})$

- You can apply those effects to any other (DFSZ-like) axion models!
 - your axion model predictions might be changed (e.g. axion nucleophobia)

Thanks for your attention

 $r_3^t (m_{\text{BSM}}) C_t (f_a)$ $\sqrt{x} - 0.52$ with $x = \log_{10} \left(\frac{m_{\text{BSM}}}{\text{GeV}}\right)$

Back up

Axion interactions to matter and radiation

$$\mathcal{L}_{a} = C_{\gamma} \frac{\alpha}{8\pi} \frac{a}{f_{a}} F^{\mu\nu} \tilde{F}_{\mu\nu} + \sum_{f=p,n,e} C_{f} \frac{\partial_{\mu}a}{2f_{a}} \overline{f} \gamma^{\mu} \gamma_{5} f$$

$$+ C_{\pi} \frac{\partial_{\mu}a}{f_{a}f_{\pi}} (2\partial^{\mu}\pi^{0}\pi^{+}\pi^{-} - \pi^{0}\partial^{\mu}\pi^{+}\pi^{-} - \pi^{0}\pi^{+}\partial^{\mu}\pi^{-})$$

$$+ C_{\pi N} \frac{\partial_{\mu}a}{2f_{a}f_{\pi}} (i\pi^{+}\overline{p}\gamma^{\mu}n - i\pi^{-}\overline{n}\gamma^{\mu}p)$$

$$+ C_{N\Delta} \frac{\partial^{\mu}a}{2f_{a}} \left(\overline{p} \Delta_{\mu}^{+} + \overline{\Delta_{\mu}^{+}} p + \overline{n} \Delta_{\mu}^{0} + \overline{\Delta_{\mu}^{0}} n\right) + \dots,$$

$$C_{\gamma} = \frac{E}{N} - 1.92; \quad \frac{E}{N} = \frac{c_W + c_B}{c_G}$$
$$C_{\pi} = -\frac{2}{3}g_A^{-1}C_3; \quad C_{\pi N} = \sqrt{2}g_A^{-1}C_3; \quad C_{N\Delta} = -\sqrt{3}C_3$$
$$C_{0,3} = \frac{1}{2}(C_p \pm C_n)$$

 $\leftarrow \mathsf{RGB} \text{ bound } (C_e), \mathsf{SN1987A} (NN \rightarrow NNa)$

$$\leftarrow$$
 HDM bound ($a\pi \leftrightarrow \pi\pi$)

 $\leftarrow SN1987A (\pi N \rightarrow Na)$

 \leftarrow SN1987A (Δ -resonance)

Axion couplings to SM fields

Axion effective Lagrangian in the Georgi-Kaplan-Randall basis:

$$\mathcal{L}_{a}^{\mathrm{GKR}} = \frac{\partial_{\mu}a}{f} \left(\sum_{\psi=q_{L},\ell_{L},\dots} c_{\psi}\bar{\psi}\gamma^{\mu}\psi + \sum_{\Phi=H_{1},H_{2},\dots} c_{\Phi}\Phi^{\dagger}i\overset{\leftrightarrow}{D^{\mu}}\Phi \right) + \sum_{A=G,W,B} c_{A}\frac{g_{A}^{2}}{32\pi^{2}}\frac{a}{f}F_{A}\widetilde{F}_{A}$$

- ▶ U(1)_{PQ} non-linearly realized: $a \rightarrow a + \alpha f$
- Heavy O(f) radial mode ignored

$$c_{\psi,\Phi} = \mathcal{X}_{\psi,\Phi}$$
$$c_A = \sum_{\psi_R} 2\mathcal{X}_{\psi_R} \operatorname{Tr} T_A^2(\psi_R) - \sum_{\psi_L} 2\mathcal{X}_{\psi_L} \operatorname{Tr} T_A^2(\psi_L)$$

