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Abridged  story of the axion

• If the axion exists, these problems must be solved ! It is then conceivable that   
c the solution could shed light on other unsolved issues of the Standard Model

Solving theoretical problems catalyses advancements in science by bringing deep 
new understandings along with unexpected, and often surprising, implications.     
Usually it also brings to light new problems of which we were previously unaware. 

• QCD before 1975:   U(1) problem:  why the  η does not behave as a 9th  NGB ?                 
c 
• Instantons (Belavin et al. ’75), Yang-Mills vacuum periodicity (Callan et al. ’76; Jackiw et al. ’76)             
c U(1) axial anomaly + non-trivial vacuum  ->  no conserved axial current ->  no NGB

• New problem: LQCD -> LQCD +                 brings in QCD P,T (CP) violation.θ< 10-10  

• Unsurprisingly, it raises new problems: Which is the origin of the PQ symmetry?   
c How can it remain preserved up to the required operator dimension d ≳ 10 ?

• PQ solution (’77): θ -> θ(x); V(θ) s.t. <θ>	= 0. It predicts a m ≈ 0 scalar: the Axion 

• Unexpectedly, the axion has also the right properties to account for the DM ! 



Basic ingredients of the PQ solution
[Peccei, Quinn (1977),  Weinberg (1978), Wilczek (1978)]

•A scalar potential invariant under a global U(1):  Φ -> eiξ Φ,   δV(Φ) = 0  
•a 

•U(1) SSB: Φ -> va eia(x)/va.  a(x): V(a) = 0 ->  shift symmetry  a -> a + ξvα 
•a 

•Couplings between the scalars and some quarks Q̄L Φ qR  -> Q̄L va qR eia(x)/va     
  U(1) is then enforced by assigning chiral PQ charges   X(Q) - X(q) = X(Φ) 
•a

 

•The symmetry must have a mixed U(1)-SU(3)c  anomaly: Σq(XQ - Xq) ≠ 0

By redefining the quark fields in the basis of real masses Q̄L va qR:       
   𝛩GG̃     ->       (a(x)/va + 𝛩) GG̃     ->      (a(x)/va) GG̃  

Instanton related non-perturbative QCD effects generate a potential
  VQCD(a) = -(mπ fπ)2 cos(a/va)  that drives   <a/va> -> 0 at the minimum



The PQ "origin" and "quality" problems
• U(1)PQ is anomalous. Is not a (fundamental) symmetry of the theory: 

  ∫[DAµ DΦ] DψDψ̄ exp(iS)   is not invariant under a PQ transformation 
a 

•In benchmark axion models, Φ is a complex scalar, and a gauge singlet.             
aRenormalizable terms µ3Φ, µ2Φ2, µΦ3, λΦ4 do not break gauge or Lorentz 
aand are not forbidden.  However, they would destroy PQ invariance.

•PQ breaking effective opts.:  g Φd/Λd-4 -> g (va/Λ)d-4  < 10-10 (mπ fπ/Λ2)2                               
athat is, we need to require:      Eng. density eff. opt.  <  10-10   VQCD(a)           
a     E.g.   g~1,  Λ ~ MP    and   va ~ 1010 GeV  imply d  ≳ 10 [with g = gwh, d  ≳ 9 ] 
a         [Barr & Seckel ’92, Kamionkowski & March-Russel ’92, Holman et al. ’92, Ghigna et al. ’92] Escudero ‘20]

•Non-pt. quantum gravity effects. Controlled solutions:  MP
3 e-Swh  Φ + h.c. 

   [Euclid. wormholes]. Safe suppression requires Swh > 190 (while typical Swh ~ Log(MP/va) ~ 15)  
   [Kallosh et al. ’95, Alonso & Urbano ’17, Alvey & Escudero ‘20]

•The axion scale va ≳ 108 GeV contributes to the EW stability problem           
   (analogously to other SM completions that involve a new large  UV scale:  seesaw, GUTs, etc.)



A sample of proposed solutions
U(1)PQ should arise automatically as a consequence of first principles. 
SSB requires VEVs ⇛ Lorentz singlets. Rely on local gauge symmetries 

• Non-Abelian SU(n)L x SU(n)R,  a(x) ∈ Yn×n.      Svd:  Y = U Ŷ Vt eia/va  

a
 

    For  n > 4  the  ren. potential is very simple:            V(Y) = (T-µ2)2 ± A  
   with     T = Tr(YtY),      A = Tr(mnr[YtY,2])  =  ½[T2- Tr(YtYYtY)] 
a 
  Automatic rephasing symm. Y -> eiξ Y.  Anomaly from KSVZ quarks Q̄L YQR   
  1st  PQ   opt.  Λ4-n  det Y    dim = n.  This requires  again   n ≥  10     

