The 3rd International Joint Workshop & The 11th KIAS Workshop on BSM and Cosmology

November 2023, Jeju Island

Recent Progress in Minimal G2HDM Phenomenology

TC Yuan, IOP Academia Sinica, Taiwan Based on 2109.03185, 2208.10971, 2212.02333 & work in progress Collaborators: Raymundo Ramos (KIAS), Van Que Tran (TDLI), Thong T. Q. Nguyen (AS)

- Review of Minimal G2HDM
- Electroweak Precision Measurement of W Boson Mass
- Charged Lepton Flavor Violation Processes
- Gravitational Wave and First Order Electroweak Phase Transition
- Summary and Outlook

Outline

Gauged 2HDM (G2HDM)

- Novel idea is to lump H_1 and H_2 into a 2-dim irrep. of an hidden $SU(2)_H$ gauge group
- Proposed a hidden SM-like gauge sector $SU(2)_H \times U(1)_Y$
- A hidden Higgs doublet Φ_H (augmented by a Stueckelburg $U(1)_X$ scalar S) is also needed to break the hidden gauge group (to give masses to new gauge bosons $\gamma', Z', \mathcal{W}'^{(p,m)}$)
- No ad hoc discrete symmetry (like Z₂ in IHDM, R-parity in MSSM, T-parity in Littlest Higgs model, KK-parity in extra dim models ... for DM candidates). Instead a *b*-parity emerges naturally!

Huang, Tsai, TCY, 1512.00229 Ramos, Tran, TCY, 2109.03185

Matter Content in Minimal G2HDM

Table II. Higgs scalars in the minimal G2HDM and their quantum number assignments.

Ramos, Tran, Yuan, 2101.07115, 2109.03185

$(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$	<i>h</i> -parity
	2	$\frac{1}{2}$	$\frac{1}{2}$	(+, -)
	2	0	$\frac{1}{2}$	(-,+)
	1	0	0	+

				/
$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$	<i>h</i> -parity
2	1	$\frac{1}{6}$	0	(+,+)
1	2	$\frac{2}{3}$	$\frac{1}{2}$	(+, -)
1	2	$-\frac{1}{3}$	$-\frac{1}{2}$	(-,+)
1	1	$\frac{2}{3}$	0	_
1	1	$-\frac{1}{3}$	0	_
2	1	$-\frac{1}{2}$	0	(+, +)
1	2	0	$\frac{1}{2}$	(+, -)
1	2	-1	$-\frac{1}{2}$	(-,+)
1	1	0	0	_
1	1	-1	0	_

Emerges naturally! No need to impose ad hoc by hand!

- All SM particles have even h-parity, while all new particles have odd.
- Free of gauge, gravitational and Witten's global SU(2) anomalies!

Table III. Fermions in the minimal G2HDM and their quantum number assignments.

Scalar Potential in G2HDM

- The scalar potential is (no ad hoc Z_2 imposed!) $V = -\mu_H^2 \left(H^{\alpha i} H_{\alpha i} \right) + \lambda_H \left(H^{\alpha i} H_{\alpha i} \right)^2 + \frac{1}{2} \lambda'_H \epsilon_{\alpha\beta} \epsilon^{\gamma\delta} \left(H^{\alpha i} H_{\gamma i} \right) \left(H^{\beta j} H_{\delta j} \right)$
- Invariant under $SU(2)_L \times U(1)_Y \times SU(2)_H \times U(1)_X$
- no CP violation in the scalar sector of G2HDM

 $-\mu_{\Phi}^{2}\Phi_{H}^{\dagger}\Phi_{H} + \lambda_{\Phi}\left(\Phi_{H}^{\dagger}\Phi_{H}\right)^{2} + \lambda_{H\Phi}\left(H^{\dagger}H\right)\left(\Phi_{H}^{\dagger}\Phi_{H}\right) + \lambda_{H\Phi}^{\prime}\left(H^{\dagger}\Phi_{H}\right)\left(\Phi_{H}^{\dagger}H\right),$

