Earth and Celestial Bodies as Dark Matter Laboratories

Ningqiang Song

Institute of Theoretical Physics, Chinese Academy of Sciences

11th KIAS Workshop, Jeju November 15, 2023

Eilers *et al.*, 1810.09466

Why Celestial Bodies?

Greater dark matter density

Special environment: high temperature, high gravity

Multi-messenger, multi-frequency observations available

See also latest XENONnT 2303.14729

Dark Matter Fridge

Dark particles that dissipate star energy

Raffelt 1996, 1999, Chang 2018

- Excess cooling of supernova
- Stellar evolution Luzio 2109.10368
- BH superradiance Arvanitaki 2009, 2010

Dark Matter Stove

Dark matter heating of the astrophysical environments

- Increase star temperature/luminosity Baryakhtar 1704.01577
- Collapse into BHs Goldman1989, Bertone 0709.1485
- Triggered explosion of white dwarfs Fayet 2006, Smirnov 2022
- Heating of gas Bhoonah 1806.06857, 2010.07240

Earth Heating

Dark matter scatters with Earth matter, lacksquareslows down and gets trapped

DM capture $v_f < v_{escape} \sim 11 \text{ km/s}$

Earth Heating

- Dark matter scatters with Earth matter, slows down and gets trapped
- Dark matter scatters with thermal ulletnuclei and escapes from the Earth

Earth Heating

- Dark matter scatters with Earth matter, lacksquareslows down and gets trapped
- Dark matter scatters with thermal nuclei and escapes from the Earth
- Dark matter annihilate to Standard Model particles, heating the Earth

DM Heating \leq 44 TW

Kamland, Borexino geoneutrino observation

Monte Carlo

DaMaSCUS_EarthCapture https://github.com/songningqiang/DaMaSCUS-EarthCapture

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

See also DaMaSCUS https://github.com/temken/DaMaSCUS

Monte Carlo

DaMaSCUS_EarthCapture https://github.com/songningqiang/DaMaSCUS-EarthCapture

Capture Fraction

ITP

DaMaSCUS_EarthCapture https://github.com/songningqiang/DaMaSCUS-EarthCapture

11

Monte Carlo vs Single Scatter

12

Monte Carlo vs Multi Scatter

Dark Matter Distribution

$$= \left(\frac{T_{\oplus}(r)}{T_{\oplus}(0)}\right)^{3/2} \exp\left(-\int_{0}^{r} \left[\alpha(r')\frac{dT_{\oplus}(r')}{dr'} + m_{\chi}\frac{d\phi(r')}{dr'}\right]T$$

When $\sigma_{\chi N}^{SI} \gtrsim 10^{-36} \text{ cm}^2$, dark matter thermalizes with local environment due to frequent scattering

Garani 1702.02768

Heavier dark matter sinks down, lighter dark matter float

14

Dark Matter Evaporation

Dark Matter Annihilation

Assuming dark matter annihilates to SM final states

 $A_{\oplus} = \frac{\langle \sigma v_{\mu} \rangle}{2\pi^{c}}$ Normalized annihilation rate

Total annihilation rate

$$\frac{\partial \lambda_{\chi\chi}}{V_C^2} \int_0^{R_{\oplus,\mathrm{atm}}} n_\chi^2 4\pi r^2 dr$$

 $\langle \sigma v \rangle_{\chi\chi} \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}$

Capture Evaporation Annihilation

Earth Heating Constraints

Spin-Independent 100%

Bramante, Kumar, Mohlabeng, NS, 2210.01812

Ningqiang Song (songnq@itp.ac.cn)

DM Heating \leq 44 TW Spin-Independent 5%

Heating Constraints - Spin-Dependent

Spin-Dependent 100%

Bramante, Kumar, Mohlabeng, NS, 2210.01812

Spin-Dependent 5%

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

Heating Constraints - Spin-Dependent

SD Proton-only 100%

Bramante, Kumar, Mohlabeng, NS, 2210.01812

SD Proton-only 5%

Now Something Different

Credit: ESO/M. Kornmesser

Radios From Stars

DM Halo

Radio Signals

Axion-Photon Conversion

• CP conserved in QCD \Rightarrow axion

•
$$\mathscr{L}_{a\gamma\gamma} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Resonant conversion from axion to photon in plasma when $m_a \sim \omega_p$