                                                                                            [Fong, EN ’14 [in SU(3)xSU(3)], Di Luzio, Ubaldi, EN ’17]       

•Discrete gauge symm. ℤn: Φ -> ei 2π/n Φ;   1st  PQ   opt.  Λ4-n Φn   

 Requires  ℤ10  or larger [Krauss & Wilczek ’89, Dias & al. ’03, Carpenter & al. ’09, Harigaya & al. ’13]  

• Local U(1) + 2 scalars with charges q1+q2  ≥ 10  1st  PQ : Λ4-q1-q2 (Φ1
t)q2 (Φ2)q1 

  (q1 and q2 relatively prime)                                                     [Barr & Seckel ’92]   



Can we do any better?  For V(Φ) it is easy
[Darmé & EN  (2021)]

•Take a local SU(m)xSU(n) (m > n) and a scalar multiplet Yαi ∼ (m,n̄)   
  SU invariants are constructed with Kronecker δ and Levi-Civita ε 
a 

 δ-ιnvariants can be red off the characteristic polynomial of YtY: 
         P(ξ) = det(ξI-YtY) = Σk  (-1)k Ck  ξn-k      Ck =Tr(mnr[YtY,k])         
 They are obviously all Hermitian  ⇛  accidental U(1):   Y -> eiξ Y
a

 ε-ιnvariants (non-Hermitian): there is none εαβ…σ  Yαi Yβj …Yσr = 0  symmt. 
  
Already for SU(3)xSU(2), V(Y) enjoys  automatically  an exact  global U(1)  

Note: for a Ynxn square matrix   εαβ…σ  εij…r Yαi Yβj …Yσr  det Y  ≠  0  
Such automatic U(1) symmetries are peculiar of local `rectangular’ symmetries

Can symmetries of this type be promoted to PQ symmetries ?



The “PQ  quality - flavour” connection

• We are led to consider models of flavour with a generic structure 

with Z, X, Y scalar multiplets of some GF. Possibly  involving also 
combinations of scalar fields W = W[Z,X,Y].  It can contain EW 
vectorlike quarks (e.g. qR ∈ SU(2)W). SM quarks masses and mixings 
generated dynamically by specific <Z>, <X>, <Y> configurations, with 
hierarchical singular values  [for a proof of principle of the viability, Fong & EN ’13] 
a 

The guiding principle is that a PQ symmetry of the required high 
quality must arise automatically from GF and the field content.

Any non-Abelian gauge symmetry generating a U(1)PQ is a flavour symmetry



Can our U(1)’s be promoted to PQ symmetries ?
•Exercise: assume GF = SU(3)L x SU(2)R, take Yαi ~ (3,2̄) and the quark  
 multiplets QL~ (3,1); qR ~ (1,2); tR ~ (1,1) (tR needed to avoid SU(3)C  anomaly) 
a 
  Rank(Y3x2) = 2, one massless quark. Add Zα ~ (3,1):  Mq ⊂ Q̄L Y qR  + Q̄L Z tR 
a 

•Two mixed invariants     Iε = εαβγ εij Yαi Yβj Zγ      U(1)ε :       2XY + XZ = 0 
    U(1)Y x U(1)Z -> U(1)       Iδ = εij (ZtY)i  (ZtY)j          U(1)δ :         XY - XZ = 0 

  Then U(1)Y x U(1)Z  is completely broken, no residual U(1).   No PQ solution ?

• Not so ! We need to consider the vacuum structure of Y and Z 



• We can easily identify the NGB that remainσ (perturbatively) massless 
   and enjoyσ the required shift symmetry.  
   In the vacuum determined by Iε, charges are related by XZ = - 2 XY

Operators for which <O> -> 0 do not break the symmetries of the minimum, 
 thus the vacuum can enjoy a larger symmetry than the Lagrangian.    

Scalar bosons associated with these symmetries remain massless [Georgi & Pais ’75]

• Let us recall however that U(1) symmetry breaking operators exist 
that do not break the gauge symmetry, so that QCD can still 
produce a potential while respecting gauge invariance 



Can this yield a viable axion model ?
• Recall <Y> ~ (y1,y2,0)T. To ensure a mass for tR, we need to choose    
   <Z> ~ (0,0,z3)T   that is  <Y> and <Z>  must be ”misaligned”.  
 The vacuum is defined by  <Iδ> = 0 and <Iε> ≠ 0      X(Iε) = 2XY + XZ = 0 

• Let us now compute the anomaly   APQ = ΣqL XL  -  ΣqR XR 

  3 XQ - 2 Xq - Xt   = 2(XQ - Xq) + (XQ - Xt)  = 2XY + XZ  =  X(Iε) = 0 

 Thus  <Iε>  breaks  U(1)Y x U(1)Z  ->  U(1)ε    which is non-anomalous !   
 Then U(1)ε   is not a PQ symmetry, and its (exactly massless) NGB does  
 not solve the strong CP problem.