• Each term is self-hermitian, all couplings are real, hence

Symmetry Breaking

• As in I2HDM, we assume *b*-parity is *not* spontaneously broken

$$H_{1} = \begin{pmatrix} G^{+} \\ \frac{v + h_{\rm SM}}{\sqrt{2}} + i \frac{G^{0}}{\sqrt{2}} \end{pmatrix}, \ H_{2} = \begin{pmatrix} H^{+} \\ H_{2}^{0} \end{pmatrix}, \ \Phi_{H} = \begin{pmatrix} G_{H}^{p} \\ \frac{v_{\Phi} + \phi_{H}}{\sqrt{2}} + i \frac{G_{H}^{0}}{\sqrt{2}} \end{pmatrix}$$

SM Higgs doublet

- $(h_{\text{SM}}, \phi_H) \rightarrow (h_1, h_2)$ with mixing angle θ_1 .
- $(H_2^0, G_H^m) \to (D, \tilde{G})$ with mixing angle θ_2 (not constraint!)

Inert Higgs doublet

Hidden Higgs doublet

 $\langle H_2 \rangle = 0$

 $h(125) = h_1 \text{ or } h_2 \text{ is very much SM-like} \implies \text{Small effect to } \Delta M_W$ \implies Sizable effect to $\Delta M_W!$

DM Candidate (*b*-parity odd)

(depends on parameter space)

- spin 0 from inert doublet In G2HDM reality, $H_{2} = \begin{pmatrix} H^{+} \\ H_{2}^{0} \end{pmatrix} \qquad \begin{pmatrix} G_{H}^{m} \\ H_{2}^{0} \end{pmatrix} = \begin{pmatrix} \cos \theta_{2} & \sin \theta_{2} \\ -\sin \theta_{2} & \cos \theta_{2} \end{pmatrix} \begin{pmatrix} \tilde{G} \\ D \end{pmatrix}$ $-2 - (H_2^0)$ (r. 2208.109/165 - spin 1 hidden vector gauge bosons 212.02332, 2208.109/165 - spin 1 hidden vector gauge bosons

- spin 1/2 hidden neutrino Not study yet.

• Lightest *b*-parity *odd* electrically *neutral* particle

Doesn't mix with SM W^{\pm} ! Different from Left-Right model!

Dirac or Majorana

CDF II New High Precision Measurement of M_W [Science 376, no. 6589, 170-176 (2022)]

 8.8 fb^{-1} data collected from 2002—2011:

 $m_W({
m CDF~II}) = 80,433.5 \pm 9.4 \;{
m MeV}/c^2$

- CDF ~ 3σ away from ATLAS and LHCb
- CDF ~ $6 7\sigma$ away from best fits (de Blas et al, 2112.07274)

 $m_W(\text{SM} - \text{Global Fits}) = 80,359.1 \pm 5.2 \text{ MeV}/c^2$.

 $\Delta M_W \approx 75 \,\mathrm{MeV}$

- BSM physics? Or Systematic? (CDF data collected 2002-2011, Best people left, ...)
- Exp. data not yet combined with LEP and LHC!

RESEARCH | RESEARCH ARTICLE

Fig. 5. Comparison of this CDF II measurement and past M_W measurements with the SM expectation. The latter includes the published estimates of the uncertainty (4 MeV) due to missing higher-order quantum corrections, as well as the uncertainty (4 MeV) from other global measurements used as input to the calculation, such as m_t . c, speed of light in a vacuum.