Axion Conversion in Neutron Star

Magnetized neutron star atmosphere — magnetosphere ullet

$$n_{
m GJ}({f r}_{
m NS}) = rac{2{f \Omega}\cdot{f B}_{
m NS}}{e}rac{1}{1-\Omega^2r^2\sin^2}$$

Conversion probability •

$$p = \frac{g_{a\gamma\gamma}^2 B^2}{2k |\omega_p'|} \frac{\pi m_a^5}{(k^2 + m_a^2 \sin^2 \theta)^2} \sin^2 \theta$$

Millar et al 2107.07399

Hook et al 1804.03145

Witte et al 2104.07670

Radio Observation Constraint

Radio flux limit from the galactic center

Foster et al 2202.08274

Dark Photon

Extra U(1)? $SU(3)_c \times SU(2)_L \times U$

$$\mathscr{L} = -\frac{1}{4}(F_{\mu\nu}F^{\mu\nu} - 2\kappa F_{\mu\nu}F^{'\mu\nu} + F_{\mu\nu}'F^{'\mu\nu}) + \frac{m_{A'}^2}{2}A_{\mu}'A^{'\mu} - J^{\mu}A_{\mu}$$

A where M

$$\omega^2 \sim k^2 + \omega_p^2$$

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

$$V(1)_Y \times U(1)'$$

Pospelov' 2008 Ackerman, Buckley, Carrol, Kamionkowsk' 2008 Arkani-Hame, Finkbeine, Slatyer, Weiner' 2008

$$\mathcal{K}$$

$$\omega^2 = k^2 + m_{A'}^2$$

Resonant Dark Photon Conversion

- lacksquarestar when $m_{A'} \sim \omega_p$
- Redefine $A_{\mu} \rightarrow A_{\mu} + \kappa A'_{\mu}$ to remove the mixing,

$$\mathscr{L} = -\frac{1}{4}(F_{\mu\nu}F^{\mu\nu} + F'_{\mu\nu}F^{'\mu\nu}) + \frac{1}{2}m_{A'}^2A'_{\mu}A^{'\mu} - (A_{\mu} + \kappa A'_{\mu})J^{\mu}$$

Equation of motion

$$\begin{aligned} & (\omega^2 + \nabla^2) \boldsymbol{A} - \nabla (\nabla \cdot \boldsymbol{A}) + \omega^2 \left(\boldsymbol{\chi}^p + \boldsymbol{\chi}^{\text{vac}} \right) \cdot (\boldsymbol{A} + \kappa \boldsymbol{A}') = 0 \\ & (\omega^2 + \nabla^2) \boldsymbol{A}' - m_{A'}^2 \boldsymbol{A}' + \kappa \omega^2 (\boldsymbol{\chi}^p + \boldsymbol{\chi}^{\text{vac}}) \cdot \boldsymbol{A} = 0 \end{aligned} \begin{bmatrix} \omega^2 + \partial_z^2 + \omega^2 \left(\boldsymbol{\chi}^p + \boldsymbol{\chi}^{\text{vac}} - \mathcal{D}^2 & \kappa (\boldsymbol{\chi}^p + \boldsymbol{\chi}^{\text{vac}}) \\ & \kappa (\boldsymbol{\chi}^p + \boldsymbol{\chi}^{\text{vac}}) & -m_{A'}^2 / \omega^2 \end{array} \end{bmatrix} \begin{bmatrix} \boldsymbol{A} \\ \boldsymbol{A} \end{bmatrix}$$

$$oldsymbol{\epsilon} = 1 + oldsymbol{\chi}^p = R^{yz}_ heta \cdot egin{pmatrix} arepsilon & ig & 0 \ -ig & arepsilon & 0 \ 0 & 0 & \eta \end{pmatrix} \cdot R^{yz}_{- heta}$$

MEPA 2023

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

Resonant conversion from dark photon to photon in the magnetosphere of a neutron

No magnetic field need!

= 0

Resonant Dark Photon Conversion

$$egin{aligned} &(\omega^2+\partial_z^2)A_x-\partial_x\partial_z A_z+\omega^2 aar{A}_x=0\,,\ &(\omega^2+\partial_z^2)A_y-\partial_y\partial_z A_z+\omega^2[(\eta'\sin^2 heta+\omega^2)A_z+\partial_y\partial_z A_z+\omega^2](\eta'+\omega^2)A_z+\omega^2[-(\eta'+\omega^2)A_z+\omega^2)A_z+\omega^2] \end{aligned}$$