Is this just an unlucky accident  occurring  with the   
flavour SU(3)L x SU(2)R gauge symmetry ?



An upper limit on the quality of the PQ  symmetry   
Consider a gauge symmetry GF =[Πℓ SU(mℓ)]L x [Πr SU(nr)]R acting on a certain 
set of scalar multiplets in bi-fundamentals Yℓr∈ SU(mℓ) x SU(nr) of the mℓ, nr 

gauge factors, and on N=Σℓ λℓ mℓ=Σr λr nr LH and RH quarks also in fundamentals 
(λℓ,r: isospin multiplicity). We can write a certain number of gauge invariant quark-
scalar couplings: Σ ηℓrQ̄ℓ Yℓrqr   (ηℓr: O(1) constants; ℓr ǹames’ not indices; H/Λ when needed) 
   

Assuming that all the quarks acquire masses (det Mq ≠ 0), it can be shown that:  
  

1. for any global U(1) there exists at least one scalar operator O(Y) with a  
  non-vanishing VEV and charge equal to the U(1)-SU(3)c anomaly: XO(Y) = AC ≠ 0 
     

2. modulo the coupling constants ηℓr we have:  <XO(Y)>  ≃  Λ4-N  det 𝜰qeff

1. implies that any anomalous U(1) suffers explicit breaking at least at d = N. 
  This provides an upper limit on the quality of GF-protected PQ symmetries.  
   

2. implies that this source of breaking is removed as det 𝜰qeff
 -> 0. Providing 

    an unexpected connection between PQ quality and Yukawa hierarchies ! 



A glimpse on the generation of Yukawa hierarchies    
Consider GF =SU(4)L x [SU(3)d x SU(2)u]R  and the quark/scalar multiplets:

“Flavour relevant” renormalizable invariants and their action in the approx. in 
which the svd  L-matrices  UX,UZ -> I4    (neglecting mixings, only hierarchies)

The Yukawa couplings originate from the effective Lagrangian



A different approach: scale vs. compact space radius
Consider the usual Mexican hat potential for a complex Φ hosting the axion

Then    fa2 = Σn  Xn2  vn2 ≈  (1/3) v2 4n+1   (after taking all vn ≈ v) 
If  quarks couple to Y1 : Q̄ Y1 q  so that Xq are small, all axion  
interactions  are suppressed as  1/fa . For n ~ 20, v ~ 100 GeV,  v/Mp ~ 10-17

va

•  Scale of PQ symm. breaking:    <Φ> = va  
    (phase transition, primordial GW,…)   
• Axion compact field space radius a ∈ [0, 2π fa) 
   (suppression of axion couplings:  a(x)/fa)

Here va = fa, but conceptually they are different quantities.  
When the axion is  hosted in more than one scalar multiplet:  Φi ~ vi eai/vi    
a = Σi (vi/fa) ai   with  fa2 = Σi  Xi2  vi2   enhancement by large charge values 

[Clockwork mechanism: Choi & Im ’16, Kaplan & Rattazzi ’16, Giudice & McCullough ’17 …]

Consider a gauge group [SU(3)xSU(2)]n+1  and Y ~ (1n-1, 2n, 3n),  Σ~(3n-1,2̄n, 3̄n) 
 The potential V = Σn ε3 ε2 Yn Yn Σn+1 Yn+1  has automatic symm. Xn+1 = 2 Xn   (XΣ =0)



Summary and conclusions

• So far, they suggest that: some quark masses should have a different  
 origin than others; additional vectorlike quarks are most likely needed  
 (viol. CKM unit.); some flavour gauge bosons with mF ~ va (mu/mt); etc.   

• Non-Abelian symm. can be directly interpreted as flavour symm. (whether   
  for KSVZ and/or SM quarks). A certain type of symm. have particularly 
  interesting features w.r. U(1)PQ protection, flavour hierarchies, etc.

•The PQ mechanism provides an elegant and convincing solution to the   
  strong CP problem. However, we do not yet have a similarly elegant and  
  convincing model enforcing this mechanism in a natural way

Thanks for your attention

•The scalar potential that breaks spont. U(1)PQ can automatically be U(1)  
 invariant and protected from higher-dim PQ opts. if the scalars transform 
 under some suitable local symmetry (Abelian continuous/discrete or non-Abelian) 