Neutral Gauge Boson Mass Mixing vs Z Mass Shift

- $M_7^{\text{BestFit}-\text{PDG}-2022} = 91.1876 \pm 0.0021 \,\text{GeV}$
- In the basis of $\{Z^{SM}, W'^3, X\}$

$$\mathcal{M}_{Z}^{2} = \begin{pmatrix} m_{Z^{\text{SM}}}^{2} & -\frac{g_{H}v}{2}m_{Z^{\text{SM}}} & -g_{X}vm_{Z^{\text{SM}}} \\ -\frac{g_{H}v}{2}m_{Z^{\text{SM}}} & m_{W'}^{2} & \frac{g_{X}g_{H}\left(v^{2}-v_{\Phi}^{2}\right)}{2} \\ -g_{X}vm_{Z^{\text{SM}}} & \frac{g_{X}g_{H}\left(v^{2}-v_{\Phi}^{2}\right)}{2} & g_{X}^{2}\left(v^{2}+v_{\Phi}^{2}\right)+M_{X}^{2} \end{pmatrix}, \qquad \Longrightarrow \quad \{Z, \gamma', Z'\}$$

- However one can have $m_{Z'} \approx 2m_{W'}$ to achieve resonant scenario. For heavy DM mass, we need coannihilation mechanism with H^{\pm} , which is *b*-parity odd in G2HDM.

Z Mass Shift (LEP) 2.1 MeV

[See also talk by Kazuki Enomoto]

• EWPT gives strong constraints on new gauge couplings $g_H, g_X!$

 $|g_X| \sim |g_H| \lesssim 0.006 \times \sqrt{1 - \frac{7}{5} \frac{m_{W'}^2}{m_{Z^{SM}}^2} + \frac{4}{5} \frac{M_X^2}{m_{Z^{SM}}^2}} \cdot \frac{1}{2021} \cdot \frac{1}{12}$ Ramos, Tran, and TCY, JHEP11 (2021) 112 $\implies \text{Small effect to } \Delta M_W$

• Small $g_{H,X}$ implies W DM overabundance! (: annihilation cross section too small)

annihilation to get the correct relic density in *light* DM mass

Contributions from heavy fermions f^{H}

 f^{H} s couple to the SM γ , Z are very close to *vector-like*!

$$\begin{split} \Pi_{WW}^{f^{H}}(q^{2}) &= 0 , \\ \Pi_{\gamma\gamma}^{f^{H}}(q^{2}) &= N_{C}e^{2}Q_{f^{H}}^{2}\Pi_{QQ}(q^{2}) , \\ \Pi_{\gamma Z}^{f^{H}}(q^{2}) &= -N_{C}e^{2}Q_{f^{H}}^{2}\tan\theta_{W}\Pi_{QQ}(q^{2}) , \\ \Pi_{ZZ}^{f^{H}}(q^{2}) &= N_{C}e^{2}Q_{f^{H}}^{2}\tan^{2}\theta_{W}\Pi_{QQ}(q^{2}) , \end{split}$$

• This implies, $\Delta S(f^H) = \Delta T$

• Thus $\Delta m_{W_f^H}^2 = 0!$

• From our previous analysis, we know $g_H, g_X \ll g, g'$. This implies

$$U(f^H) = \Delta U(f^H) = 0$$
.

Contributions from Inert Doublet H_2

Only significant contributions from G2HDM (Feynman-'t Hooft gauge, $m_{\tilde{G}^{(*)}} = m_{\mathcal{W}^{'}(p,m)}$)

$$\begin{pmatrix} G_H^m \\ H_2^0 \end{pmatrix} = \mathcal{O}^D \cdot \begin{pmatrix} \tilde{G} \\ D \end{pmatrix} = \begin{pmatrix} \cos \theta_2 & \sin \theta_2 \\ -\sin \theta_2 & \cos \theta_2 \end{pmatrix} \cdot \begin{pmatrix} \tilde{G} \\ D \end{pmatrix}$$

Mass splitting $(m_{H^{\pm}} - m_D)$ can be sensitively probed by T parameter

S, T, U (New Physics Only) - Global Fits

- PDG-2021[PTEP 2020, no.8, 083C01 (2020)] •

- Correlation coefficients are 0.92(S, T), -0.8(S, U), -0.93(T, U)• CDF-2022 [de Blas *et al*, 2204.04204]

- $S = -0.01 \pm 0.1$,
- $T = 0.03 \pm 0.12$,
- $U = 0.02 \pm 0.11$,

- $S = 0.005 \pm 0.096$,
- $T = 0.04 \pm 0.12$,
- $U = 0.134 \pm 0.087$, \leftarrow A much larger U!!
- Correlation coefficients are 0.91(S, T), -0.65(S, U), -0.88(T, U)