Conversion probability

$$p \simeq \frac{|\tilde{A}_{y}|^{2} + |\tilde{A}_{z}|^{2}}{|\tilde{A}_{x}'|^{2} + |\tilde{A}_{y}'|^{2} + |\tilde{A}_{z}'|^{2}} \simeq \frac{\pi \kappa^{2} \omega_{p}^{3} (m_{A'}^{2} c)}{6km_{A'}^{2}}$$

 The converted photon has both transverse and longitudinal polarizations, and evolves in the direction that is perpendicular to the magnetic field

 $+ a + q \sin \theta^2) \bar{A}_y - (\eta' + q) \cos \theta \sin \theta \bar{A}_z] = 0,$ $(+ q) \cos \theta \sin \theta \bar{A}_y + (\eta' \cos^2 \theta + a + q \cos^2 \theta) \bar{A}_z] = 0.$

Sensitivities for Galactic Center Signals

Collection of neutron stars

Dark Photon Mass

Edward Hardy, **NS**, 2212.09756

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

Criteria for Strong Conversion

- Strong magnetic field is NOT required
- Dense plasma \Rightarrow Larger dark photon mass lacksquare
- High temperature \Rightarrow Less Inverse Bremsstrahlung absorption

$$\Gamma_{\rm IB} = \frac{8\pi\alpha^3 n_e n_{\rm ion}}{3\omega^3 m_e^2} \sqrt{\frac{2\pi m_e}{T}} \ln\left(\frac{2T^2}{\omega_p^2}\right)$$

Accreting White Dwarf

Non-magnetic cataclysmic variable

Magnetic cataclysmic variable

Non-magnetic Cataclysmic Variables

- The inner part of the disk decelerates and forms a hot boundary layer near the white dwarf surface
- High accretion rate ⇒ Black body emission from the optically-thick boundary layer
- Low accretion rate ⇒ Bremsstrahlung emission from the optically-thin boundary layer

Optically Thin Boundary Layer

- Temperature $T \simeq \frac{3}{16} \frac{GM\mu m_p}{kR} \sim 10^8 \text{ K}$
- Thickness $b \simeq 600 \text{ km} \left(\frac{T_s}{10^8 \text{ K}}\right) \left(\frac{M_{\text{WD}}}{M_{\odot}}\right) \left(\frac{r_0}{0.01 R_{\odot}}\right)^2$
- Height $H = 2 \times 10^3 \text{ km } \alpha_d^{-1/10} \dot{M}_{16}^{3/20} \left(\frac{r_0 + b}{10^5 \text{ km}}\right)^{9/8} f_r^{3/5}$
- Density profile

$$n_e = n_d \exp\left(1 - \frac{r - r_0}{b} - \frac{h^2}{H^2}\right)$$

Patterson et al 1985

X-ray Map in the Galactic Center

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

ITP

Zhu et al 1802.05073

Sensitivities from Non-magnetic Cataclysmic Variable

Single accreting white dwarf

Edward Hardy, **NS**, 2212.09756

• Dark matter accumulation and Earth heating

• Dark photon conversion in celestial plasma

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

Future Directions

- Dark matter annihilation to neutrinos
- Dark matter-electron scattering, stay tuned
- Special types of interactions
- Full MC including annihilation and evaporation
- Direct detection of thermalized dark matter

Acevedo et al 2303.01516

Evaporation Barrier

Das et al 2210.09313

Future Directions

Signals from compact star and dark photon star encounters

Axion signal from such systems

Gorghetto et al 2203.10100

Magnetic cataclysmic variable, accreting neutron star and black holes

Dark Photon

Extra U(1)? $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'$

$$\mathscr{L} = -\frac{1}{4} (F_{\mu\nu}F^{\mu\nu} - 2\kappa F_{\mu\nu}F^{'\mu\nu} + F_{\mu\nu}F^{'\mu\nu}) + \frac{m_{A'}^2}{2}A_{\mu}A^{'\mu} - J^{\mu}A_{\mu}$$

- Heavy states charged both SM and U(1)'•
- String compactifications
- Production through misalignment, inflationary perturbation, etc

Pospelov' 2008 Ackerman, Buckley, Carrol, Kamionkowsk' 2008 Arkani-Hame, Finkbeine, Slatyer, Weiner' 2008

Graham et al 1504.02102

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

Dark Photon Constraints

Dark Photon Stars

$$\lambda_J = 4.6 \times 10^3 \text{ km} \left(\frac{\text{eV}}{m_{A'}}\right)^{1/2} \left(\frac{M_J^{\text{eq}}}{M}\right)$$