At $\mu = f$, one can take this basis by performing axion-dependent field redefinition $\psi \to e^{-i\mathcal{X}_{\psi}a/f}\psi$ -> axion couplings correspond to PQ charge of fields and PQ-(gauge)^2 anomaly coefficients

Axion couplings to nucleons

$$C_0 = \frac{1}{2}(C_p + C_n) = 0.22(C_u + C_d - 1) - 0.035C_s$$
$$C_3 = \frac{1}{2}(C_p - C_n) = 0.64\left(C_u - C_d - \frac{m_d - m_u}{m_d + m_u}\right)$$

$$C_3 \simeq -0.43 \sin^2 \beta + 0.64 \left(\frac{1}{3} - \frac{m_d - m_u}{m_d + m_u}\right)$$
$$\simeq 0 \ (\because m_d/m_u \simeq 2)$$

 $C_u = \cos^2 \beta / 3$ $C_d = \sin^2 \beta / 3$

Renormalization group equations (1/2)

 $\blacksquare \ \mu_{EW} < \mu < m_{BSM}$

$$(4\pi)^{2} \frac{dc'_{q_{L}}}{d\log\mu} = \frac{1}{2} \{c'_{q_{L}}, Y_{u}Y_{u}^{\dagger} + Y_{d}Y_{d}^{\dagger}\} - Y_{u}c'_{u_{R}}Y_{u}^{\dagger} - Y_{d}c'_{d_{R}}Y_{d}^{\dagger} \\ + \left(8\alpha_{s}^{2}\widetilde{c}_{G} + \frac{9}{2}\alpha_{2}^{2}\widetilde{c}_{W} + \frac{1}{6}\alpha_{1}^{2}\widetilde{c}_{B}\right)\mathbf{1} - \beta_{q}\gamma_{H}\mathbf{1}, \\ (4\pi)^{2} \frac{dc'_{u_{R}}}{d\log\mu} = \{c'_{u_{R}}, Y_{u}^{\dagger}Y_{u}\} - 2Y_{u}^{\dagger}c'_{q_{L}}Y_{u} - \left(8\alpha_{s}^{2}\widetilde{c}_{G} + \frac{8}{3}\alpha_{1}^{2}\widetilde{c}_{B}\right)\mathbf{1} \\ -\beta_{u}\gamma_{H}\mathbf{1}, \\ (4\pi)^{2} \frac{dc'_{d_{R}}}{d\log\mu} = \{c'_{d_{R}}, Y_{d}^{\dagger}Y_{d}\} - 2Y_{d}^{\dagger}c'_{q_{L}}Y_{d} - \left(8\alpha_{s}^{2}\widetilde{c}_{G} + \frac{2}{3}\alpha_{1}^{2}\widetilde{c}_{B}\right)\mathbf{1} \\ -\beta_{d}\gamma_{H}\mathbf{1}, \\ (4\pi)^{2} \frac{dc'_{\ell_{L}}}{d\log\mu} = \frac{1}{2}\{c'_{\ell_{L}}, Y_{e}Y_{e}^{\dagger}\} - Y_{e}c'_{e_{R}}Y_{e}^{\dagger} + \left(\frac{9}{2}\alpha_{2}^{2}\widetilde{c}_{W} + \frac{3}{2}\alpha_{1}^{2}\widetilde{c}_{B}\right)\mathbf{1} \\ -\beta_{\ell}\gamma_{H}\mathbf{1}, \\ (4\pi)^{2} \frac{dc'_{e_{R}}}{d\log\mu} = \{c'_{e_{R}}, Y_{e}^{\dagger}Y_{e}\} - 2Y_{e}^{\dagger}c'_{\ell_{L}}Y_{e} - 6\alpha_{1}^{2}\widetilde{c}_{B}\mathbf{1} - \beta_{e}\gamma_{H}\mathbf{1}, \end{cases}$$