Phenomenological and Theoretical Constraints

- Vacuum stability Scalar potential is bounded from below 🤗
- Perturbative unitarity constraints via $(S_1S_2 \rightarrow S_3S_4)$ \bullet
- Signal strengths for $h_{\rm SM} \to \gamma \gamma$, $h_{\rm SM} \to VV^*(V = W, Z)$, $h_{\rm SM} \to \tau^+ \tau^-$ from LHC \oslash \bullet

- Higgs invisible width (*light* dark matter scenario): ullet $Br(h \rightarrow invisible) < 0.13 (ATLAS 2020) \oslash$
- Electroweak precision data from LEP: Z mass shift *I* \bullet
- Dark photon γ' searches (beam dump, BelleII, ...) \bullet
- Z' searches (High invariant mass dilepton searches) \oslash
- Monojet searches 🔗
- Dark matter relic density: $\Omega_{\gamma}h^2 = 0.120 \pm 0.001 (PLANCK 2018) \oslash$
- Dark matter direct searches ($\sigma_{\chi p}^{SI}$) from CRESST III, DarkSide-50, XENON1T, PandaX-4T, LZ, CDEX, NEWS-G, SuperCDMS etc.
- New m_W measurement from CDF-II (2022) \oslash

- $\mu_{ggh}^{\gamma\gamma} = 0.96 \pm 0.14 \,(\text{ATLAS 2020}), \,\mu_{ggh}^{\tau\tau} = 1.05^{+0.53}_{-0.47} \,(\text{CMS 2019})$
 - $\mu_{ggh}^{WW*} = 1.13^{+0.13}_{-0.12}, \ \mu_{ggh}^{ZZ*} = 0.95^{+0.11}_{-0.11} (ATLAS 2022)$

1σ and 2σ Flavored Regions of Masses and Mixing Angles V.Q. Tran, T. T. Q. Nguyễn and TCY, arXiv:2208:10971

DM Direct Detection

Light DM mass scenario

Spin independent DM-proton elastic cross section $\sigma_{\mathcal{W}'p}^{SI}$ versus DM mass $m_{\mathcal{W}'}$ HeRALD — Superfuild He⁴ as target with roton and phonon quasiparticle signals

V.Q. Tran, T. T. Q. Nguyễn and TCY, arXiv:2208:10971

Charged Lepton Flavor Violation Radiative Decays

- $l_i \rightarrow l_j \gamma$, MDM a_{i_i} , EDM d_{l_i} are closely related
- $\mu \to e\gamma, \mu \to e\phi, \dots; \mu e$ conversion etc.

$$\mathscr{B}(\mu \to e\gamma)_{\rm SM} = \frac{3\alpha}{32\pi} \left(\sum_{i} U_{ei}^* U_{\mu i} \frac{m_{\nu_i}^2}{M_W^2} \right)^2 < 10^{-55} \text{ Exceedingly small}!!$$

	From tion	Observable	Experimental Result/Limit	Future Goal
		$a_{\mu}(\text{BNL})$	$(11659208.9\pm5.4_{\rm stat}\pm3.3_{\rm sys}) \times 10^{-10}$ [15–17]	
1.0		$a_{\mu}(\mathrm{FNAL})$	$(11659204.0\pm5.4) imes10^{-10}$ [18]	Uncertainty ${\sim}1/4$ of BNL
4.2 σ away from SM prediction		$a_{\mu}(BNL + FNAL)$	$(11659206.1\pm 4.1) \times 10^{-10}$ [18]	Uncertainty ${\sim}1/4$ of BNL
om prediction		$\mathcal{B}(\mu^+ \to e^+ \gamma)$ (MEG)	$< 4.2 \times 10^{-13} (90\% C.L.)$ [4]	$\sim 6 \times 10^{-14}~({\rm MEG~II}~[5])$
		$\left \frac{d_{\mu}}{e}\right $ [cm]	$< 1.8 \times 10^{-19} (95\% C.L.)$ [21]	$\sim 6\times 10^{-23}~(\mathrm{PSI}~[22])$
		$\left \frac{d_e}{e}\right $ [cm] (ACME)	$< 1.1 \times 10^{-29} (90\% C.L.)$ [23]	(Advanced ACME [24])

Refs: Too many, not enough room to cite!! [Cheung, ..., Chun, ..., Ko, ..., Ramos, ..., Song, ..., Tseng, ...]