3/2 $M_J^{\text{eq}} = 5.2 \times 10^{-23} M_{\odot} \left(\frac{\text{eV}}{m_{A'}}\right)$

Signal from Dark Photon Star Encounters

- Dark photon stars are tidally disrupted when colliding with neutron star or white dwarf
- Collision yields a transient signal which lasts a few days
- Density enhancement of around 10^6
- Small velocity dispersion
- More frequent encounter than Earth

Bai et al 2109.01222

Ningqiang Song (songnq@itp.ac.cn)

Plasma frequencies

Solar Corona $n_e \lesssim 10^{10} \text{ cm}^{-3}$ $\omega_p \lesssim 4 \times 10^{-6} \text{ eV}$ $f \lesssim \text{GHz}$

An et al 2010.15836

Neutron Star Magnetosphere $n_e \lesssim 10^{13} \text{ cm}^{-3}$ $\omega_p \lesssim 10^{-4} \text{ eV}$ $f \lesssim 24 \,\,\mathrm{GHz}$

White Dwarf Corona $n_e \lesssim 10^{17} \text{ cm}^{-3}$ $\omega_p \lesssim 10^{-2} \text{ eV}$ $f \lesssim 2400 \text{ GHz}$

Signals from the Galactic Centre

$$S_{\rm sig} = \frac{1}{\mathscr{B}d^2} \frac{dP}{d\Omega} > S_{\rm min}$$

Signals from a single star $\delta f/f \sim v^2 \sim 10^{-6}$

Signals from stellar population $\delta f/f \sim v \sim 10^{-3}$

$$\omega_{\text{obs}} = \omega_{\sqrt{\frac{1 - v_{\text{l.o.s}}}{1 + v_{\text{l.o.s}}}}}$$

Doppler shift can be important!

Safdi et al 1811.01020

Compact Stars in the Galactic Centre

Freitag et al 2006

Radio Telescopes

Minimum detectable signal flux density

$$S_{\min} = \frac{\text{SEFD}}{\eta \sqrt{n_{\text{pol}} \mathcal{B} t_{\text{obs}}}}$$

SEFD =
$$2k_B \frac{T_{\text{sys}}}{A_{\text{eff}}} = 2.75 \text{ Jy} \frac{1000 \text{ m}^2/\text{K}}{A_{\text{eff}}/T_{\text{sys}}}$$

$$S_{\rm sig} = \frac{1}{\mathscr{B}d^2} \frac{dP}{d\Omega} > S_{\rm min}$$

White Dwarf Atmosphere

Isotropic plasma \Rightarrow photon longitudinal polarization does not propagate, only transverse modes convert

$$\begin{bmatrix} -i\frac{d}{dr} + \frac{1}{2k} \begin{pmatrix} m_{A'}^2 - \omega_p^2 & -\kappa\omega_p^2 \\ -\kappa\omega_p^2 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \tilde{A} \\ \tilde{A'} \end{pmatrix} = 0.$$

White Dwarf Atmosphere

- Pressure gradient balances gravity $l_a \simeq$
- Exponential density profile $n_e(r) = n_0 e^{-1}$

• Conversion probability
$$p = \frac{2\pi \kappa^2 m_{A'}^2}{3 k} l_a$$

Radio emission power •

$$\frac{d\mathcal{P}}{d\Omega} \simeq 2pr_c^2 \rho_{A'}(r_c)v_c$$

 $T_a \sim 10^4 - 10^5 \text{ K}, n_0 \sim 10^{17} \text{ cm}^{-3}$

$$\frac{kT_a r_0^2}{GM_{\rm WD}\mu m_p} = 0.06 \text{ km} \left(\frac{T_a}{10^4 \text{ K}}\right) \left(\frac{M_{\rm WD}}{M_\odot}\right) \left(\frac{r_0}{0.01 R_\odot}\right)^2$$

$$\frac{r-r_0}{l_a}$$

Sensitivities from White Dwarf Atmosphere

Collection of white dwarfs

White Dwarf Corona?

- Higher temperature $10^6 10^7$ Kelvins \Rightarrow less absorption
- Exponential density profile $n_e(r) = n_0 e^{-r}$
- No observational evidence for hot corona in isolated white dwarfs

$$T_a \sim 10^6 - 10^7$$
 K, r

$$\frac{r-r_0}{l_a}$$

$$n_0 \sim ?$$

Sensitivities from White Dwarf Corona

Credit: ESA

Edward Hardy, **NS**, 2212.09756