where

$$\begin{split} \gamma_{H} &= -2 \operatorname{Tr} \left(3Y_{u}^{\dagger} c_{q_{L}}' Y_{u} - 3Y_{d}^{\dagger} c_{q_{L}}' Y_{d} - Y_{e}^{\dagger} c_{\ell_{L}}' Y_{e} \right) \\ &+ 2 \operatorname{Tr} \left(3Y_{u} c_{u_{R}}' Y_{u}^{\dagger} - 3Y_{d} c_{d_{R}}' Y_{d}^{\dagger} - Y_{e} c_{e_{R}}' Y_{e}^{\dagger} \right), \\ \widetilde{c}_{G} &= c_{G} - \operatorname{Tr} \left(c_{u_{R}}' + c_{d_{R}}' - 2c_{q_{L}}' \right), \\ \widetilde{c}_{W} &= c_{W} + \operatorname{Tr} \left(3c_{q_{L}}' + c_{\ell_{L}}' \right), \\ \widetilde{c}_{B} &= c_{B} - \operatorname{Tr} \left(\frac{1}{3} (8c_{u_{R}}' + 2c_{d_{R}}' - c_{q_{L}}') + 2c_{e_{R}}' - c_{\ell_{L}}' \right). \end{split}$$

Axion-Higgs coupling c_H is removed at any scale by performing an axion-dependent hypercharge rotation: $\psi \to e^{-ic_H \beta_{\psi} a/f} \psi \quad (\beta_{\psi} = Y_{\psi}/Y_H)$

This redefines all axion-fermion couplings as $c_\psi \to c_\psi' = c_\psi - \beta_\psi c_H$, which you see in the RGEs

 $\blacksquare \ \mu_{QCD} < \mu < \mu_{EW}$

$$(4\pi)^2 \frac{d(C_u^A)_{ii}}{d\log\mu} = -16\alpha_s^2 \widetilde{c}_G - \frac{8}{3}\alpha_{\rm em}^2 \widetilde{c}_\gamma ,$$

$$(4\pi)^2 \frac{d(C_d^A)_{ii}}{d\log\mu} = -16\alpha_s^2 \widetilde{c}_G - \frac{2}{3}\alpha_{\rm em}^2 \widetilde{c}_\gamma ,$$

$$(4\pi)^2 \frac{d(C_e^A)_{ii}}{d\log\mu} = -6\alpha_{\rm em}^2 \widetilde{c}_\gamma ,$$

where

$$\begin{split} \widetilde{c}_G(\mu) &= 1 - \sum_q C_q^A(\mu) \Theta(\mu - m_q) \,, \\ \widetilde{c}_\gamma(\mu) &= \frac{c_\gamma}{c_G} - 2 \sum_f N_c^f Q_f^2 C_f^A(\mu) \Theta(\mu - m_f) \,, \end{split}$$

Renormalization group equations (2/2)

add threshold corrections at the EW scale

 $C_f^A(\mu_{\rm EW}) = c_{f_R}(\mu_{\rm EW}) - c_{f_L}(\mu_{\rm EW}) + \Delta c_{f_R} - \Delta c_{f_L}$

Perturbative Unitarity Bounds

 \blacksquare Small tan β leads low Landau pole scales

impose perturbative unitarity on Higgs-mediated fermion 2 \rightarrow 2 scattering up to $\mu = f_a$:

 $\Rightarrow Y_{t,b}^{\text{2HDM}} \leq \sqrt{16\pi/3}$ [Di Luzio, Kamenik, Nardecchia (2016)]

(region left to the black line is excluded)

Yukawa couplings are RG-evolved from m_Z to f_a , while appropriately matching with the 2HDM at $\mu = m_{BSM}$

Astrophysical bounds in DFSZ2 model

■ DFSZ2 model:

axion-electron coupling is not suppressed in the small tan β region: $C_e(f_a) = -c_{\beta}^2/3$

 \Rightarrow RG effect less important for the RGB bound than in the DFSZ1 model

Hadronic couplings are unchanged \Rightarrow RG effect is unchanged for the SN1987A bound