[See also talk by Gabriela Lima Lichtenstein]

Table 1. Experimental results for a_{μ} and upper limits for $\mathcal{B}(\mu \to e\gamma)$, $|d_{\mu}/e|$ and $|d_e/e|$.

One loop contributions in Minimal (with V.Q. Tran, JHEP 02 (2023) 117) G2HDM

SM Contributions are recalculated!

Figure 1. The one-loop SM-like contribution to $l_i - l_j - \gamma$ vertex from the SM W boson diagram (left panel), and contributions to $l_i - l_i - \gamma$ vertex from $\{Z_n\}$ diagram (center panel) and $\{h_n\}$ diagram (right panel) in G2HDM.

W

N

 ν_k

 l_j

Figure 2. Three new contributions of \mathcal{D} , \mathcal{H}^+ and \mathcal{W}' to $l_i - l_j - \gamma$ vertex in G2HDM.

Viable Parameter Space (2σ) For sub GeV DM

Figure 6. Viable DM parameter points spanned in the plane of the total branching ratio of $\mu \to e\gamma$ and muon anomalous magnetic dipole moment Δa_{μ} . Here we fixed $m_{l^{H}} = 1$ TeV and $\Delta m_{l^{H}} = 50 \,\text{GeV}$. The solid red and dashed blue lines are the current limit from MEG [4] and future sensitivity from MEG II [5], respectively. The shaded light blue band represents the 2σ region of Δa_{μ} measured at BNL [15–17] and FNAL [18].

MEG II Sensitivity

Figure 7. Favored data projected on the plane of the DM mass and spin independent DM-proton scattering cross section. Here we fixed $m_{l^{H}} = 1$ TeV and $\Delta m_{l^{H}} = 50$ GeV. The crossed purple points indicate the data satisfied the MEG constraint [4], while the circle green points indicate the data that can be probed by future experiment from MEG II [5]. The gray regions are the exclusion from CRESST-III [45], DarkSide-50 [46] and XENON1T [47] experiments. The dashed blue, red and light blue lines represent the future sensitivities from DM direct detection experiments at NEWS-G [51], SuperCDMS [52] and CDEX [53], respectively. Orange region is the neutrino floor background.

GW Signals & Strong FOEWPT in Minimal G2HDM

With Michael Ramsey-Musolf and VQ Tran, in preparation.

[See also talk by Ryusuke Jinno]

BM : { $m_{(h_2,H^{\pm},m_D,m_{W'},m_X,m_{fH})} = (290,350,288,0.105,0.219,10^3)$ GeV; (θ_1, θ_2) = (0.26,0.32) rad; $g_X = 4 \times 10^{-5}$ }

 $\xi = \frac{v_C}{T_C}$

$$v_C \equiv \phi_{\min}(T_C) = \sqrt{2}$$

PhaseTracer

star represents the benchmark point **BM**.

FOPT Viable Parameter Space (2σ)

Figure 4. Viable model parameter region for the two-step phase transition. The color legend on the top indicates the value of $\xi = v_C/T_C$ for the second transition. The red

Nucleation Viable Parameter Space (2σ)

CosmoTransitions + PTPlot packages

PTPlot package \rightarrow GW spectrum and SNR

GW Signals and DM Direct Detection

- Minimal G2HDM has rich phenomenological implications • $\mathcal{W}^{'(p,m)}$ as SIDM (Small scale issues in WIMP paradigm)
- Matter antimatter asymmetry

Summary and Outlook

